sched, numa, mm: Count WS scanning against present PTEs, not virtual memory ranges
[deliverable/linux.git] / kernel / sched / core.c
... / ...
CommitLineData
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75
76#include <asm/switch_to.h>
77#include <asm/tlb.h>
78#include <asm/irq_regs.h>
79#include <asm/mutex.h>
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
83
84#include "sched.h"
85#include "../workqueue_sched.h"
86#include "../smpboot.h"
87
88#define CREATE_TRACE_POINTS
89#include <trace/events/sched.h>
90
91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
92{
93 unsigned long delta;
94 ktime_t soft, hard, now;
95
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
102
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
113
114static void update_rq_clock_task(struct rq *rq, s64 delta);
115
116void update_rq_clock(struct rq *rq)
117{
118 s64 delta;
119
120 if (rq->skip_clock_update > 0)
121 return;
122
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
126}
127
128/*
129 * Debugging: various feature bits
130 */
131
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
135const_debug unsigned int sysctl_sched_features =
136#include "features.h"
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
145static const char * const sched_feat_names[] = {
146#include "features.h"
147};
148
149#undef SCHED_FEAT
150
151static int sched_feat_show(struct seq_file *m, void *v)
152{
153 int i;
154
155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
159 }
160 seq_puts(m, "\n");
161
162 return 0;
163}
164
165#ifdef HAVE_JUMP_LABEL
166
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
183}
184
185static void sched_feat_enable(int i)
186{
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
200 char *cmp;
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
211 cmp = strstrip(buf);
212
213 if (strncmp(cmp, "NO_", 3) == 0) {
214 neg = 1;
215 cmp += 3;
216 }
217
218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
220 if (neg) {
221 sysctl_sched_features &= ~(1UL << i);
222 sched_feat_disable(i);
223 } else {
224 sysctl_sched_features |= (1UL << i);
225 sched_feat_enable(i);
226 }
227 break;
228 }
229 }
230
231 if (i == __SCHED_FEAT_NR)
232 return -EINVAL;
233
234 *ppos += cnt;
235
236 return cnt;
237}
238
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
244static const struct file_operations sched_feat_fops = {
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
250};
251
252static __init int sched_init_debug(void)
253{
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
260#endif /* CONFIG_SCHED_DEBUG */
261
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
276/*
277 * period over which we measure -rt task cpu usage in us.
278 * default: 1s
279 */
280unsigned int sysctl_sched_rt_period = 1000000;
281
282__read_mostly int scheduler_running;
283
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
289
290
291
292/*
293 * __task_rq_lock - lock the rq @p resides on.
294 */
295static inline struct rq *__task_rq_lock(struct task_struct *p)
296 __acquires(rq->lock)
297{
298 struct rq *rq;
299
300 lockdep_assert_held(&p->pi_lock);
301
302 for (;;) {
303 rq = task_rq(p);
304 raw_spin_lock(&rq->lock);
305 if (likely(rq == task_rq(p)))
306 return rq;
307 raw_spin_unlock(&rq->lock);
308 }
309}
310
311/*
312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
313 */
314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
315 __acquires(p->pi_lock)
316 __acquires(rq->lock)
317{
318 struct rq *rq;
319
320 for (;;) {
321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
322 rq = task_rq(p);
323 raw_spin_lock(&rq->lock);
324 if (likely(rq == task_rq(p)))
325 return rq;
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
328 }
329}
330
331static void __task_rq_unlock(struct rq *rq)
332 __releases(rq->lock)
333{
334 raw_spin_unlock(&rq->lock);
335}
336
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
339 __releases(rq->lock)
340 __releases(p->pi_lock)
341{
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
344}
345
346/*
347 * this_rq_lock - lock this runqueue and disable interrupts.
348 */
349static struct rq *this_rq_lock(void)
350 __acquires(rq->lock)
351{
352 struct rq *rq;
353
354 local_irq_disable();
355 rq = this_rq();
356 raw_spin_lock(&rq->lock);
357
358 return rq;
359}
360
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
372
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
389 raw_spin_lock(&rq->lock);
390 update_rq_clock(rq);
391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
392 raw_spin_unlock(&rq->lock);
393
394 return HRTIMER_NORESTART;
395}
396
397#ifdef CONFIG_SMP
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
402{
403 struct rq *rq = arg;
404
405 raw_spin_lock(&rq->lock);
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
408 raw_spin_unlock(&rq->lock);
409}
410
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
416void hrtick_start(struct rq *rq, u64 delay)
417{
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
420
421 hrtimer_set_expires(timer, time);
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
427 rq->hrtick_csd_pending = 1;
428 }
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
443 hrtick_clear(cpu_rq(cpu));
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
450static __init void init_hrtick(void)
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
460void hrtick_start(struct rq *rq, u64 delay)
461{
462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
463 HRTIMER_MODE_REL_PINNED, 0);
464}
465
466static inline void init_hrtick(void)
467{
468}
469#endif /* CONFIG_SMP */
470
471static void init_rq_hrtick(struct rq *rq)
472{
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
475
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
480
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
483}
484#else /* CONFIG_SCHED_HRTICK */
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
493static inline void init_hrtick(void)
494{
495}
496#endif /* CONFIG_SCHED_HRTICK */
497
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) 0
509#endif
510
511void resched_task(struct task_struct *p)
512{
513 int cpu;
514
515 assert_raw_spin_locked(&task_rq(p)->lock);
516
517 if (test_tsk_need_resched(p))
518 return;
519
520 set_tsk_need_resched(p);
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
532void resched_cpu(int cpu)
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
538 return;
539 resched_task(cpu_curr(cpu));
540 raw_spin_unlock_irqrestore(&rq->lock, flags);
541}
542
543#ifdef CONFIG_NO_HZ
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
558 rcu_read_lock();
559 for_each_domain(cpu, sd) {
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
566 }
567unlock:
568 rcu_read_unlock();
569 return cpu;
570}
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
597
598 /*
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
602 */
603 set_tsk_need_resched(rq->idle);
604
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
609}
610
611static inline bool got_nohz_idle_kick(void)
612{
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
615}
616
617#else /* CONFIG_NO_HZ */
618
619static inline bool got_nohz_idle_kick(void)
620{
621 return false;
622}
623
624#endif /* CONFIG_NO_HZ */
625
626void sched_avg_update(struct rq *rq)
627{
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
640}
641
642#else /* !CONFIG_SMP */
643void resched_task(struct task_struct *p)
644{
645 assert_raw_spin_locked(&task_rq(p)->lock);
646 set_tsk_need_resched(p);
647}
648#endif /* CONFIG_SMP */
649
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
652/*
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
657 */
658int walk_tg_tree_from(struct task_group *from,
659 tg_visitor down, tg_visitor up, void *data)
660{
661 struct task_group *parent, *child;
662 int ret;
663
664 parent = from;
665
666down:
667 ret = (*down)(parent, data);
668 if (ret)
669 goto out;
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
677 ret = (*up)(parent, data);
678 if (ret || parent == from)
679 goto out;
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
685out:
686 return ret;
687}
688
689int tg_nop(struct task_group *tg, void *data)
690{
691 return 0;
692}
693#endif
694
695static void set_load_weight(struct task_struct *p)
696{
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
704 load->weight = scale_load(WEIGHT_IDLEPRIO);
705 load->inv_weight = WMULT_IDLEPRIO;
706 return;
707 }
708
709 load->weight = scale_load(prio_to_weight[prio]);
710 load->inv_weight = prio_to_wmult[prio];
711}
712
713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
714{
715 update_rq_clock(rq);
716 sched_info_queued(p);
717 p->sched_class->enqueue_task(rq, p, flags);
718}
719
720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
721{
722 update_rq_clock(rq);
723 sched_info_dequeued(p);
724 p->sched_class->dequeue_task(rq, p, flags);
725}
726
727void activate_task(struct rq *rq, struct task_struct *p, int flags)
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
732 enqueue_task(rq, p, flags);
733}
734
735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
740 dequeue_task(rq, p, flags);
741}
742
743static void update_rq_clock_task(struct rq *rq, s64 delta)
744{
745/*
746 * In theory, the compile should just see 0 here, and optimize out the call
747 * to sched_rt_avg_update. But I don't trust it...
748 */
749#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
750 s64 steal = 0, irq_delta = 0;
751#endif
752#ifdef CONFIG_IRQ_TIME_ACCOUNTING
753 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
754
755 /*
756 * Since irq_time is only updated on {soft,}irq_exit, we might run into
757 * this case when a previous update_rq_clock() happened inside a
758 * {soft,}irq region.
759 *
760 * When this happens, we stop ->clock_task and only update the
761 * prev_irq_time stamp to account for the part that fit, so that a next
762 * update will consume the rest. This ensures ->clock_task is
763 * monotonic.
764 *
765 * It does however cause some slight miss-attribution of {soft,}irq
766 * time, a more accurate solution would be to update the irq_time using
767 * the current rq->clock timestamp, except that would require using
768 * atomic ops.
769 */
770 if (irq_delta > delta)
771 irq_delta = delta;
772
773 rq->prev_irq_time += irq_delta;
774 delta -= irq_delta;
775#endif
776#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
777 if (static_key_false((&paravirt_steal_rq_enabled))) {
778 u64 st;
779
780 steal = paravirt_steal_clock(cpu_of(rq));
781 steal -= rq->prev_steal_time_rq;
782
783 if (unlikely(steal > delta))
784 steal = delta;
785
786 st = steal_ticks(steal);
787 steal = st * TICK_NSEC;
788
789 rq->prev_steal_time_rq += steal;
790
791 delta -= steal;
792 }
793#endif
794
795 rq->clock_task += delta;
796
797#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
798 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
799 sched_rt_avg_update(rq, irq_delta + steal);
800#endif
801}
802
803void sched_set_stop_task(int cpu, struct task_struct *stop)
804{
805 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
806 struct task_struct *old_stop = cpu_rq(cpu)->stop;
807
808 if (stop) {
809 /*
810 * Make it appear like a SCHED_FIFO task, its something
811 * userspace knows about and won't get confused about.
812 *
813 * Also, it will make PI more or less work without too
814 * much confusion -- but then, stop work should not
815 * rely on PI working anyway.
816 */
817 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
818
819 stop->sched_class = &stop_sched_class;
820 }
821
822 cpu_rq(cpu)->stop = stop;
823
824 if (old_stop) {
825 /*
826 * Reset it back to a normal scheduling class so that
827 * it can die in pieces.
828 */
829 old_stop->sched_class = &rt_sched_class;
830 }
831}
832
833/*
834 * __normal_prio - return the priority that is based on the static prio
835 */
836static inline int __normal_prio(struct task_struct *p)
837{
838 return p->static_prio;
839}
840
841/*
842 * Calculate the expected normal priority: i.e. priority
843 * without taking RT-inheritance into account. Might be
844 * boosted by interactivity modifiers. Changes upon fork,
845 * setprio syscalls, and whenever the interactivity
846 * estimator recalculates.
847 */
848static inline int normal_prio(struct task_struct *p)
849{
850 int prio;
851
852 if (task_has_rt_policy(p))
853 prio = MAX_RT_PRIO-1 - p->rt_priority;
854 else
855 prio = __normal_prio(p);
856 return prio;
857}
858
859/*
860 * Calculate the current priority, i.e. the priority
861 * taken into account by the scheduler. This value might
862 * be boosted by RT tasks, or might be boosted by
863 * interactivity modifiers. Will be RT if the task got
864 * RT-boosted. If not then it returns p->normal_prio.
865 */
866static int effective_prio(struct task_struct *p)
867{
868 p->normal_prio = normal_prio(p);
869 /*
870 * If we are RT tasks or we were boosted to RT priority,
871 * keep the priority unchanged. Otherwise, update priority
872 * to the normal priority:
873 */
874 if (!rt_prio(p->prio))
875 return p->normal_prio;
876 return p->prio;
877}
878
879/**
880 * task_curr - is this task currently executing on a CPU?
881 * @p: the task in question.
882 */
883inline int task_curr(const struct task_struct *p)
884{
885 return cpu_curr(task_cpu(p)) == p;
886}
887
888static inline void check_class_changed(struct rq *rq, struct task_struct *p,
889 const struct sched_class *prev_class,
890 int oldprio)
891{
892 if (prev_class != p->sched_class) {
893 if (prev_class->switched_from)
894 prev_class->switched_from(rq, p);
895 p->sched_class->switched_to(rq, p);
896 } else if (oldprio != p->prio)
897 p->sched_class->prio_changed(rq, p, oldprio);
898}
899
900void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
901{
902 const struct sched_class *class;
903
904 if (p->sched_class == rq->curr->sched_class) {
905 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
906 } else {
907 for_each_class(class) {
908 if (class == rq->curr->sched_class)
909 break;
910 if (class == p->sched_class) {
911 resched_task(rq->curr);
912 break;
913 }
914 }
915 }
916
917 /*
918 * A queue event has occurred, and we're going to schedule. In
919 * this case, we can save a useless back to back clock update.
920 */
921 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
922 rq->skip_clock_update = 1;
923}
924
925#ifdef CONFIG_SMP
926void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
927{
928#ifdef CONFIG_SCHED_DEBUG
929 /*
930 * We should never call set_task_cpu() on a blocked task,
931 * ttwu() will sort out the placement.
932 */
933 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
934 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
935
936#ifdef CONFIG_LOCKDEP
937 /*
938 * The caller should hold either p->pi_lock or rq->lock, when changing
939 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
940 *
941 * sched_move_task() holds both and thus holding either pins the cgroup,
942 * see task_group().
943 *
944 * Furthermore, all task_rq users should acquire both locks, see
945 * task_rq_lock().
946 */
947 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
948 lockdep_is_held(&task_rq(p)->lock)));
949#endif
950#endif
951
952 trace_sched_migrate_task(p, new_cpu);
953
954 if (task_cpu(p) != new_cpu) {
955 p->se.nr_migrations++;
956 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
957 }
958
959 __set_task_cpu(p, new_cpu);
960}
961
962struct migration_arg {
963 struct task_struct *task;
964 int dest_cpu;
965};
966
967static int migration_cpu_stop(void *data);
968
969/*
970 * wait_task_inactive - wait for a thread to unschedule.
971 *
972 * If @match_state is nonzero, it's the @p->state value just checked and
973 * not expected to change. If it changes, i.e. @p might have woken up,
974 * then return zero. When we succeed in waiting for @p to be off its CPU,
975 * we return a positive number (its total switch count). If a second call
976 * a short while later returns the same number, the caller can be sure that
977 * @p has remained unscheduled the whole time.
978 *
979 * The caller must ensure that the task *will* unschedule sometime soon,
980 * else this function might spin for a *long* time. This function can't
981 * be called with interrupts off, or it may introduce deadlock with
982 * smp_call_function() if an IPI is sent by the same process we are
983 * waiting to become inactive.
984 */
985unsigned long wait_task_inactive(struct task_struct *p, long match_state)
986{
987 unsigned long flags;
988 int running, on_rq;
989 unsigned long ncsw;
990 struct rq *rq;
991
992 for (;;) {
993 /*
994 * We do the initial early heuristics without holding
995 * any task-queue locks at all. We'll only try to get
996 * the runqueue lock when things look like they will
997 * work out!
998 */
999 rq = task_rq(p);
1000
1001 /*
1002 * If the task is actively running on another CPU
1003 * still, just relax and busy-wait without holding
1004 * any locks.
1005 *
1006 * NOTE! Since we don't hold any locks, it's not
1007 * even sure that "rq" stays as the right runqueue!
1008 * But we don't care, since "task_running()" will
1009 * return false if the runqueue has changed and p
1010 * is actually now running somewhere else!
1011 */
1012 while (task_running(rq, p)) {
1013 if (match_state && unlikely(p->state != match_state))
1014 return 0;
1015 cpu_relax();
1016 }
1017
1018 /*
1019 * Ok, time to look more closely! We need the rq
1020 * lock now, to be *sure*. If we're wrong, we'll
1021 * just go back and repeat.
1022 */
1023 rq = task_rq_lock(p, &flags);
1024 trace_sched_wait_task(p);
1025 running = task_running(rq, p);
1026 on_rq = p->on_rq;
1027 ncsw = 0;
1028 if (!match_state || p->state == match_state)
1029 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1030 task_rq_unlock(rq, p, &flags);
1031
1032 /*
1033 * If it changed from the expected state, bail out now.
1034 */
1035 if (unlikely(!ncsw))
1036 break;
1037
1038 /*
1039 * Was it really running after all now that we
1040 * checked with the proper locks actually held?
1041 *
1042 * Oops. Go back and try again..
1043 */
1044 if (unlikely(running)) {
1045 cpu_relax();
1046 continue;
1047 }
1048
1049 /*
1050 * It's not enough that it's not actively running,
1051 * it must be off the runqueue _entirely_, and not
1052 * preempted!
1053 *
1054 * So if it was still runnable (but just not actively
1055 * running right now), it's preempted, and we should
1056 * yield - it could be a while.
1057 */
1058 if (unlikely(on_rq)) {
1059 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1060
1061 set_current_state(TASK_UNINTERRUPTIBLE);
1062 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1063 continue;
1064 }
1065
1066 /*
1067 * Ahh, all good. It wasn't running, and it wasn't
1068 * runnable, which means that it will never become
1069 * running in the future either. We're all done!
1070 */
1071 break;
1072 }
1073
1074 return ncsw;
1075}
1076
1077/***
1078 * kick_process - kick a running thread to enter/exit the kernel
1079 * @p: the to-be-kicked thread
1080 *
1081 * Cause a process which is running on another CPU to enter
1082 * kernel-mode, without any delay. (to get signals handled.)
1083 *
1084 * NOTE: this function doesn't have to take the runqueue lock,
1085 * because all it wants to ensure is that the remote task enters
1086 * the kernel. If the IPI races and the task has been migrated
1087 * to another CPU then no harm is done and the purpose has been
1088 * achieved as well.
1089 */
1090void kick_process(struct task_struct *p)
1091{
1092 int cpu;
1093
1094 preempt_disable();
1095 cpu = task_cpu(p);
1096 if ((cpu != smp_processor_id()) && task_curr(p))
1097 smp_send_reschedule(cpu);
1098 preempt_enable();
1099}
1100EXPORT_SYMBOL_GPL(kick_process);
1101#endif /* CONFIG_SMP */
1102
1103#ifdef CONFIG_SMP
1104/*
1105 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1106 */
1107static int select_fallback_rq(int cpu, struct task_struct *p)
1108{
1109 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
1110 enum { cpuset, possible, fail } state = cpuset;
1111 int dest_cpu;
1112
1113 /* Look for allowed, online CPU in same node. */
1114 for_each_cpu(dest_cpu, nodemask) {
1115 if (!cpu_online(dest_cpu))
1116 continue;
1117 if (!cpu_active(dest_cpu))
1118 continue;
1119 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1120 return dest_cpu;
1121 }
1122
1123 for (;;) {
1124 /* Any allowed, online CPU? */
1125 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1126 if (!cpu_online(dest_cpu))
1127 continue;
1128 if (!cpu_active(dest_cpu))
1129 continue;
1130 goto out;
1131 }
1132
1133 switch (state) {
1134 case cpuset:
1135 /* No more Mr. Nice Guy. */
1136 cpuset_cpus_allowed_fallback(p);
1137 state = possible;
1138 break;
1139
1140 case possible:
1141 do_set_cpus_allowed(p, cpu_possible_mask);
1142 state = fail;
1143 break;
1144
1145 case fail:
1146 BUG();
1147 break;
1148 }
1149 }
1150
1151out:
1152 if (state != cpuset) {
1153 /*
1154 * Don't tell them about moving exiting tasks or
1155 * kernel threads (both mm NULL), since they never
1156 * leave kernel.
1157 */
1158 if (p->mm && printk_ratelimit()) {
1159 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1160 task_pid_nr(p), p->comm, cpu);
1161 }
1162 }
1163
1164 return dest_cpu;
1165}
1166
1167/*
1168 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1169 */
1170static inline
1171int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
1172{
1173 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
1174
1175 /*
1176 * In order not to call set_task_cpu() on a blocking task we need
1177 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1178 * cpu.
1179 *
1180 * Since this is common to all placement strategies, this lives here.
1181 *
1182 * [ this allows ->select_task() to simply return task_cpu(p) and
1183 * not worry about this generic constraint ]
1184 */
1185 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1186 !cpu_online(cpu)))
1187 cpu = select_fallback_rq(task_cpu(p), p);
1188
1189 return cpu;
1190}
1191
1192static void update_avg(u64 *avg, u64 sample)
1193{
1194 s64 diff = sample - *avg;
1195 *avg += diff >> 3;
1196}
1197#endif
1198
1199static void
1200ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1201{
1202#ifdef CONFIG_SCHEDSTATS
1203 struct rq *rq = this_rq();
1204
1205#ifdef CONFIG_SMP
1206 int this_cpu = smp_processor_id();
1207
1208 if (cpu == this_cpu) {
1209 schedstat_inc(rq, ttwu_local);
1210 schedstat_inc(p, se.statistics.nr_wakeups_local);
1211 } else {
1212 struct sched_domain *sd;
1213
1214 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1215 rcu_read_lock();
1216 for_each_domain(this_cpu, sd) {
1217 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1218 schedstat_inc(sd, ttwu_wake_remote);
1219 break;
1220 }
1221 }
1222 rcu_read_unlock();
1223 }
1224
1225 if (wake_flags & WF_MIGRATED)
1226 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1227
1228#endif /* CONFIG_SMP */
1229
1230 schedstat_inc(rq, ttwu_count);
1231 schedstat_inc(p, se.statistics.nr_wakeups);
1232
1233 if (wake_flags & WF_SYNC)
1234 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1235
1236#endif /* CONFIG_SCHEDSTATS */
1237}
1238
1239static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1240{
1241 activate_task(rq, p, en_flags);
1242 p->on_rq = 1;
1243
1244 /* if a worker is waking up, notify workqueue */
1245 if (p->flags & PF_WQ_WORKER)
1246 wq_worker_waking_up(p, cpu_of(rq));
1247}
1248
1249/*
1250 * Mark the task runnable and perform wakeup-preemption.
1251 */
1252static void
1253ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1254{
1255 trace_sched_wakeup(p, true);
1256 check_preempt_curr(rq, p, wake_flags);
1257
1258 p->state = TASK_RUNNING;
1259#ifdef CONFIG_SMP
1260 if (p->sched_class->task_woken)
1261 p->sched_class->task_woken(rq, p);
1262
1263 if (rq->idle_stamp) {
1264 u64 delta = rq->clock - rq->idle_stamp;
1265 u64 max = 2*sysctl_sched_migration_cost;
1266
1267 if (delta > max)
1268 rq->avg_idle = max;
1269 else
1270 update_avg(&rq->avg_idle, delta);
1271 rq->idle_stamp = 0;
1272 }
1273#endif
1274}
1275
1276static void
1277ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1278{
1279#ifdef CONFIG_SMP
1280 if (p->sched_contributes_to_load)
1281 rq->nr_uninterruptible--;
1282#endif
1283
1284 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1285 ttwu_do_wakeup(rq, p, wake_flags);
1286}
1287
1288/*
1289 * Called in case the task @p isn't fully descheduled from its runqueue,
1290 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1291 * since all we need to do is flip p->state to TASK_RUNNING, since
1292 * the task is still ->on_rq.
1293 */
1294static int ttwu_remote(struct task_struct *p, int wake_flags)
1295{
1296 struct rq *rq;
1297 int ret = 0;
1298
1299 rq = __task_rq_lock(p);
1300 if (p->on_rq) {
1301 ttwu_do_wakeup(rq, p, wake_flags);
1302 ret = 1;
1303 }
1304 __task_rq_unlock(rq);
1305
1306 return ret;
1307}
1308
1309#ifdef CONFIG_SMP
1310static void sched_ttwu_pending(void)
1311{
1312 struct rq *rq = this_rq();
1313 struct llist_node *llist = llist_del_all(&rq->wake_list);
1314 struct task_struct *p;
1315
1316 raw_spin_lock(&rq->lock);
1317
1318 while (llist) {
1319 p = llist_entry(llist, struct task_struct, wake_entry);
1320 llist = llist_next(llist);
1321 ttwu_do_activate(rq, p, 0);
1322 }
1323
1324 raw_spin_unlock(&rq->lock);
1325}
1326
1327void scheduler_ipi(void)
1328{
1329 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1330 return;
1331
1332 /*
1333 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1334 * traditionally all their work was done from the interrupt return
1335 * path. Now that we actually do some work, we need to make sure
1336 * we do call them.
1337 *
1338 * Some archs already do call them, luckily irq_enter/exit nest
1339 * properly.
1340 *
1341 * Arguably we should visit all archs and update all handlers,
1342 * however a fair share of IPIs are still resched only so this would
1343 * somewhat pessimize the simple resched case.
1344 */
1345 irq_enter();
1346 sched_ttwu_pending();
1347
1348 /*
1349 * Check if someone kicked us for doing the nohz idle load balance.
1350 */
1351 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1352 this_rq()->idle_balance = 1;
1353 raise_softirq_irqoff(SCHED_SOFTIRQ);
1354 }
1355 irq_exit();
1356}
1357
1358static void ttwu_queue_remote(struct task_struct *p, int cpu)
1359{
1360 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
1361 smp_send_reschedule(cpu);
1362}
1363
1364bool cpus_share_cache(int this_cpu, int that_cpu)
1365{
1366 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1367}
1368#endif /* CONFIG_SMP */
1369
1370static void ttwu_queue(struct task_struct *p, int cpu)
1371{
1372 struct rq *rq = cpu_rq(cpu);
1373
1374#if defined(CONFIG_SMP)
1375 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1376 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1377 ttwu_queue_remote(p, cpu);
1378 return;
1379 }
1380#endif
1381
1382 raw_spin_lock(&rq->lock);
1383 ttwu_do_activate(rq, p, 0);
1384 raw_spin_unlock(&rq->lock);
1385}
1386
1387/**
1388 * try_to_wake_up - wake up a thread
1389 * @p: the thread to be awakened
1390 * @state: the mask of task states that can be woken
1391 * @wake_flags: wake modifier flags (WF_*)
1392 *
1393 * Put it on the run-queue if it's not already there. The "current"
1394 * thread is always on the run-queue (except when the actual
1395 * re-schedule is in progress), and as such you're allowed to do
1396 * the simpler "current->state = TASK_RUNNING" to mark yourself
1397 * runnable without the overhead of this.
1398 *
1399 * Returns %true if @p was woken up, %false if it was already running
1400 * or @state didn't match @p's state.
1401 */
1402static int
1403try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1404{
1405 unsigned long flags;
1406 int cpu, success = 0;
1407
1408 smp_wmb();
1409 raw_spin_lock_irqsave(&p->pi_lock, flags);
1410 if (!(p->state & state))
1411 goto out;
1412
1413 success = 1; /* we're going to change ->state */
1414 cpu = task_cpu(p);
1415
1416 if (p->on_rq && ttwu_remote(p, wake_flags))
1417 goto stat;
1418
1419#ifdef CONFIG_SMP
1420 /*
1421 * If the owning (remote) cpu is still in the middle of schedule() with
1422 * this task as prev, wait until its done referencing the task.
1423 */
1424 while (p->on_cpu)
1425 cpu_relax();
1426 /*
1427 * Pairs with the smp_wmb() in finish_lock_switch().
1428 */
1429 smp_rmb();
1430
1431 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1432 p->state = TASK_WAKING;
1433
1434 if (p->sched_class->task_waking)
1435 p->sched_class->task_waking(p);
1436
1437 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
1438 if (task_cpu(p) != cpu) {
1439 wake_flags |= WF_MIGRATED;
1440 set_task_cpu(p, cpu);
1441 }
1442#endif /* CONFIG_SMP */
1443
1444 ttwu_queue(p, cpu);
1445stat:
1446 ttwu_stat(p, cpu, wake_flags);
1447out:
1448 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1449
1450 return success;
1451}
1452
1453/**
1454 * try_to_wake_up_local - try to wake up a local task with rq lock held
1455 * @p: the thread to be awakened
1456 *
1457 * Put @p on the run-queue if it's not already there. The caller must
1458 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1459 * the current task.
1460 */
1461static void try_to_wake_up_local(struct task_struct *p)
1462{
1463 struct rq *rq = task_rq(p);
1464
1465 BUG_ON(rq != this_rq());
1466 BUG_ON(p == current);
1467 lockdep_assert_held(&rq->lock);
1468
1469 if (!raw_spin_trylock(&p->pi_lock)) {
1470 raw_spin_unlock(&rq->lock);
1471 raw_spin_lock(&p->pi_lock);
1472 raw_spin_lock(&rq->lock);
1473 }
1474
1475 if (!(p->state & TASK_NORMAL))
1476 goto out;
1477
1478 if (!p->on_rq)
1479 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1480
1481 ttwu_do_wakeup(rq, p, 0);
1482 ttwu_stat(p, smp_processor_id(), 0);
1483out:
1484 raw_spin_unlock(&p->pi_lock);
1485}
1486
1487/**
1488 * wake_up_process - Wake up a specific process
1489 * @p: The process to be woken up.
1490 *
1491 * Attempt to wake up the nominated process and move it to the set of runnable
1492 * processes. Returns 1 if the process was woken up, 0 if it was already
1493 * running.
1494 *
1495 * It may be assumed that this function implies a write memory barrier before
1496 * changing the task state if and only if any tasks are woken up.
1497 */
1498int wake_up_process(struct task_struct *p)
1499{
1500 return try_to_wake_up(p, TASK_ALL, 0);
1501}
1502EXPORT_SYMBOL(wake_up_process);
1503
1504int wake_up_state(struct task_struct *p, unsigned int state)
1505{
1506 return try_to_wake_up(p, state, 0);
1507}
1508
1509/*
1510 * Perform scheduler related setup for a newly forked process p.
1511 * p is forked by current.
1512 *
1513 * __sched_fork() is basic setup used by init_idle() too:
1514 */
1515static void __sched_fork(struct task_struct *p)
1516{
1517 p->on_rq = 0;
1518
1519 p->se.on_rq = 0;
1520 p->se.exec_start = 0;
1521 p->se.sum_exec_runtime = 0;
1522 p->se.prev_sum_exec_runtime = 0;
1523 p->se.nr_migrations = 0;
1524 p->se.vruntime = 0;
1525 INIT_LIST_HEAD(&p->se.group_node);
1526
1527#ifdef CONFIG_SCHEDSTATS
1528 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1529#endif
1530
1531 INIT_LIST_HEAD(&p->rt.run_list);
1532
1533#ifdef CONFIG_PREEMPT_NOTIFIERS
1534 INIT_HLIST_HEAD(&p->preempt_notifiers);
1535#endif
1536
1537#ifdef CONFIG_NUMA_BALANCING
1538 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1539 p->mm->numa_next_scan = jiffies;
1540 p->mm->numa_scan_seq = 0;
1541 }
1542
1543 p->node_stamp = 0ULL;
1544 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1545 p->numa_migrate_seq = p->mm ? p->mm->numa_scan_seq - 1 : 0;
1546 p->numa_scan_period = sysctl_numa_balancing_scan_period_min;
1547 p->numa_work.next = &p->numa_work;
1548#endif /* CONFIG_NUMA_BALANCING */
1549}
1550
1551/*
1552 * fork()/clone()-time setup:
1553 */
1554void sched_fork(struct task_struct *p)
1555{
1556 unsigned long flags;
1557 int cpu = get_cpu();
1558
1559 __sched_fork(p);
1560 /*
1561 * We mark the process as running here. This guarantees that
1562 * nobody will actually run it, and a signal or other external
1563 * event cannot wake it up and insert it on the runqueue either.
1564 */
1565 p->state = TASK_RUNNING;
1566
1567 /*
1568 * Make sure we do not leak PI boosting priority to the child.
1569 */
1570 p->prio = current->normal_prio;
1571
1572 /*
1573 * Revert to default priority/policy on fork if requested.
1574 */
1575 if (unlikely(p->sched_reset_on_fork)) {
1576 if (task_has_rt_policy(p)) {
1577 p->policy = SCHED_NORMAL;
1578 p->static_prio = NICE_TO_PRIO(0);
1579 p->rt_priority = 0;
1580 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1581 p->static_prio = NICE_TO_PRIO(0);
1582
1583 p->prio = p->normal_prio = __normal_prio(p);
1584 set_load_weight(p);
1585
1586 /*
1587 * We don't need the reset flag anymore after the fork. It has
1588 * fulfilled its duty:
1589 */
1590 p->sched_reset_on_fork = 0;
1591 }
1592
1593 if (!rt_prio(p->prio))
1594 p->sched_class = &fair_sched_class;
1595
1596 if (p->sched_class->task_fork)
1597 p->sched_class->task_fork(p);
1598
1599 /*
1600 * The child is not yet in the pid-hash so no cgroup attach races,
1601 * and the cgroup is pinned to this child due to cgroup_fork()
1602 * is ran before sched_fork().
1603 *
1604 * Silence PROVE_RCU.
1605 */
1606 raw_spin_lock_irqsave(&p->pi_lock, flags);
1607 set_task_cpu(p, cpu);
1608 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1609
1610#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1611 if (likely(sched_info_on()))
1612 memset(&p->sched_info, 0, sizeof(p->sched_info));
1613#endif
1614#if defined(CONFIG_SMP)
1615 p->on_cpu = 0;
1616#endif
1617#ifdef CONFIG_PREEMPT_COUNT
1618 /* Want to start with kernel preemption disabled. */
1619 task_thread_info(p)->preempt_count = 1;
1620#endif
1621#ifdef CONFIG_SMP
1622 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1623#endif
1624
1625 put_cpu();
1626}
1627
1628/*
1629 * wake_up_new_task - wake up a newly created task for the first time.
1630 *
1631 * This function will do some initial scheduler statistics housekeeping
1632 * that must be done for every newly created context, then puts the task
1633 * on the runqueue and wakes it.
1634 */
1635void wake_up_new_task(struct task_struct *p)
1636{
1637 unsigned long flags;
1638 struct rq *rq;
1639
1640 raw_spin_lock_irqsave(&p->pi_lock, flags);
1641#ifdef CONFIG_SMP
1642 /*
1643 * Fork balancing, do it here and not earlier because:
1644 * - cpus_allowed can change in the fork path
1645 * - any previously selected cpu might disappear through hotplug
1646 */
1647 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
1648#endif
1649
1650 rq = __task_rq_lock(p);
1651 activate_task(rq, p, 0);
1652 p->on_rq = 1;
1653 trace_sched_wakeup_new(p, true);
1654 check_preempt_curr(rq, p, WF_FORK);
1655#ifdef CONFIG_SMP
1656 if (p->sched_class->task_woken)
1657 p->sched_class->task_woken(rq, p);
1658#endif
1659 task_rq_unlock(rq, p, &flags);
1660}
1661
1662#ifdef CONFIG_PREEMPT_NOTIFIERS
1663
1664/**
1665 * preempt_notifier_register - tell me when current is being preempted & rescheduled
1666 * @notifier: notifier struct to register
1667 */
1668void preempt_notifier_register(struct preempt_notifier *notifier)
1669{
1670 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1671}
1672EXPORT_SYMBOL_GPL(preempt_notifier_register);
1673
1674/**
1675 * preempt_notifier_unregister - no longer interested in preemption notifications
1676 * @notifier: notifier struct to unregister
1677 *
1678 * This is safe to call from within a preemption notifier.
1679 */
1680void preempt_notifier_unregister(struct preempt_notifier *notifier)
1681{
1682 hlist_del(&notifier->link);
1683}
1684EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1685
1686static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1687{
1688 struct preempt_notifier *notifier;
1689 struct hlist_node *node;
1690
1691 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1692 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1693}
1694
1695static void
1696fire_sched_out_preempt_notifiers(struct task_struct *curr,
1697 struct task_struct *next)
1698{
1699 struct preempt_notifier *notifier;
1700 struct hlist_node *node;
1701
1702 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1703 notifier->ops->sched_out(notifier, next);
1704}
1705
1706#else /* !CONFIG_PREEMPT_NOTIFIERS */
1707
1708static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1709{
1710}
1711
1712static void
1713fire_sched_out_preempt_notifiers(struct task_struct *curr,
1714 struct task_struct *next)
1715{
1716}
1717
1718#endif /* CONFIG_PREEMPT_NOTIFIERS */
1719
1720/**
1721 * prepare_task_switch - prepare to switch tasks
1722 * @rq: the runqueue preparing to switch
1723 * @prev: the current task that is being switched out
1724 * @next: the task we are going to switch to.
1725 *
1726 * This is called with the rq lock held and interrupts off. It must
1727 * be paired with a subsequent finish_task_switch after the context
1728 * switch.
1729 *
1730 * prepare_task_switch sets up locking and calls architecture specific
1731 * hooks.
1732 */
1733static inline void
1734prepare_task_switch(struct rq *rq, struct task_struct *prev,
1735 struct task_struct *next)
1736{
1737 trace_sched_switch(prev, next);
1738 sched_info_switch(prev, next);
1739 perf_event_task_sched_out(prev, next);
1740 fire_sched_out_preempt_notifiers(prev, next);
1741 prepare_lock_switch(rq, next);
1742 prepare_arch_switch(next);
1743}
1744
1745/**
1746 * finish_task_switch - clean up after a task-switch
1747 * @rq: runqueue associated with task-switch
1748 * @prev: the thread we just switched away from.
1749 *
1750 * finish_task_switch must be called after the context switch, paired
1751 * with a prepare_task_switch call before the context switch.
1752 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1753 * and do any other architecture-specific cleanup actions.
1754 *
1755 * Note that we may have delayed dropping an mm in context_switch(). If
1756 * so, we finish that here outside of the runqueue lock. (Doing it
1757 * with the lock held can cause deadlocks; see schedule() for
1758 * details.)
1759 */
1760static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1761 __releases(rq->lock)
1762{
1763 struct mm_struct *mm = rq->prev_mm;
1764 long prev_state;
1765
1766 rq->prev_mm = NULL;
1767
1768 /*
1769 * A task struct has one reference for the use as "current".
1770 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1771 * schedule one last time. The schedule call will never return, and
1772 * the scheduled task must drop that reference.
1773 * The test for TASK_DEAD must occur while the runqueue locks are
1774 * still held, otherwise prev could be scheduled on another cpu, die
1775 * there before we look at prev->state, and then the reference would
1776 * be dropped twice.
1777 * Manfred Spraul <manfred@colorfullife.com>
1778 */
1779 prev_state = prev->state;
1780 vtime_task_switch(prev);
1781 finish_arch_switch(prev);
1782 perf_event_task_sched_in(prev, current);
1783 finish_lock_switch(rq, prev);
1784 finish_arch_post_lock_switch();
1785
1786 fire_sched_in_preempt_notifiers(current);
1787 if (mm)
1788 mmdrop(mm);
1789 if (unlikely(prev_state == TASK_DEAD)) {
1790 /*
1791 * Remove function-return probe instances associated with this
1792 * task and put them back on the free list.
1793 */
1794 kprobe_flush_task(prev);
1795 put_task_struct(prev);
1796 }
1797}
1798
1799#ifdef CONFIG_SMP
1800
1801/* assumes rq->lock is held */
1802static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1803{
1804 if (prev->sched_class->pre_schedule)
1805 prev->sched_class->pre_schedule(rq, prev);
1806}
1807
1808/* rq->lock is NOT held, but preemption is disabled */
1809static inline void post_schedule(struct rq *rq)
1810{
1811 if (rq->post_schedule) {
1812 unsigned long flags;
1813
1814 raw_spin_lock_irqsave(&rq->lock, flags);
1815 if (rq->curr->sched_class->post_schedule)
1816 rq->curr->sched_class->post_schedule(rq);
1817 raw_spin_unlock_irqrestore(&rq->lock, flags);
1818
1819 rq->post_schedule = 0;
1820 }
1821}
1822
1823#else
1824
1825static inline void pre_schedule(struct rq *rq, struct task_struct *p)
1826{
1827}
1828
1829static inline void post_schedule(struct rq *rq)
1830{
1831}
1832
1833#endif
1834
1835/**
1836 * schedule_tail - first thing a freshly forked thread must call.
1837 * @prev: the thread we just switched away from.
1838 */
1839asmlinkage void schedule_tail(struct task_struct *prev)
1840 __releases(rq->lock)
1841{
1842 struct rq *rq = this_rq();
1843
1844 finish_task_switch(rq, prev);
1845
1846 /*
1847 * FIXME: do we need to worry about rq being invalidated by the
1848 * task_switch?
1849 */
1850 post_schedule(rq);
1851
1852#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1853 /* In this case, finish_task_switch does not reenable preemption */
1854 preempt_enable();
1855#endif
1856 if (current->set_child_tid)
1857 put_user(task_pid_vnr(current), current->set_child_tid);
1858}
1859
1860/*
1861 * context_switch - switch to the new MM and the new
1862 * thread's register state.
1863 */
1864static inline void
1865context_switch(struct rq *rq, struct task_struct *prev,
1866 struct task_struct *next)
1867{
1868 struct mm_struct *mm, *oldmm;
1869
1870 prepare_task_switch(rq, prev, next);
1871
1872 mm = next->mm;
1873 oldmm = prev->active_mm;
1874 /*
1875 * For paravirt, this is coupled with an exit in switch_to to
1876 * combine the page table reload and the switch backend into
1877 * one hypercall.
1878 */
1879 arch_start_context_switch(prev);
1880
1881 if (!mm) {
1882 next->active_mm = oldmm;
1883 atomic_inc(&oldmm->mm_count);
1884 enter_lazy_tlb(oldmm, next);
1885 } else
1886 switch_mm(oldmm, mm, next);
1887
1888 if (!prev->mm) {
1889 prev->active_mm = NULL;
1890 rq->prev_mm = oldmm;
1891 }
1892 /*
1893 * Since the runqueue lock will be released by the next
1894 * task (which is an invalid locking op but in the case
1895 * of the scheduler it's an obvious special-case), so we
1896 * do an early lockdep release here:
1897 */
1898#ifndef __ARCH_WANT_UNLOCKED_CTXSW
1899 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1900#endif
1901
1902 /* Here we just switch the register state and the stack. */
1903 rcu_switch(prev, next);
1904 switch_to(prev, next, prev);
1905
1906 barrier();
1907 /*
1908 * this_rq must be evaluated again because prev may have moved
1909 * CPUs since it called schedule(), thus the 'rq' on its stack
1910 * frame will be invalid.
1911 */
1912 finish_task_switch(this_rq(), prev);
1913}
1914
1915/*
1916 * nr_running, nr_uninterruptible and nr_context_switches:
1917 *
1918 * externally visible scheduler statistics: current number of runnable
1919 * threads, current number of uninterruptible-sleeping threads, total
1920 * number of context switches performed since bootup.
1921 */
1922unsigned long nr_running(void)
1923{
1924 unsigned long i, sum = 0;
1925
1926 for_each_online_cpu(i)
1927 sum += cpu_rq(i)->nr_running;
1928
1929 return sum;
1930}
1931
1932unsigned long nr_uninterruptible(void)
1933{
1934 unsigned long i, sum = 0;
1935
1936 for_each_possible_cpu(i)
1937 sum += cpu_rq(i)->nr_uninterruptible;
1938
1939 /*
1940 * Since we read the counters lockless, it might be slightly
1941 * inaccurate. Do not allow it to go below zero though:
1942 */
1943 if (unlikely((long)sum < 0))
1944 sum = 0;
1945
1946 return sum;
1947}
1948
1949unsigned long long nr_context_switches(void)
1950{
1951 int i;
1952 unsigned long long sum = 0;
1953
1954 for_each_possible_cpu(i)
1955 sum += cpu_rq(i)->nr_switches;
1956
1957 return sum;
1958}
1959
1960unsigned long nr_iowait(void)
1961{
1962 unsigned long i, sum = 0;
1963
1964 for_each_possible_cpu(i)
1965 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1966
1967 return sum;
1968}
1969
1970unsigned long nr_iowait_cpu(int cpu)
1971{
1972 struct rq *this = cpu_rq(cpu);
1973 return atomic_read(&this->nr_iowait);
1974}
1975
1976unsigned long this_cpu_load(void)
1977{
1978 struct rq *this = this_rq();
1979 return this->cpu_load[0];
1980}
1981
1982
1983/*
1984 * Global load-average calculations
1985 *
1986 * We take a distributed and async approach to calculating the global load-avg
1987 * in order to minimize overhead.
1988 *
1989 * The global load average is an exponentially decaying average of nr_running +
1990 * nr_uninterruptible.
1991 *
1992 * Once every LOAD_FREQ:
1993 *
1994 * nr_active = 0;
1995 * for_each_possible_cpu(cpu)
1996 * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
1997 *
1998 * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
1999 *
2000 * Due to a number of reasons the above turns in the mess below:
2001 *
2002 * - for_each_possible_cpu() is prohibitively expensive on machines with
2003 * serious number of cpus, therefore we need to take a distributed approach
2004 * to calculating nr_active.
2005 *
2006 * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
2007 * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
2008 *
2009 * So assuming nr_active := 0 when we start out -- true per definition, we
2010 * can simply take per-cpu deltas and fold those into a global accumulate
2011 * to obtain the same result. See calc_load_fold_active().
2012 *
2013 * Furthermore, in order to avoid synchronizing all per-cpu delta folding
2014 * across the machine, we assume 10 ticks is sufficient time for every
2015 * cpu to have completed this task.
2016 *
2017 * This places an upper-bound on the IRQ-off latency of the machine. Then
2018 * again, being late doesn't loose the delta, just wrecks the sample.
2019 *
2020 * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
2021 * this would add another cross-cpu cacheline miss and atomic operation
2022 * to the wakeup path. Instead we increment on whatever cpu the task ran
2023 * when it went into uninterruptible state and decrement on whatever cpu
2024 * did the wakeup. This means that only the sum of nr_uninterruptible over
2025 * all cpus yields the correct result.
2026 *
2027 * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
2028 */
2029
2030/* Variables and functions for calc_load */
2031static atomic_long_t calc_load_tasks;
2032static unsigned long calc_load_update;
2033unsigned long avenrun[3];
2034EXPORT_SYMBOL(avenrun); /* should be removed */
2035
2036/**
2037 * get_avenrun - get the load average array
2038 * @loads: pointer to dest load array
2039 * @offset: offset to add
2040 * @shift: shift count to shift the result left
2041 *
2042 * These values are estimates at best, so no need for locking.
2043 */
2044void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2045{
2046 loads[0] = (avenrun[0] + offset) << shift;
2047 loads[1] = (avenrun[1] + offset) << shift;
2048 loads[2] = (avenrun[2] + offset) << shift;
2049}
2050
2051static long calc_load_fold_active(struct rq *this_rq)
2052{
2053 long nr_active, delta = 0;
2054
2055 nr_active = this_rq->nr_running;
2056 nr_active += (long) this_rq->nr_uninterruptible;
2057
2058 if (nr_active != this_rq->calc_load_active) {
2059 delta = nr_active - this_rq->calc_load_active;
2060 this_rq->calc_load_active = nr_active;
2061 }
2062
2063 return delta;
2064}
2065
2066/*
2067 * a1 = a0 * e + a * (1 - e)
2068 */
2069static unsigned long
2070calc_load(unsigned long load, unsigned long exp, unsigned long active)
2071{
2072 load *= exp;
2073 load += active * (FIXED_1 - exp);
2074 load += 1UL << (FSHIFT - 1);
2075 return load >> FSHIFT;
2076}
2077
2078#ifdef CONFIG_NO_HZ
2079/*
2080 * Handle NO_HZ for the global load-average.
2081 *
2082 * Since the above described distributed algorithm to compute the global
2083 * load-average relies on per-cpu sampling from the tick, it is affected by
2084 * NO_HZ.
2085 *
2086 * The basic idea is to fold the nr_active delta into a global idle-delta upon
2087 * entering NO_HZ state such that we can include this as an 'extra' cpu delta
2088 * when we read the global state.
2089 *
2090 * Obviously reality has to ruin such a delightfully simple scheme:
2091 *
2092 * - When we go NO_HZ idle during the window, we can negate our sample
2093 * contribution, causing under-accounting.
2094 *
2095 * We avoid this by keeping two idle-delta counters and flipping them
2096 * when the window starts, thus separating old and new NO_HZ load.
2097 *
2098 * The only trick is the slight shift in index flip for read vs write.
2099 *
2100 * 0s 5s 10s 15s
2101 * +10 +10 +10 +10
2102 * |-|-----------|-|-----------|-|-----------|-|
2103 * r:0 0 1 1 0 0 1 1 0
2104 * w:0 1 1 0 0 1 1 0 0
2105 *
2106 * This ensures we'll fold the old idle contribution in this window while
2107 * accumlating the new one.
2108 *
2109 * - When we wake up from NO_HZ idle during the window, we push up our
2110 * contribution, since we effectively move our sample point to a known
2111 * busy state.
2112 *
2113 * This is solved by pushing the window forward, and thus skipping the
2114 * sample, for this cpu (effectively using the idle-delta for this cpu which
2115 * was in effect at the time the window opened). This also solves the issue
2116 * of having to deal with a cpu having been in NOHZ idle for multiple
2117 * LOAD_FREQ intervals.
2118 *
2119 * When making the ILB scale, we should try to pull this in as well.
2120 */
2121static atomic_long_t calc_load_idle[2];
2122static int calc_load_idx;
2123
2124static inline int calc_load_write_idx(void)
2125{
2126 int idx = calc_load_idx;
2127
2128 /*
2129 * See calc_global_nohz(), if we observe the new index, we also
2130 * need to observe the new update time.
2131 */
2132 smp_rmb();
2133
2134 /*
2135 * If the folding window started, make sure we start writing in the
2136 * next idle-delta.
2137 */
2138 if (!time_before(jiffies, calc_load_update))
2139 idx++;
2140
2141 return idx & 1;
2142}
2143
2144static inline int calc_load_read_idx(void)
2145{
2146 return calc_load_idx & 1;
2147}
2148
2149void calc_load_enter_idle(void)
2150{
2151 struct rq *this_rq = this_rq();
2152 long delta;
2153
2154 /*
2155 * We're going into NOHZ mode, if there's any pending delta, fold it
2156 * into the pending idle delta.
2157 */
2158 delta = calc_load_fold_active(this_rq);
2159 if (delta) {
2160 int idx = calc_load_write_idx();
2161 atomic_long_add(delta, &calc_load_idle[idx]);
2162 }
2163}
2164
2165void calc_load_exit_idle(void)
2166{
2167 struct rq *this_rq = this_rq();
2168
2169 /*
2170 * If we're still before the sample window, we're done.
2171 */
2172 if (time_before(jiffies, this_rq->calc_load_update))
2173 return;
2174
2175 /*
2176 * We woke inside or after the sample window, this means we're already
2177 * accounted through the nohz accounting, so skip the entire deal and
2178 * sync up for the next window.
2179 */
2180 this_rq->calc_load_update = calc_load_update;
2181 if (time_before(jiffies, this_rq->calc_load_update + 10))
2182 this_rq->calc_load_update += LOAD_FREQ;
2183}
2184
2185static long calc_load_fold_idle(void)
2186{
2187 int idx = calc_load_read_idx();
2188 long delta = 0;
2189
2190 if (atomic_long_read(&calc_load_idle[idx]))
2191 delta = atomic_long_xchg(&calc_load_idle[idx], 0);
2192
2193 return delta;
2194}
2195
2196/**
2197 * fixed_power_int - compute: x^n, in O(log n) time
2198 *
2199 * @x: base of the power
2200 * @frac_bits: fractional bits of @x
2201 * @n: power to raise @x to.
2202 *
2203 * By exploiting the relation between the definition of the natural power
2204 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2205 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2206 * (where: n_i \elem {0, 1}, the binary vector representing n),
2207 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2208 * of course trivially computable in O(log_2 n), the length of our binary
2209 * vector.
2210 */
2211static unsigned long
2212fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2213{
2214 unsigned long result = 1UL << frac_bits;
2215
2216 if (n) for (;;) {
2217 if (n & 1) {
2218 result *= x;
2219 result += 1UL << (frac_bits - 1);
2220 result >>= frac_bits;
2221 }
2222 n >>= 1;
2223 if (!n)
2224 break;
2225 x *= x;
2226 x += 1UL << (frac_bits - 1);
2227 x >>= frac_bits;
2228 }
2229
2230 return result;
2231}
2232
2233/*
2234 * a1 = a0 * e + a * (1 - e)
2235 *
2236 * a2 = a1 * e + a * (1 - e)
2237 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2238 * = a0 * e^2 + a * (1 - e) * (1 + e)
2239 *
2240 * a3 = a2 * e + a * (1 - e)
2241 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2242 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2243 *
2244 * ...
2245 *
2246 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2247 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2248 * = a0 * e^n + a * (1 - e^n)
2249 *
2250 * [1] application of the geometric series:
2251 *
2252 * n 1 - x^(n+1)
2253 * S_n := \Sum x^i = -------------
2254 * i=0 1 - x
2255 */
2256static unsigned long
2257calc_load_n(unsigned long load, unsigned long exp,
2258 unsigned long active, unsigned int n)
2259{
2260
2261 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2262}
2263
2264/*
2265 * NO_HZ can leave us missing all per-cpu ticks calling
2266 * calc_load_account_active(), but since an idle CPU folds its delta into
2267 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2268 * in the pending idle delta if our idle period crossed a load cycle boundary.
2269 *
2270 * Once we've updated the global active value, we need to apply the exponential
2271 * weights adjusted to the number of cycles missed.
2272 */
2273static void calc_global_nohz(void)
2274{
2275 long delta, active, n;
2276
2277 if (!time_before(jiffies, calc_load_update + 10)) {
2278 /*
2279 * Catch-up, fold however many we are behind still
2280 */
2281 delta = jiffies - calc_load_update - 10;
2282 n = 1 + (delta / LOAD_FREQ);
2283
2284 active = atomic_long_read(&calc_load_tasks);
2285 active = active > 0 ? active * FIXED_1 : 0;
2286
2287 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2288 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2289 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
2290
2291 calc_load_update += n * LOAD_FREQ;
2292 }
2293
2294 /*
2295 * Flip the idle index...
2296 *
2297 * Make sure we first write the new time then flip the index, so that
2298 * calc_load_write_idx() will see the new time when it reads the new
2299 * index, this avoids a double flip messing things up.
2300 */
2301 smp_wmb();
2302 calc_load_idx++;
2303}
2304#else /* !CONFIG_NO_HZ */
2305
2306static inline long calc_load_fold_idle(void) { return 0; }
2307static inline void calc_global_nohz(void) { }
2308
2309#endif /* CONFIG_NO_HZ */
2310
2311/*
2312 * calc_load - update the avenrun load estimates 10 ticks after the
2313 * CPUs have updated calc_load_tasks.
2314 */
2315void calc_global_load(unsigned long ticks)
2316{
2317 long active, delta;
2318
2319 if (time_before(jiffies, calc_load_update + 10))
2320 return;
2321
2322 /*
2323 * Fold the 'old' idle-delta to include all NO_HZ cpus.
2324 */
2325 delta = calc_load_fold_idle();
2326 if (delta)
2327 atomic_long_add(delta, &calc_load_tasks);
2328
2329 active = atomic_long_read(&calc_load_tasks);
2330 active = active > 0 ? active * FIXED_1 : 0;
2331
2332 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2333 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2334 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2335
2336 calc_load_update += LOAD_FREQ;
2337
2338 /*
2339 * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
2340 */
2341 calc_global_nohz();
2342}
2343
2344/*
2345 * Called from update_cpu_load() to periodically update this CPU's
2346 * active count.
2347 */
2348static void calc_load_account_active(struct rq *this_rq)
2349{
2350 long delta;
2351
2352 if (time_before(jiffies, this_rq->calc_load_update))
2353 return;
2354
2355 delta = calc_load_fold_active(this_rq);
2356 if (delta)
2357 atomic_long_add(delta, &calc_load_tasks);
2358
2359 this_rq->calc_load_update += LOAD_FREQ;
2360}
2361
2362/*
2363 * End of global load-average stuff
2364 */
2365
2366/*
2367 * The exact cpuload at various idx values, calculated at every tick would be
2368 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2369 *
2370 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2371 * on nth tick when cpu may be busy, then we have:
2372 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2373 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2374 *
2375 * decay_load_missed() below does efficient calculation of
2376 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2377 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2378 *
2379 * The calculation is approximated on a 128 point scale.
2380 * degrade_zero_ticks is the number of ticks after which load at any
2381 * particular idx is approximated to be zero.
2382 * degrade_factor is a precomputed table, a row for each load idx.
2383 * Each column corresponds to degradation factor for a power of two ticks,
2384 * based on 128 point scale.
2385 * Example:
2386 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2387 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2388 *
2389 * With this power of 2 load factors, we can degrade the load n times
2390 * by looking at 1 bits in n and doing as many mult/shift instead of
2391 * n mult/shifts needed by the exact degradation.
2392 */
2393#define DEGRADE_SHIFT 7
2394static const unsigned char
2395 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2396static const unsigned char
2397 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2398 {0, 0, 0, 0, 0, 0, 0, 0},
2399 {64, 32, 8, 0, 0, 0, 0, 0},
2400 {96, 72, 40, 12, 1, 0, 0},
2401 {112, 98, 75, 43, 15, 1, 0},
2402 {120, 112, 98, 76, 45, 16, 2} };
2403
2404/*
2405 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2406 * would be when CPU is idle and so we just decay the old load without
2407 * adding any new load.
2408 */
2409static unsigned long
2410decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2411{
2412 int j = 0;
2413
2414 if (!missed_updates)
2415 return load;
2416
2417 if (missed_updates >= degrade_zero_ticks[idx])
2418 return 0;
2419
2420 if (idx == 1)
2421 return load >> missed_updates;
2422
2423 while (missed_updates) {
2424 if (missed_updates % 2)
2425 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2426
2427 missed_updates >>= 1;
2428 j++;
2429 }
2430 return load;
2431}
2432
2433/*
2434 * Update rq->cpu_load[] statistics. This function is usually called every
2435 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2436 * every tick. We fix it up based on jiffies.
2437 */
2438static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2439 unsigned long pending_updates)
2440{
2441 int i, scale;
2442
2443 this_rq->nr_load_updates++;
2444
2445 /* Update our load: */
2446 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2447 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2448 unsigned long old_load, new_load;
2449
2450 /* scale is effectively 1 << i now, and >> i divides by scale */
2451
2452 old_load = this_rq->cpu_load[i];
2453 old_load = decay_load_missed(old_load, pending_updates - 1, i);
2454 new_load = this_load;
2455 /*
2456 * Round up the averaging division if load is increasing. This
2457 * prevents us from getting stuck on 9 if the load is 10, for
2458 * example.
2459 */
2460 if (new_load > old_load)
2461 new_load += scale - 1;
2462
2463 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
2464 }
2465
2466 sched_avg_update(this_rq);
2467}
2468
2469#ifdef CONFIG_NO_HZ
2470/*
2471 * There is no sane way to deal with nohz on smp when using jiffies because the
2472 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2473 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2474 *
2475 * Therefore we cannot use the delta approach from the regular tick since that
2476 * would seriously skew the load calculation. However we'll make do for those
2477 * updates happening while idle (nohz_idle_balance) or coming out of idle
2478 * (tick_nohz_idle_exit).
2479 *
2480 * This means we might still be one tick off for nohz periods.
2481 */
2482
2483/*
2484 * Called from nohz_idle_balance() to update the load ratings before doing the
2485 * idle balance.
2486 */
2487void update_idle_cpu_load(struct rq *this_rq)
2488{
2489 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2490 unsigned long load = this_rq->load.weight;
2491 unsigned long pending_updates;
2492
2493 /*
2494 * bail if there's load or we're actually up-to-date.
2495 */
2496 if (load || curr_jiffies == this_rq->last_load_update_tick)
2497 return;
2498
2499 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2500 this_rq->last_load_update_tick = curr_jiffies;
2501
2502 __update_cpu_load(this_rq, load, pending_updates);
2503}
2504
2505/*
2506 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2507 */
2508void update_cpu_load_nohz(void)
2509{
2510 struct rq *this_rq = this_rq();
2511 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2512 unsigned long pending_updates;
2513
2514 if (curr_jiffies == this_rq->last_load_update_tick)
2515 return;
2516
2517 raw_spin_lock(&this_rq->lock);
2518 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2519 if (pending_updates) {
2520 this_rq->last_load_update_tick = curr_jiffies;
2521 /*
2522 * We were idle, this means load 0, the current load might be
2523 * !0 due to remote wakeups and the sort.
2524 */
2525 __update_cpu_load(this_rq, 0, pending_updates);
2526 }
2527 raw_spin_unlock(&this_rq->lock);
2528}
2529#endif /* CONFIG_NO_HZ */
2530
2531/*
2532 * Called from scheduler_tick()
2533 */
2534static void update_cpu_load_active(struct rq *this_rq)
2535{
2536 /*
2537 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
2538 */
2539 this_rq->last_load_update_tick = jiffies;
2540 __update_cpu_load(this_rq, this_rq->load.weight, 1);
2541
2542 calc_load_account_active(this_rq);
2543}
2544
2545#ifdef CONFIG_SMP
2546
2547/*
2548 * sched_exec - execve() is a valuable balancing opportunity, because at
2549 * this point the task has the smallest effective memory and cache footprint.
2550 */
2551void sched_exec(void)
2552{
2553 struct task_struct *p = current;
2554 unsigned long flags;
2555 int dest_cpu;
2556
2557 raw_spin_lock_irqsave(&p->pi_lock, flags);
2558 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
2559 if (dest_cpu == smp_processor_id())
2560 goto unlock;
2561
2562 if (likely(cpu_active(dest_cpu))) {
2563 struct migration_arg arg = { p, dest_cpu };
2564
2565 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2566 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2567 return;
2568 }
2569unlock:
2570 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2571}
2572
2573#endif
2574
2575DEFINE_PER_CPU(struct kernel_stat, kstat);
2576DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2577
2578EXPORT_PER_CPU_SYMBOL(kstat);
2579EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2580
2581/*
2582 * Return any ns on the sched_clock that have not yet been accounted in
2583 * @p in case that task is currently running.
2584 *
2585 * Called with task_rq_lock() held on @rq.
2586 */
2587static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2588{
2589 u64 ns = 0;
2590
2591 if (task_current(rq, p)) {
2592 update_rq_clock(rq);
2593 ns = rq->clock_task - p->se.exec_start;
2594 if ((s64)ns < 0)
2595 ns = 0;
2596 }
2597
2598 return ns;
2599}
2600
2601unsigned long long task_delta_exec(struct task_struct *p)
2602{
2603 unsigned long flags;
2604 struct rq *rq;
2605 u64 ns = 0;
2606
2607 rq = task_rq_lock(p, &flags);
2608 ns = do_task_delta_exec(p, rq);
2609 task_rq_unlock(rq, p, &flags);
2610
2611 return ns;
2612}
2613
2614/*
2615 * Return accounted runtime for the task.
2616 * In case the task is currently running, return the runtime plus current's
2617 * pending runtime that have not been accounted yet.
2618 */
2619unsigned long long task_sched_runtime(struct task_struct *p)
2620{
2621 unsigned long flags;
2622 struct rq *rq;
2623 u64 ns = 0;
2624
2625 rq = task_rq_lock(p, &flags);
2626 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
2627 task_rq_unlock(rq, p, &flags);
2628
2629 return ns;
2630}
2631
2632/*
2633 * This function gets called by the timer code, with HZ frequency.
2634 * We call it with interrupts disabled.
2635 */
2636void scheduler_tick(void)
2637{
2638 int cpu = smp_processor_id();
2639 struct rq *rq = cpu_rq(cpu);
2640 struct task_struct *curr = rq->curr;
2641
2642 sched_clock_tick();
2643
2644 raw_spin_lock(&rq->lock);
2645 update_rq_clock(rq);
2646 update_cpu_load_active(rq);
2647 curr->sched_class->task_tick(rq, curr, 0);
2648 raw_spin_unlock(&rq->lock);
2649
2650 perf_event_task_tick();
2651
2652#ifdef CONFIG_SMP
2653 rq->idle_balance = idle_cpu(cpu);
2654 trigger_load_balance(rq, cpu);
2655#endif
2656}
2657
2658notrace unsigned long get_parent_ip(unsigned long addr)
2659{
2660 if (in_lock_functions(addr)) {
2661 addr = CALLER_ADDR2;
2662 if (in_lock_functions(addr))
2663 addr = CALLER_ADDR3;
2664 }
2665 return addr;
2666}
2667
2668#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2669 defined(CONFIG_PREEMPT_TRACER))
2670
2671void __kprobes add_preempt_count(int val)
2672{
2673#ifdef CONFIG_DEBUG_PREEMPT
2674 /*
2675 * Underflow?
2676 */
2677 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2678 return;
2679#endif
2680 preempt_count() += val;
2681#ifdef CONFIG_DEBUG_PREEMPT
2682 /*
2683 * Spinlock count overflowing soon?
2684 */
2685 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2686 PREEMPT_MASK - 10);
2687#endif
2688 if (preempt_count() == val)
2689 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2690}
2691EXPORT_SYMBOL(add_preempt_count);
2692
2693void __kprobes sub_preempt_count(int val)
2694{
2695#ifdef CONFIG_DEBUG_PREEMPT
2696 /*
2697 * Underflow?
2698 */
2699 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2700 return;
2701 /*
2702 * Is the spinlock portion underflowing?
2703 */
2704 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2705 !(preempt_count() & PREEMPT_MASK)))
2706 return;
2707#endif
2708
2709 if (preempt_count() == val)
2710 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2711 preempt_count() -= val;
2712}
2713EXPORT_SYMBOL(sub_preempt_count);
2714
2715#endif
2716
2717/*
2718 * Print scheduling while atomic bug:
2719 */
2720static noinline void __schedule_bug(struct task_struct *prev)
2721{
2722 if (oops_in_progress)
2723 return;
2724
2725 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2726 prev->comm, prev->pid, preempt_count());
2727
2728 debug_show_held_locks(prev);
2729 print_modules();
2730 if (irqs_disabled())
2731 print_irqtrace_events(prev);
2732 dump_stack();
2733 add_taint(TAINT_WARN);
2734}
2735
2736/*
2737 * Various schedule()-time debugging checks and statistics:
2738 */
2739static inline void schedule_debug(struct task_struct *prev)
2740{
2741 /*
2742 * Test if we are atomic. Since do_exit() needs to call into
2743 * schedule() atomically, we ignore that path for now.
2744 * Otherwise, whine if we are scheduling when we should not be.
2745 */
2746 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
2747 __schedule_bug(prev);
2748 rcu_sleep_check();
2749
2750 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2751
2752 schedstat_inc(this_rq(), sched_count);
2753}
2754
2755static void put_prev_task(struct rq *rq, struct task_struct *prev)
2756{
2757 if (prev->on_rq || rq->skip_clock_update < 0)
2758 update_rq_clock(rq);
2759 prev->sched_class->put_prev_task(rq, prev);
2760}
2761
2762/*
2763 * Pick up the highest-prio task:
2764 */
2765static inline struct task_struct *
2766pick_next_task(struct rq *rq)
2767{
2768 const struct sched_class *class;
2769 struct task_struct *p;
2770
2771 /*
2772 * Optimization: we know that if all tasks are in
2773 * the fair class we can call that function directly:
2774 */
2775 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
2776 p = fair_sched_class.pick_next_task(rq);
2777 if (likely(p))
2778 return p;
2779 }
2780
2781 for_each_class(class) {
2782 p = class->pick_next_task(rq);
2783 if (p)
2784 return p;
2785 }
2786
2787 BUG(); /* the idle class will always have a runnable task */
2788}
2789
2790/*
2791 * __schedule() is the main scheduler function.
2792 *
2793 * The main means of driving the scheduler and thus entering this function are:
2794 *
2795 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2796 *
2797 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2798 * paths. For example, see arch/x86/entry_64.S.
2799 *
2800 * To drive preemption between tasks, the scheduler sets the flag in timer
2801 * interrupt handler scheduler_tick().
2802 *
2803 * 3. Wakeups don't really cause entry into schedule(). They add a
2804 * task to the run-queue and that's it.
2805 *
2806 * Now, if the new task added to the run-queue preempts the current
2807 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2808 * called on the nearest possible occasion:
2809 *
2810 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2811 *
2812 * - in syscall or exception context, at the next outmost
2813 * preempt_enable(). (this might be as soon as the wake_up()'s
2814 * spin_unlock()!)
2815 *
2816 * - in IRQ context, return from interrupt-handler to
2817 * preemptible context
2818 *
2819 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2820 * then at the next:
2821 *
2822 * - cond_resched() call
2823 * - explicit schedule() call
2824 * - return from syscall or exception to user-space
2825 * - return from interrupt-handler to user-space
2826 */
2827static void __sched __schedule(void)
2828{
2829 struct task_struct *prev, *next;
2830 unsigned long *switch_count;
2831 struct rq *rq;
2832 int cpu;
2833
2834need_resched:
2835 preempt_disable();
2836 cpu = smp_processor_id();
2837 rq = cpu_rq(cpu);
2838 rcu_note_context_switch(cpu);
2839 prev = rq->curr;
2840
2841 schedule_debug(prev);
2842
2843 if (sched_feat(HRTICK))
2844 hrtick_clear(rq);
2845
2846 raw_spin_lock_irq(&rq->lock);
2847
2848 switch_count = &prev->nivcsw;
2849 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2850 if (unlikely(signal_pending_state(prev->state, prev))) {
2851 prev->state = TASK_RUNNING;
2852 } else {
2853 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2854 prev->on_rq = 0;
2855
2856 /*
2857 * If a worker went to sleep, notify and ask workqueue
2858 * whether it wants to wake up a task to maintain
2859 * concurrency.
2860 */
2861 if (prev->flags & PF_WQ_WORKER) {
2862 struct task_struct *to_wakeup;
2863
2864 to_wakeup = wq_worker_sleeping(prev, cpu);
2865 if (to_wakeup)
2866 try_to_wake_up_local(to_wakeup);
2867 }
2868 }
2869 switch_count = &prev->nvcsw;
2870 }
2871
2872 pre_schedule(rq, prev);
2873
2874 if (unlikely(!rq->nr_running))
2875 idle_balance(cpu, rq);
2876
2877 put_prev_task(rq, prev);
2878 next = pick_next_task(rq);
2879 clear_tsk_need_resched(prev);
2880 rq->skip_clock_update = 0;
2881
2882 if (likely(prev != next)) {
2883 rq->nr_switches++;
2884 rq->curr = next;
2885 ++*switch_count;
2886
2887 context_switch(rq, prev, next); /* unlocks the rq */
2888 /*
2889 * The context switch have flipped the stack from under us
2890 * and restored the local variables which were saved when
2891 * this task called schedule() in the past. prev == current
2892 * is still correct, but it can be moved to another cpu/rq.
2893 */
2894 cpu = smp_processor_id();
2895 rq = cpu_rq(cpu);
2896 } else
2897 raw_spin_unlock_irq(&rq->lock);
2898
2899 post_schedule(rq);
2900
2901 sched_preempt_enable_no_resched();
2902 if (need_resched())
2903 goto need_resched;
2904}
2905
2906static inline void sched_submit_work(struct task_struct *tsk)
2907{
2908 if (!tsk->state || tsk_is_pi_blocked(tsk))
2909 return;
2910 /*
2911 * If we are going to sleep and we have plugged IO queued,
2912 * make sure to submit it to avoid deadlocks.
2913 */
2914 if (blk_needs_flush_plug(tsk))
2915 blk_schedule_flush_plug(tsk);
2916}
2917
2918asmlinkage void __sched schedule(void)
2919{
2920 struct task_struct *tsk = current;
2921
2922 sched_submit_work(tsk);
2923 __schedule();
2924}
2925EXPORT_SYMBOL(schedule);
2926
2927#ifdef CONFIG_RCU_USER_QS
2928asmlinkage void __sched schedule_user(void)
2929{
2930 /*
2931 * If we come here after a random call to set_need_resched(),
2932 * or we have been woken up remotely but the IPI has not yet arrived,
2933 * we haven't yet exited the RCU idle mode. Do it here manually until
2934 * we find a better solution.
2935 */
2936 rcu_user_exit();
2937 schedule();
2938 rcu_user_enter();
2939}
2940#endif
2941
2942/**
2943 * schedule_preempt_disabled - called with preemption disabled
2944 *
2945 * Returns with preemption disabled. Note: preempt_count must be 1
2946 */
2947void __sched schedule_preempt_disabled(void)
2948{
2949 sched_preempt_enable_no_resched();
2950 schedule();
2951 preempt_disable();
2952}
2953
2954#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
2955
2956static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
2957{
2958 if (lock->owner != owner)
2959 return false;
2960
2961 /*
2962 * Ensure we emit the owner->on_cpu, dereference _after_ checking
2963 * lock->owner still matches owner, if that fails, owner might
2964 * point to free()d memory, if it still matches, the rcu_read_lock()
2965 * ensures the memory stays valid.
2966 */
2967 barrier();
2968
2969 return owner->on_cpu;
2970}
2971
2972/*
2973 * Look out! "owner" is an entirely speculative pointer
2974 * access and not reliable.
2975 */
2976int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
2977{
2978 if (!sched_feat(OWNER_SPIN))
2979 return 0;
2980
2981 rcu_read_lock();
2982 while (owner_running(lock, owner)) {
2983 if (need_resched())
2984 break;
2985
2986 arch_mutex_cpu_relax();
2987 }
2988 rcu_read_unlock();
2989
2990 /*
2991 * We break out the loop above on need_resched() and when the
2992 * owner changed, which is a sign for heavy contention. Return
2993 * success only when lock->owner is NULL.
2994 */
2995 return lock->owner == NULL;
2996}
2997#endif
2998
2999#ifdef CONFIG_PREEMPT
3000/*
3001 * this is the entry point to schedule() from in-kernel preemption
3002 * off of preempt_enable. Kernel preemptions off return from interrupt
3003 * occur there and call schedule directly.
3004 */
3005asmlinkage void __sched notrace preempt_schedule(void)
3006{
3007 struct thread_info *ti = current_thread_info();
3008
3009 /*
3010 * If there is a non-zero preempt_count or interrupts are disabled,
3011 * we do not want to preempt the current task. Just return..
3012 */
3013 if (likely(ti->preempt_count || irqs_disabled()))
3014 return;
3015
3016 do {
3017 add_preempt_count_notrace(PREEMPT_ACTIVE);
3018 __schedule();
3019 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3020
3021 /*
3022 * Check again in case we missed a preemption opportunity
3023 * between schedule and now.
3024 */
3025 barrier();
3026 } while (need_resched());
3027}
3028EXPORT_SYMBOL(preempt_schedule);
3029
3030/*
3031 * this is the entry point to schedule() from kernel preemption
3032 * off of irq context.
3033 * Note, that this is called and return with irqs disabled. This will
3034 * protect us against recursive calling from irq.
3035 */
3036asmlinkage void __sched preempt_schedule_irq(void)
3037{
3038 struct thread_info *ti = current_thread_info();
3039
3040 /* Catch callers which need to be fixed */
3041 BUG_ON(ti->preempt_count || !irqs_disabled());
3042
3043 rcu_user_exit();
3044 do {
3045 add_preempt_count(PREEMPT_ACTIVE);
3046 local_irq_enable();
3047 __schedule();
3048 local_irq_disable();
3049 sub_preempt_count(PREEMPT_ACTIVE);
3050
3051 /*
3052 * Check again in case we missed a preemption opportunity
3053 * between schedule and now.
3054 */
3055 barrier();
3056 } while (need_resched());
3057}
3058
3059#endif /* CONFIG_PREEMPT */
3060
3061int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3062 void *key)
3063{
3064 return try_to_wake_up(curr->private, mode, wake_flags);
3065}
3066EXPORT_SYMBOL(default_wake_function);
3067
3068/*
3069 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3070 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3071 * number) then we wake all the non-exclusive tasks and one exclusive task.
3072 *
3073 * There are circumstances in which we can try to wake a task which has already
3074 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3075 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3076 */
3077static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3078 int nr_exclusive, int wake_flags, void *key)
3079{
3080 wait_queue_t *curr, *next;
3081
3082 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3083 unsigned flags = curr->flags;
3084
3085 if (curr->func(curr, mode, wake_flags, key) &&
3086 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3087 break;
3088 }
3089}
3090
3091/**
3092 * __wake_up - wake up threads blocked on a waitqueue.
3093 * @q: the waitqueue
3094 * @mode: which threads
3095 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3096 * @key: is directly passed to the wakeup function
3097 *
3098 * It may be assumed that this function implies a write memory barrier before
3099 * changing the task state if and only if any tasks are woken up.
3100 */
3101void __wake_up(wait_queue_head_t *q, unsigned int mode,
3102 int nr_exclusive, void *key)
3103{
3104 unsigned long flags;
3105
3106 spin_lock_irqsave(&q->lock, flags);
3107 __wake_up_common(q, mode, nr_exclusive, 0, key);
3108 spin_unlock_irqrestore(&q->lock, flags);
3109}
3110EXPORT_SYMBOL(__wake_up);
3111
3112/*
3113 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3114 */
3115void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
3116{
3117 __wake_up_common(q, mode, nr, 0, NULL);
3118}
3119EXPORT_SYMBOL_GPL(__wake_up_locked);
3120
3121void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3122{
3123 __wake_up_common(q, mode, 1, 0, key);
3124}
3125EXPORT_SYMBOL_GPL(__wake_up_locked_key);
3126
3127/**
3128 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3129 * @q: the waitqueue
3130 * @mode: which threads
3131 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3132 * @key: opaque value to be passed to wakeup targets
3133 *
3134 * The sync wakeup differs that the waker knows that it will schedule
3135 * away soon, so while the target thread will be woken up, it will not
3136 * be migrated to another CPU - ie. the two threads are 'synchronized'
3137 * with each other. This can prevent needless bouncing between CPUs.
3138 *
3139 * On UP it can prevent extra preemption.
3140 *
3141 * It may be assumed that this function implies a write memory barrier before
3142 * changing the task state if and only if any tasks are woken up.
3143 */
3144void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3145 int nr_exclusive, void *key)
3146{
3147 unsigned long flags;
3148 int wake_flags = WF_SYNC;
3149
3150 if (unlikely(!q))
3151 return;
3152
3153 if (unlikely(!nr_exclusive))
3154 wake_flags = 0;
3155
3156 spin_lock_irqsave(&q->lock, flags);
3157 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3158 spin_unlock_irqrestore(&q->lock, flags);
3159}
3160EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3161
3162/*
3163 * __wake_up_sync - see __wake_up_sync_key()
3164 */
3165void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3166{
3167 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3168}
3169EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3170
3171/**
3172 * complete: - signals a single thread waiting on this completion
3173 * @x: holds the state of this particular completion
3174 *
3175 * This will wake up a single thread waiting on this completion. Threads will be
3176 * awakened in the same order in which they were queued.
3177 *
3178 * See also complete_all(), wait_for_completion() and related routines.
3179 *
3180 * It may be assumed that this function implies a write memory barrier before
3181 * changing the task state if and only if any tasks are woken up.
3182 */
3183void complete(struct completion *x)
3184{
3185 unsigned long flags;
3186
3187 spin_lock_irqsave(&x->wait.lock, flags);
3188 x->done++;
3189 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3190 spin_unlock_irqrestore(&x->wait.lock, flags);
3191}
3192EXPORT_SYMBOL(complete);
3193
3194/**
3195 * complete_all: - signals all threads waiting on this completion
3196 * @x: holds the state of this particular completion
3197 *
3198 * This will wake up all threads waiting on this particular completion event.
3199 *
3200 * It may be assumed that this function implies a write memory barrier before
3201 * changing the task state if and only if any tasks are woken up.
3202 */
3203void complete_all(struct completion *x)
3204{
3205 unsigned long flags;
3206
3207 spin_lock_irqsave(&x->wait.lock, flags);
3208 x->done += UINT_MAX/2;
3209 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3210 spin_unlock_irqrestore(&x->wait.lock, flags);
3211}
3212EXPORT_SYMBOL(complete_all);
3213
3214static inline long __sched
3215do_wait_for_common(struct completion *x, long timeout, int state)
3216{
3217 if (!x->done) {
3218 DECLARE_WAITQUEUE(wait, current);
3219
3220 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3221 do {
3222 if (signal_pending_state(state, current)) {
3223 timeout = -ERESTARTSYS;
3224 break;
3225 }
3226 __set_current_state(state);
3227 spin_unlock_irq(&x->wait.lock);
3228 timeout = schedule_timeout(timeout);
3229 spin_lock_irq(&x->wait.lock);
3230 } while (!x->done && timeout);
3231 __remove_wait_queue(&x->wait, &wait);
3232 if (!x->done)
3233 return timeout;
3234 }
3235 x->done--;
3236 return timeout ?: 1;
3237}
3238
3239static long __sched
3240wait_for_common(struct completion *x, long timeout, int state)
3241{
3242 might_sleep();
3243
3244 spin_lock_irq(&x->wait.lock);
3245 timeout = do_wait_for_common(x, timeout, state);
3246 spin_unlock_irq(&x->wait.lock);
3247 return timeout;
3248}
3249
3250/**
3251 * wait_for_completion: - waits for completion of a task
3252 * @x: holds the state of this particular completion
3253 *
3254 * This waits to be signaled for completion of a specific task. It is NOT
3255 * interruptible and there is no timeout.
3256 *
3257 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3258 * and interrupt capability. Also see complete().
3259 */
3260void __sched wait_for_completion(struct completion *x)
3261{
3262 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3263}
3264EXPORT_SYMBOL(wait_for_completion);
3265
3266/**
3267 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3268 * @x: holds the state of this particular completion
3269 * @timeout: timeout value in jiffies
3270 *
3271 * This waits for either a completion of a specific task to be signaled or for a
3272 * specified timeout to expire. The timeout is in jiffies. It is not
3273 * interruptible.
3274 *
3275 * The return value is 0 if timed out, and positive (at least 1, or number of
3276 * jiffies left till timeout) if completed.
3277 */
3278unsigned long __sched
3279wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3280{
3281 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3282}
3283EXPORT_SYMBOL(wait_for_completion_timeout);
3284
3285/**
3286 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3287 * @x: holds the state of this particular completion
3288 *
3289 * This waits for completion of a specific task to be signaled. It is
3290 * interruptible.
3291 *
3292 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3293 */
3294int __sched wait_for_completion_interruptible(struct completion *x)
3295{
3296 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3297 if (t == -ERESTARTSYS)
3298 return t;
3299 return 0;
3300}
3301EXPORT_SYMBOL(wait_for_completion_interruptible);
3302
3303/**
3304 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3305 * @x: holds the state of this particular completion
3306 * @timeout: timeout value in jiffies
3307 *
3308 * This waits for either a completion of a specific task to be signaled or for a
3309 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
3310 *
3311 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3312 * positive (at least 1, or number of jiffies left till timeout) if completed.
3313 */
3314long __sched
3315wait_for_completion_interruptible_timeout(struct completion *x,
3316 unsigned long timeout)
3317{
3318 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3319}
3320EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3321
3322/**
3323 * wait_for_completion_killable: - waits for completion of a task (killable)
3324 * @x: holds the state of this particular completion
3325 *
3326 * This waits to be signaled for completion of a specific task. It can be
3327 * interrupted by a kill signal.
3328 *
3329 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
3330 */
3331int __sched wait_for_completion_killable(struct completion *x)
3332{
3333 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3334 if (t == -ERESTARTSYS)
3335 return t;
3336 return 0;
3337}
3338EXPORT_SYMBOL(wait_for_completion_killable);
3339
3340/**
3341 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3342 * @x: holds the state of this particular completion
3343 * @timeout: timeout value in jiffies
3344 *
3345 * This waits for either a completion of a specific task to be
3346 * signaled or for a specified timeout to expire. It can be
3347 * interrupted by a kill signal. The timeout is in jiffies.
3348 *
3349 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3350 * positive (at least 1, or number of jiffies left till timeout) if completed.
3351 */
3352long __sched
3353wait_for_completion_killable_timeout(struct completion *x,
3354 unsigned long timeout)
3355{
3356 return wait_for_common(x, timeout, TASK_KILLABLE);
3357}
3358EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3359
3360/**
3361 * try_wait_for_completion - try to decrement a completion without blocking
3362 * @x: completion structure
3363 *
3364 * Returns: 0 if a decrement cannot be done without blocking
3365 * 1 if a decrement succeeded.
3366 *
3367 * If a completion is being used as a counting completion,
3368 * attempt to decrement the counter without blocking. This
3369 * enables us to avoid waiting if the resource the completion
3370 * is protecting is not available.
3371 */
3372bool try_wait_for_completion(struct completion *x)
3373{
3374 unsigned long flags;
3375 int ret = 1;
3376
3377 spin_lock_irqsave(&x->wait.lock, flags);
3378 if (!x->done)
3379 ret = 0;
3380 else
3381 x->done--;
3382 spin_unlock_irqrestore(&x->wait.lock, flags);
3383 return ret;
3384}
3385EXPORT_SYMBOL(try_wait_for_completion);
3386
3387/**
3388 * completion_done - Test to see if a completion has any waiters
3389 * @x: completion structure
3390 *
3391 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3392 * 1 if there are no waiters.
3393 *
3394 */
3395bool completion_done(struct completion *x)
3396{
3397 unsigned long flags;
3398 int ret = 1;
3399
3400 spin_lock_irqsave(&x->wait.lock, flags);
3401 if (!x->done)
3402 ret = 0;
3403 spin_unlock_irqrestore(&x->wait.lock, flags);
3404 return ret;
3405}
3406EXPORT_SYMBOL(completion_done);
3407
3408static long __sched
3409sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3410{
3411 unsigned long flags;
3412 wait_queue_t wait;
3413
3414 init_waitqueue_entry(&wait, current);
3415
3416 __set_current_state(state);
3417
3418 spin_lock_irqsave(&q->lock, flags);
3419 __add_wait_queue(q, &wait);
3420 spin_unlock(&q->lock);
3421 timeout = schedule_timeout(timeout);
3422 spin_lock_irq(&q->lock);
3423 __remove_wait_queue(q, &wait);
3424 spin_unlock_irqrestore(&q->lock, flags);
3425
3426 return timeout;
3427}
3428
3429void __sched interruptible_sleep_on(wait_queue_head_t *q)
3430{
3431 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3432}
3433EXPORT_SYMBOL(interruptible_sleep_on);
3434
3435long __sched
3436interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3437{
3438 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3439}
3440EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3441
3442void __sched sleep_on(wait_queue_head_t *q)
3443{
3444 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3445}
3446EXPORT_SYMBOL(sleep_on);
3447
3448long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3449{
3450 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3451}
3452EXPORT_SYMBOL(sleep_on_timeout);
3453
3454#ifdef CONFIG_RT_MUTEXES
3455
3456/*
3457 * rt_mutex_setprio - set the current priority of a task
3458 * @p: task
3459 * @prio: prio value (kernel-internal form)
3460 *
3461 * This function changes the 'effective' priority of a task. It does
3462 * not touch ->normal_prio like __setscheduler().
3463 *
3464 * Used by the rt_mutex code to implement priority inheritance logic.
3465 */
3466void rt_mutex_setprio(struct task_struct *p, int prio)
3467{
3468 int oldprio, on_rq, running;
3469 struct rq *rq;
3470 const struct sched_class *prev_class;
3471
3472 BUG_ON(prio < 0 || prio > MAX_PRIO);
3473
3474 rq = __task_rq_lock(p);
3475
3476 /*
3477 * Idle task boosting is a nono in general. There is one
3478 * exception, when PREEMPT_RT and NOHZ is active:
3479 *
3480 * The idle task calls get_next_timer_interrupt() and holds
3481 * the timer wheel base->lock on the CPU and another CPU wants
3482 * to access the timer (probably to cancel it). We can safely
3483 * ignore the boosting request, as the idle CPU runs this code
3484 * with interrupts disabled and will complete the lock
3485 * protected section without being interrupted. So there is no
3486 * real need to boost.
3487 */
3488 if (unlikely(p == rq->idle)) {
3489 WARN_ON(p != rq->curr);
3490 WARN_ON(p->pi_blocked_on);
3491 goto out_unlock;
3492 }
3493
3494 trace_sched_pi_setprio(p, prio);
3495 oldprio = p->prio;
3496 prev_class = p->sched_class;
3497 on_rq = p->on_rq;
3498 running = task_current(rq, p);
3499 if (on_rq)
3500 dequeue_task(rq, p, 0);
3501 if (running)
3502 p->sched_class->put_prev_task(rq, p);
3503
3504 if (rt_prio(prio))
3505 p->sched_class = &rt_sched_class;
3506 else
3507 p->sched_class = &fair_sched_class;
3508
3509 p->prio = prio;
3510
3511 if (running)
3512 p->sched_class->set_curr_task(rq);
3513 if (on_rq)
3514 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
3515
3516 check_class_changed(rq, p, prev_class, oldprio);
3517out_unlock:
3518 __task_rq_unlock(rq);
3519}
3520#endif
3521void set_user_nice(struct task_struct *p, long nice)
3522{
3523 int old_prio, delta, on_rq;
3524 unsigned long flags;
3525 struct rq *rq;
3526
3527 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3528 return;
3529 /*
3530 * We have to be careful, if called from sys_setpriority(),
3531 * the task might be in the middle of scheduling on another CPU.
3532 */
3533 rq = task_rq_lock(p, &flags);
3534 /*
3535 * The RT priorities are set via sched_setscheduler(), but we still
3536 * allow the 'normal' nice value to be set - but as expected
3537 * it wont have any effect on scheduling until the task is
3538 * SCHED_FIFO/SCHED_RR:
3539 */
3540 if (task_has_rt_policy(p)) {
3541 p->static_prio = NICE_TO_PRIO(nice);
3542 goto out_unlock;
3543 }
3544 on_rq = p->on_rq;
3545 if (on_rq)
3546 dequeue_task(rq, p, 0);
3547
3548 p->static_prio = NICE_TO_PRIO(nice);
3549 set_load_weight(p);
3550 old_prio = p->prio;
3551 p->prio = effective_prio(p);
3552 delta = p->prio - old_prio;
3553
3554 if (on_rq) {
3555 enqueue_task(rq, p, 0);
3556 /*
3557 * If the task increased its priority or is running and
3558 * lowered its priority, then reschedule its CPU:
3559 */
3560 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3561 resched_task(rq->curr);
3562 }
3563out_unlock:
3564 task_rq_unlock(rq, p, &flags);
3565}
3566EXPORT_SYMBOL(set_user_nice);
3567
3568/*
3569 * can_nice - check if a task can reduce its nice value
3570 * @p: task
3571 * @nice: nice value
3572 */
3573int can_nice(const struct task_struct *p, const int nice)
3574{
3575 /* convert nice value [19,-20] to rlimit style value [1,40] */
3576 int nice_rlim = 20 - nice;
3577
3578 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3579 capable(CAP_SYS_NICE));
3580}
3581
3582#ifdef __ARCH_WANT_SYS_NICE
3583
3584/*
3585 * sys_nice - change the priority of the current process.
3586 * @increment: priority increment
3587 *
3588 * sys_setpriority is a more generic, but much slower function that
3589 * does similar things.
3590 */
3591SYSCALL_DEFINE1(nice, int, increment)
3592{
3593 long nice, retval;
3594
3595 /*
3596 * Setpriority might change our priority at the same moment.
3597 * We don't have to worry. Conceptually one call occurs first
3598 * and we have a single winner.
3599 */
3600 if (increment < -40)
3601 increment = -40;
3602 if (increment > 40)
3603 increment = 40;
3604
3605 nice = TASK_NICE(current) + increment;
3606 if (nice < -20)
3607 nice = -20;
3608 if (nice > 19)
3609 nice = 19;
3610
3611 if (increment < 0 && !can_nice(current, nice))
3612 return -EPERM;
3613
3614 retval = security_task_setnice(current, nice);
3615 if (retval)
3616 return retval;
3617
3618 set_user_nice(current, nice);
3619 return 0;
3620}
3621
3622#endif
3623
3624/**
3625 * task_prio - return the priority value of a given task.
3626 * @p: the task in question.
3627 *
3628 * This is the priority value as seen by users in /proc.
3629 * RT tasks are offset by -200. Normal tasks are centered
3630 * around 0, value goes from -16 to +15.
3631 */
3632int task_prio(const struct task_struct *p)
3633{
3634 return p->prio - MAX_RT_PRIO;
3635}
3636
3637/**
3638 * task_nice - return the nice value of a given task.
3639 * @p: the task in question.
3640 */
3641int task_nice(const struct task_struct *p)
3642{
3643 return TASK_NICE(p);
3644}
3645EXPORT_SYMBOL(task_nice);
3646
3647/**
3648 * idle_cpu - is a given cpu idle currently?
3649 * @cpu: the processor in question.
3650 */
3651int idle_cpu(int cpu)
3652{
3653 struct rq *rq = cpu_rq(cpu);
3654
3655 if (rq->curr != rq->idle)
3656 return 0;
3657
3658 if (rq->nr_running)
3659 return 0;
3660
3661#ifdef CONFIG_SMP
3662 if (!llist_empty(&rq->wake_list))
3663 return 0;
3664#endif
3665
3666 return 1;
3667}
3668
3669/**
3670 * idle_task - return the idle task for a given cpu.
3671 * @cpu: the processor in question.
3672 */
3673struct task_struct *idle_task(int cpu)
3674{
3675 return cpu_rq(cpu)->idle;
3676}
3677
3678/**
3679 * find_process_by_pid - find a process with a matching PID value.
3680 * @pid: the pid in question.
3681 */
3682static struct task_struct *find_process_by_pid(pid_t pid)
3683{
3684 return pid ? find_task_by_vpid(pid) : current;
3685}
3686
3687/* Actually do priority change: must hold rq lock. */
3688static void
3689__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
3690{
3691 p->policy = policy;
3692 p->rt_priority = prio;
3693 p->normal_prio = normal_prio(p);
3694 /* we are holding p->pi_lock already */
3695 p->prio = rt_mutex_getprio(p);
3696 if (rt_prio(p->prio))
3697 p->sched_class = &rt_sched_class;
3698 else
3699 p->sched_class = &fair_sched_class;
3700 set_load_weight(p);
3701}
3702
3703/*
3704 * check the target process has a UID that matches the current process's
3705 */
3706static bool check_same_owner(struct task_struct *p)
3707{
3708 const struct cred *cred = current_cred(), *pcred;
3709 bool match;
3710
3711 rcu_read_lock();
3712 pcred = __task_cred(p);
3713 match = (uid_eq(cred->euid, pcred->euid) ||
3714 uid_eq(cred->euid, pcred->uid));
3715 rcu_read_unlock();
3716 return match;
3717}
3718
3719static int __sched_setscheduler(struct task_struct *p, int policy,
3720 const struct sched_param *param, bool user)
3721{
3722 int retval, oldprio, oldpolicy = -1, on_rq, running;
3723 unsigned long flags;
3724 const struct sched_class *prev_class;
3725 struct rq *rq;
3726 int reset_on_fork;
3727
3728 /* may grab non-irq protected spin_locks */
3729 BUG_ON(in_interrupt());
3730recheck:
3731 /* double check policy once rq lock held */
3732 if (policy < 0) {
3733 reset_on_fork = p->sched_reset_on_fork;
3734 policy = oldpolicy = p->policy;
3735 } else {
3736 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
3737 policy &= ~SCHED_RESET_ON_FORK;
3738
3739 if (policy != SCHED_FIFO && policy != SCHED_RR &&
3740 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3741 policy != SCHED_IDLE)
3742 return -EINVAL;
3743 }
3744
3745 /*
3746 * Valid priorities for SCHED_FIFO and SCHED_RR are
3747 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3748 * SCHED_BATCH and SCHED_IDLE is 0.
3749 */
3750 if (param->sched_priority < 0 ||
3751 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3752 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3753 return -EINVAL;
3754 if (rt_policy(policy) != (param->sched_priority != 0))
3755 return -EINVAL;
3756
3757 /*
3758 * Allow unprivileged RT tasks to decrease priority:
3759 */
3760 if (user && !capable(CAP_SYS_NICE)) {
3761 if (rt_policy(policy)) {
3762 unsigned long rlim_rtprio =
3763 task_rlimit(p, RLIMIT_RTPRIO);
3764
3765 /* can't set/change the rt policy */
3766 if (policy != p->policy && !rlim_rtprio)
3767 return -EPERM;
3768
3769 /* can't increase priority */
3770 if (param->sched_priority > p->rt_priority &&
3771 param->sched_priority > rlim_rtprio)
3772 return -EPERM;
3773 }
3774
3775 /*
3776 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3777 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3778 */
3779 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3780 if (!can_nice(p, TASK_NICE(p)))
3781 return -EPERM;
3782 }
3783
3784 /* can't change other user's priorities */
3785 if (!check_same_owner(p))
3786 return -EPERM;
3787
3788 /* Normal users shall not reset the sched_reset_on_fork flag */
3789 if (p->sched_reset_on_fork && !reset_on_fork)
3790 return -EPERM;
3791 }
3792
3793 if (user) {
3794 retval = security_task_setscheduler(p);
3795 if (retval)
3796 return retval;
3797 }
3798
3799 /*
3800 * make sure no PI-waiters arrive (or leave) while we are
3801 * changing the priority of the task:
3802 *
3803 * To be able to change p->policy safely, the appropriate
3804 * runqueue lock must be held.
3805 */
3806 rq = task_rq_lock(p, &flags);
3807
3808 /*
3809 * Changing the policy of the stop threads its a very bad idea
3810 */
3811 if (p == rq->stop) {
3812 task_rq_unlock(rq, p, &flags);
3813 return -EINVAL;
3814 }
3815
3816 /*
3817 * If not changing anything there's no need to proceed further:
3818 */
3819 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
3820 param->sched_priority == p->rt_priority))) {
3821 task_rq_unlock(rq, p, &flags);
3822 return 0;
3823 }
3824
3825#ifdef CONFIG_RT_GROUP_SCHED
3826 if (user) {
3827 /*
3828 * Do not allow realtime tasks into groups that have no runtime
3829 * assigned.
3830 */
3831 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3832 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3833 !task_group_is_autogroup(task_group(p))) {
3834 task_rq_unlock(rq, p, &flags);
3835 return -EPERM;
3836 }
3837 }
3838#endif
3839
3840 /* recheck policy now with rq lock held */
3841 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3842 policy = oldpolicy = -1;
3843 task_rq_unlock(rq, p, &flags);
3844 goto recheck;
3845 }
3846 on_rq = p->on_rq;
3847 running = task_current(rq, p);
3848 if (on_rq)
3849 dequeue_task(rq, p, 0);
3850 if (running)
3851 p->sched_class->put_prev_task(rq, p);
3852
3853 p->sched_reset_on_fork = reset_on_fork;
3854
3855 oldprio = p->prio;
3856 prev_class = p->sched_class;
3857 __setscheduler(rq, p, policy, param->sched_priority);
3858
3859 if (running)
3860 p->sched_class->set_curr_task(rq);
3861 if (on_rq)
3862 enqueue_task(rq, p, 0);
3863
3864 check_class_changed(rq, p, prev_class, oldprio);
3865 task_rq_unlock(rq, p, &flags);
3866
3867 rt_mutex_adjust_pi(p);
3868
3869 return 0;
3870}
3871
3872/**
3873 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3874 * @p: the task in question.
3875 * @policy: new policy.
3876 * @param: structure containing the new RT priority.
3877 *
3878 * NOTE that the task may be already dead.
3879 */
3880int sched_setscheduler(struct task_struct *p, int policy,
3881 const struct sched_param *param)
3882{
3883 return __sched_setscheduler(p, policy, param, true);
3884}
3885EXPORT_SYMBOL_GPL(sched_setscheduler);
3886
3887/**
3888 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3889 * @p: the task in question.
3890 * @policy: new policy.
3891 * @param: structure containing the new RT priority.
3892 *
3893 * Just like sched_setscheduler, only don't bother checking if the
3894 * current context has permission. For example, this is needed in
3895 * stop_machine(): we create temporary high priority worker threads,
3896 * but our caller might not have that capability.
3897 */
3898int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3899 const struct sched_param *param)
3900{
3901 return __sched_setscheduler(p, policy, param, false);
3902}
3903
3904static int
3905do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3906{
3907 struct sched_param lparam;
3908 struct task_struct *p;
3909 int retval;
3910
3911 if (!param || pid < 0)
3912 return -EINVAL;
3913 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3914 return -EFAULT;
3915
3916 rcu_read_lock();
3917 retval = -ESRCH;
3918 p = find_process_by_pid(pid);
3919 if (p != NULL)
3920 retval = sched_setscheduler(p, policy, &lparam);
3921 rcu_read_unlock();
3922
3923 return retval;
3924}
3925
3926/**
3927 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3928 * @pid: the pid in question.
3929 * @policy: new policy.
3930 * @param: structure containing the new RT priority.
3931 */
3932SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3933 struct sched_param __user *, param)
3934{
3935 /* negative values for policy are not valid */
3936 if (policy < 0)
3937 return -EINVAL;
3938
3939 return do_sched_setscheduler(pid, policy, param);
3940}
3941
3942/**
3943 * sys_sched_setparam - set/change the RT priority of a thread
3944 * @pid: the pid in question.
3945 * @param: structure containing the new RT priority.
3946 */
3947SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3948{
3949 return do_sched_setscheduler(pid, -1, param);
3950}
3951
3952/**
3953 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3954 * @pid: the pid in question.
3955 */
3956SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3957{
3958 struct task_struct *p;
3959 int retval;
3960
3961 if (pid < 0)
3962 return -EINVAL;
3963
3964 retval = -ESRCH;
3965 rcu_read_lock();
3966 p = find_process_by_pid(pid);
3967 if (p) {
3968 retval = security_task_getscheduler(p);
3969 if (!retval)
3970 retval = p->policy
3971 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3972 }
3973 rcu_read_unlock();
3974 return retval;
3975}
3976
3977/**
3978 * sys_sched_getparam - get the RT priority of a thread
3979 * @pid: the pid in question.
3980 * @param: structure containing the RT priority.
3981 */
3982SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3983{
3984 struct sched_param lp;
3985 struct task_struct *p;
3986 int retval;
3987
3988 if (!param || pid < 0)
3989 return -EINVAL;
3990
3991 rcu_read_lock();
3992 p = find_process_by_pid(pid);
3993 retval = -ESRCH;
3994 if (!p)
3995 goto out_unlock;
3996
3997 retval = security_task_getscheduler(p);
3998 if (retval)
3999 goto out_unlock;
4000
4001 lp.sched_priority = p->rt_priority;
4002 rcu_read_unlock();
4003
4004 /*
4005 * This one might sleep, we cannot do it with a spinlock held ...
4006 */
4007 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4008
4009 return retval;
4010
4011out_unlock:
4012 rcu_read_unlock();
4013 return retval;
4014}
4015
4016long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4017{
4018 cpumask_var_t cpus_allowed, new_mask;
4019 struct task_struct *p;
4020 int retval;
4021
4022 get_online_cpus();
4023 rcu_read_lock();
4024
4025 p = find_process_by_pid(pid);
4026 if (!p) {
4027 rcu_read_unlock();
4028 put_online_cpus();
4029 return -ESRCH;
4030 }
4031
4032 /* Prevent p going away */
4033 get_task_struct(p);
4034 rcu_read_unlock();
4035
4036 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4037 retval = -ENOMEM;
4038 goto out_put_task;
4039 }
4040 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4041 retval = -ENOMEM;
4042 goto out_free_cpus_allowed;
4043 }
4044 retval = -EPERM;
4045 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
4046 goto out_unlock;
4047
4048 retval = security_task_setscheduler(p);
4049 if (retval)
4050 goto out_unlock;
4051
4052 cpuset_cpus_allowed(p, cpus_allowed);
4053 cpumask_and(new_mask, in_mask, cpus_allowed);
4054again:
4055 retval = set_cpus_allowed_ptr(p, new_mask);
4056
4057 if (!retval) {
4058 cpuset_cpus_allowed(p, cpus_allowed);
4059 if (!cpumask_subset(new_mask, cpus_allowed)) {
4060 /*
4061 * We must have raced with a concurrent cpuset
4062 * update. Just reset the cpus_allowed to the
4063 * cpuset's cpus_allowed
4064 */
4065 cpumask_copy(new_mask, cpus_allowed);
4066 goto again;
4067 }
4068 }
4069out_unlock:
4070 free_cpumask_var(new_mask);
4071out_free_cpus_allowed:
4072 free_cpumask_var(cpus_allowed);
4073out_put_task:
4074 put_task_struct(p);
4075 put_online_cpus();
4076 return retval;
4077}
4078
4079static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4080 struct cpumask *new_mask)
4081{
4082 if (len < cpumask_size())
4083 cpumask_clear(new_mask);
4084 else if (len > cpumask_size())
4085 len = cpumask_size();
4086
4087 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4088}
4089
4090/**
4091 * sys_sched_setaffinity - set the cpu affinity of a process
4092 * @pid: pid of the process
4093 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4094 * @user_mask_ptr: user-space pointer to the new cpu mask
4095 */
4096SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4097 unsigned long __user *, user_mask_ptr)
4098{
4099 cpumask_var_t new_mask;
4100 int retval;
4101
4102 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4103 return -ENOMEM;
4104
4105 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4106 if (retval == 0)
4107 retval = sched_setaffinity(pid, new_mask);
4108 free_cpumask_var(new_mask);
4109 return retval;
4110}
4111
4112long sched_getaffinity(pid_t pid, struct cpumask *mask)
4113{
4114 struct task_struct *p;
4115 unsigned long flags;
4116 int retval;
4117
4118 get_online_cpus();
4119 rcu_read_lock();
4120
4121 retval = -ESRCH;
4122 p = find_process_by_pid(pid);
4123 if (!p)
4124 goto out_unlock;
4125
4126 retval = security_task_getscheduler(p);
4127 if (retval)
4128 goto out_unlock;
4129
4130 raw_spin_lock_irqsave(&p->pi_lock, flags);
4131 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4132 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4133
4134out_unlock:
4135 rcu_read_unlock();
4136 put_online_cpus();
4137
4138 return retval;
4139}
4140
4141/**
4142 * sys_sched_getaffinity - get the cpu affinity of a process
4143 * @pid: pid of the process
4144 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4145 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4146 */
4147SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4148 unsigned long __user *, user_mask_ptr)
4149{
4150 int ret;
4151 cpumask_var_t mask;
4152
4153 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4154 return -EINVAL;
4155 if (len & (sizeof(unsigned long)-1))
4156 return -EINVAL;
4157
4158 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4159 return -ENOMEM;
4160
4161 ret = sched_getaffinity(pid, mask);
4162 if (ret == 0) {
4163 size_t retlen = min_t(size_t, len, cpumask_size());
4164
4165 if (copy_to_user(user_mask_ptr, mask, retlen))
4166 ret = -EFAULT;
4167 else
4168 ret = retlen;
4169 }
4170 free_cpumask_var(mask);
4171
4172 return ret;
4173}
4174
4175/**
4176 * sys_sched_yield - yield the current processor to other threads.
4177 *
4178 * This function yields the current CPU to other tasks. If there are no
4179 * other threads running on this CPU then this function will return.
4180 */
4181SYSCALL_DEFINE0(sched_yield)
4182{
4183 struct rq *rq = this_rq_lock();
4184
4185 schedstat_inc(rq, yld_count);
4186 current->sched_class->yield_task(rq);
4187
4188 /*
4189 * Since we are going to call schedule() anyway, there's
4190 * no need to preempt or enable interrupts:
4191 */
4192 __release(rq->lock);
4193 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4194 do_raw_spin_unlock(&rq->lock);
4195 sched_preempt_enable_no_resched();
4196
4197 schedule();
4198
4199 return 0;
4200}
4201
4202static inline int should_resched(void)
4203{
4204 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4205}
4206
4207static void __cond_resched(void)
4208{
4209 add_preempt_count(PREEMPT_ACTIVE);
4210 __schedule();
4211 sub_preempt_count(PREEMPT_ACTIVE);
4212}
4213
4214int __sched _cond_resched(void)
4215{
4216 if (should_resched()) {
4217 __cond_resched();
4218 return 1;
4219 }
4220 return 0;
4221}
4222EXPORT_SYMBOL(_cond_resched);
4223
4224/*
4225 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4226 * call schedule, and on return reacquire the lock.
4227 *
4228 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4229 * operations here to prevent schedule() from being called twice (once via
4230 * spin_unlock(), once by hand).
4231 */
4232int __cond_resched_lock(spinlock_t *lock)
4233{
4234 int resched = should_resched();
4235 int ret = 0;
4236
4237 lockdep_assert_held(lock);
4238
4239 if (spin_needbreak(lock) || resched) {
4240 spin_unlock(lock);
4241 if (resched)
4242 __cond_resched();
4243 else
4244 cpu_relax();
4245 ret = 1;
4246 spin_lock(lock);
4247 }
4248 return ret;
4249}
4250EXPORT_SYMBOL(__cond_resched_lock);
4251
4252int __sched __cond_resched_softirq(void)
4253{
4254 BUG_ON(!in_softirq());
4255
4256 if (should_resched()) {
4257 local_bh_enable();
4258 __cond_resched();
4259 local_bh_disable();
4260 return 1;
4261 }
4262 return 0;
4263}
4264EXPORT_SYMBOL(__cond_resched_softirq);
4265
4266/**
4267 * yield - yield the current processor to other threads.
4268 *
4269 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4270 *
4271 * The scheduler is at all times free to pick the calling task as the most
4272 * eligible task to run, if removing the yield() call from your code breaks
4273 * it, its already broken.
4274 *
4275 * Typical broken usage is:
4276 *
4277 * while (!event)
4278 * yield();
4279 *
4280 * where one assumes that yield() will let 'the other' process run that will
4281 * make event true. If the current task is a SCHED_FIFO task that will never
4282 * happen. Never use yield() as a progress guarantee!!
4283 *
4284 * If you want to use yield() to wait for something, use wait_event().
4285 * If you want to use yield() to be 'nice' for others, use cond_resched().
4286 * If you still want to use yield(), do not!
4287 */
4288void __sched yield(void)
4289{
4290 set_current_state(TASK_RUNNING);
4291 sys_sched_yield();
4292}
4293EXPORT_SYMBOL(yield);
4294
4295/**
4296 * yield_to - yield the current processor to another thread in
4297 * your thread group, or accelerate that thread toward the
4298 * processor it's on.
4299 * @p: target task
4300 * @preempt: whether task preemption is allowed or not
4301 *
4302 * It's the caller's job to ensure that the target task struct
4303 * can't go away on us before we can do any checks.
4304 *
4305 * Returns true if we indeed boosted the target task.
4306 */
4307bool __sched yield_to(struct task_struct *p, bool preempt)
4308{
4309 struct task_struct *curr = current;
4310 struct rq *rq, *p_rq;
4311 unsigned long flags;
4312 bool yielded = 0;
4313
4314 local_irq_save(flags);
4315 rq = this_rq();
4316
4317again:
4318 p_rq = task_rq(p);
4319 double_rq_lock(rq, p_rq);
4320 while (task_rq(p) != p_rq) {
4321 double_rq_unlock(rq, p_rq);
4322 goto again;
4323 }
4324
4325 if (!curr->sched_class->yield_to_task)
4326 goto out;
4327
4328 if (curr->sched_class != p->sched_class)
4329 goto out;
4330
4331 if (task_running(p_rq, p) || p->state)
4332 goto out;
4333
4334 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4335 if (yielded) {
4336 schedstat_inc(rq, yld_count);
4337 /*
4338 * Make p's CPU reschedule; pick_next_entity takes care of
4339 * fairness.
4340 */
4341 if (preempt && rq != p_rq)
4342 resched_task(p_rq->curr);
4343 }
4344
4345out:
4346 double_rq_unlock(rq, p_rq);
4347 local_irq_restore(flags);
4348
4349 if (yielded)
4350 schedule();
4351
4352 return yielded;
4353}
4354EXPORT_SYMBOL_GPL(yield_to);
4355
4356/*
4357 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4358 * that process accounting knows that this is a task in IO wait state.
4359 */
4360void __sched io_schedule(void)
4361{
4362 struct rq *rq = raw_rq();
4363
4364 delayacct_blkio_start();
4365 atomic_inc(&rq->nr_iowait);
4366 blk_flush_plug(current);
4367 current->in_iowait = 1;
4368 schedule();
4369 current->in_iowait = 0;
4370 atomic_dec(&rq->nr_iowait);
4371 delayacct_blkio_end();
4372}
4373EXPORT_SYMBOL(io_schedule);
4374
4375long __sched io_schedule_timeout(long timeout)
4376{
4377 struct rq *rq = raw_rq();
4378 long ret;
4379
4380 delayacct_blkio_start();
4381 atomic_inc(&rq->nr_iowait);
4382 blk_flush_plug(current);
4383 current->in_iowait = 1;
4384 ret = schedule_timeout(timeout);
4385 current->in_iowait = 0;
4386 atomic_dec(&rq->nr_iowait);
4387 delayacct_blkio_end();
4388 return ret;
4389}
4390
4391/**
4392 * sys_sched_get_priority_max - return maximum RT priority.
4393 * @policy: scheduling class.
4394 *
4395 * this syscall returns the maximum rt_priority that can be used
4396 * by a given scheduling class.
4397 */
4398SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4399{
4400 int ret = -EINVAL;
4401
4402 switch (policy) {
4403 case SCHED_FIFO:
4404 case SCHED_RR:
4405 ret = MAX_USER_RT_PRIO-1;
4406 break;
4407 case SCHED_NORMAL:
4408 case SCHED_BATCH:
4409 case SCHED_IDLE:
4410 ret = 0;
4411 break;
4412 }
4413 return ret;
4414}
4415
4416/**
4417 * sys_sched_get_priority_min - return minimum RT priority.
4418 * @policy: scheduling class.
4419 *
4420 * this syscall returns the minimum rt_priority that can be used
4421 * by a given scheduling class.
4422 */
4423SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4424{
4425 int ret = -EINVAL;
4426
4427 switch (policy) {
4428 case SCHED_FIFO:
4429 case SCHED_RR:
4430 ret = 1;
4431 break;
4432 case SCHED_NORMAL:
4433 case SCHED_BATCH:
4434 case SCHED_IDLE:
4435 ret = 0;
4436 }
4437 return ret;
4438}
4439
4440/**
4441 * sys_sched_rr_get_interval - return the default timeslice of a process.
4442 * @pid: pid of the process.
4443 * @interval: userspace pointer to the timeslice value.
4444 *
4445 * this syscall writes the default timeslice value of a given process
4446 * into the user-space timespec buffer. A value of '0' means infinity.
4447 */
4448SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4449 struct timespec __user *, interval)
4450{
4451 struct task_struct *p;
4452 unsigned int time_slice;
4453 unsigned long flags;
4454 struct rq *rq;
4455 int retval;
4456 struct timespec t;
4457
4458 if (pid < 0)
4459 return -EINVAL;
4460
4461 retval = -ESRCH;
4462 rcu_read_lock();
4463 p = find_process_by_pid(pid);
4464 if (!p)
4465 goto out_unlock;
4466
4467 retval = security_task_getscheduler(p);
4468 if (retval)
4469 goto out_unlock;
4470
4471 rq = task_rq_lock(p, &flags);
4472 time_slice = p->sched_class->get_rr_interval(rq, p);
4473 task_rq_unlock(rq, p, &flags);
4474
4475 rcu_read_unlock();
4476 jiffies_to_timespec(time_slice, &t);
4477 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4478 return retval;
4479
4480out_unlock:
4481 rcu_read_unlock();
4482 return retval;
4483}
4484
4485static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4486
4487void sched_show_task(struct task_struct *p)
4488{
4489 unsigned long free = 0;
4490 unsigned state;
4491
4492 state = p->state ? __ffs(p->state) + 1 : 0;
4493 printk(KERN_INFO "%-15.15s %c", p->comm,
4494 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4495#if BITS_PER_LONG == 32
4496 if (state == TASK_RUNNING)
4497 printk(KERN_CONT " running ");
4498 else
4499 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4500#else
4501 if (state == TASK_RUNNING)
4502 printk(KERN_CONT " running task ");
4503 else
4504 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4505#endif
4506#ifdef CONFIG_DEBUG_STACK_USAGE
4507 free = stack_not_used(p);
4508#endif
4509 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4510 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
4511 (unsigned long)task_thread_info(p)->flags);
4512
4513 show_stack(p, NULL);
4514}
4515
4516void show_state_filter(unsigned long state_filter)
4517{
4518 struct task_struct *g, *p;
4519
4520#if BITS_PER_LONG == 32
4521 printk(KERN_INFO
4522 " task PC stack pid father\n");
4523#else
4524 printk(KERN_INFO
4525 " task PC stack pid father\n");
4526#endif
4527 rcu_read_lock();
4528 do_each_thread(g, p) {
4529 /*
4530 * reset the NMI-timeout, listing all files on a slow
4531 * console might take a lot of time:
4532 */
4533 touch_nmi_watchdog();
4534 if (!state_filter || (p->state & state_filter))
4535 sched_show_task(p);
4536 } while_each_thread(g, p);
4537
4538 touch_all_softlockup_watchdogs();
4539
4540#ifdef CONFIG_SCHED_DEBUG
4541 sysrq_sched_debug_show();
4542#endif
4543 rcu_read_unlock();
4544 /*
4545 * Only show locks if all tasks are dumped:
4546 */
4547 if (!state_filter)
4548 debug_show_all_locks();
4549}
4550
4551void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4552{
4553 idle->sched_class = &idle_sched_class;
4554}
4555
4556/**
4557 * init_idle - set up an idle thread for a given CPU
4558 * @idle: task in question
4559 * @cpu: cpu the idle task belongs to
4560 *
4561 * NOTE: this function does not set the idle thread's NEED_RESCHED
4562 * flag, to make booting more robust.
4563 */
4564void __cpuinit init_idle(struct task_struct *idle, int cpu)
4565{
4566 struct rq *rq = cpu_rq(cpu);
4567 unsigned long flags;
4568
4569 raw_spin_lock_irqsave(&rq->lock, flags);
4570
4571 __sched_fork(idle);
4572 idle->state = TASK_RUNNING;
4573 idle->se.exec_start = sched_clock();
4574
4575 do_set_cpus_allowed(idle, cpumask_of(cpu));
4576 /*
4577 * We're having a chicken and egg problem, even though we are
4578 * holding rq->lock, the cpu isn't yet set to this cpu so the
4579 * lockdep check in task_group() will fail.
4580 *
4581 * Similar case to sched_fork(). / Alternatively we could
4582 * use task_rq_lock() here and obtain the other rq->lock.
4583 *
4584 * Silence PROVE_RCU
4585 */
4586 rcu_read_lock();
4587 __set_task_cpu(idle, cpu);
4588 rcu_read_unlock();
4589
4590 rq->curr = rq->idle = idle;
4591#if defined(CONFIG_SMP)
4592 idle->on_cpu = 1;
4593#endif
4594 raw_spin_unlock_irqrestore(&rq->lock, flags);
4595
4596 /* Set the preempt count _outside_ the spinlocks! */
4597 task_thread_info(idle)->preempt_count = 0;
4598
4599 /*
4600 * The idle tasks have their own, simple scheduling class:
4601 */
4602 idle->sched_class = &idle_sched_class;
4603 ftrace_graph_init_idle_task(idle, cpu);
4604#if defined(CONFIG_SMP)
4605 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4606#endif
4607}
4608
4609#ifdef CONFIG_SMP
4610void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4611{
4612 if (p->sched_class && p->sched_class->set_cpus_allowed)
4613 p->sched_class->set_cpus_allowed(p, new_mask);
4614
4615 cpumask_copy(&p->cpus_allowed, new_mask);
4616 p->nr_cpus_allowed = cpumask_weight(new_mask);
4617}
4618
4619/*
4620 * This is how migration works:
4621 *
4622 * 1) we invoke migration_cpu_stop() on the target CPU using
4623 * stop_one_cpu().
4624 * 2) stopper starts to run (implicitly forcing the migrated thread
4625 * off the CPU)
4626 * 3) it checks whether the migrated task is still in the wrong runqueue.
4627 * 4) if it's in the wrong runqueue then the migration thread removes
4628 * it and puts it into the right queue.
4629 * 5) stopper completes and stop_one_cpu() returns and the migration
4630 * is done.
4631 */
4632
4633/*
4634 * Change a given task's CPU affinity. Migrate the thread to a
4635 * proper CPU and schedule it away if the CPU it's executing on
4636 * is removed from the allowed bitmask.
4637 *
4638 * NOTE: the caller must have a valid reference to the task, the
4639 * task must not exit() & deallocate itself prematurely. The
4640 * call is not atomic; no spinlocks may be held.
4641 */
4642int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4643{
4644 unsigned long flags;
4645 struct rq *rq;
4646 unsigned int dest_cpu;
4647 int ret = 0;
4648
4649 rq = task_rq_lock(p, &flags);
4650
4651 if (cpumask_equal(&p->cpus_allowed, new_mask))
4652 goto out;
4653
4654 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4655 ret = -EINVAL;
4656 goto out;
4657 }
4658
4659 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
4660 ret = -EINVAL;
4661 goto out;
4662 }
4663
4664 do_set_cpus_allowed(p, new_mask);
4665
4666 /* Can the task run on the task's current CPU? If so, we're done */
4667 if (cpumask_test_cpu(task_cpu(p), new_mask))
4668 goto out;
4669
4670 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4671 if (p->on_rq) {
4672 struct migration_arg arg = { p, dest_cpu };
4673 /* Need help from migration thread: drop lock and wait. */
4674 task_rq_unlock(rq, p, &flags);
4675 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4676 tlb_migrate_finish(p->mm);
4677 return 0;
4678 }
4679out:
4680 task_rq_unlock(rq, p, &flags);
4681
4682 return ret;
4683}
4684EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4685
4686/*
4687 * Move (not current) task off this cpu, onto dest cpu. We're doing
4688 * this because either it can't run here any more (set_cpus_allowed()
4689 * away from this CPU, or CPU going down), or because we're
4690 * attempting to rebalance this task on exec (sched_exec).
4691 *
4692 * So we race with normal scheduler movements, but that's OK, as long
4693 * as the task is no longer on this CPU.
4694 *
4695 * Returns non-zero if task was successfully migrated.
4696 */
4697static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4698{
4699 struct rq *rq_dest, *rq_src;
4700 int ret = 0;
4701
4702 if (unlikely(!cpu_active(dest_cpu)))
4703 return ret;
4704
4705 rq_src = cpu_rq(src_cpu);
4706 rq_dest = cpu_rq(dest_cpu);
4707
4708 raw_spin_lock(&p->pi_lock);
4709 double_rq_lock(rq_src, rq_dest);
4710 /* Already moved. */
4711 if (task_cpu(p) != src_cpu)
4712 goto done;
4713 /* Affinity changed (again). */
4714 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4715 goto fail;
4716
4717 /*
4718 * If we're not on a rq, the next wake-up will ensure we're
4719 * placed properly.
4720 */
4721 if (p->on_rq) {
4722 dequeue_task(rq_src, p, 0);
4723 set_task_cpu(p, dest_cpu);
4724 enqueue_task(rq_dest, p, 0);
4725 check_preempt_curr(rq_dest, p, 0);
4726 }
4727done:
4728 ret = 1;
4729fail:
4730 double_rq_unlock(rq_src, rq_dest);
4731 raw_spin_unlock(&p->pi_lock);
4732 return ret;
4733}
4734
4735/*
4736 * migration_cpu_stop - this will be executed by a highprio stopper thread
4737 * and performs thread migration by bumping thread off CPU then
4738 * 'pushing' onto another runqueue.
4739 */
4740static int migration_cpu_stop(void *data)
4741{
4742 struct migration_arg *arg = data;
4743
4744 /*
4745 * The original target cpu might have gone down and we might
4746 * be on another cpu but it doesn't matter.
4747 */
4748 local_irq_disable();
4749 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4750 local_irq_enable();
4751 return 0;
4752}
4753
4754#ifdef CONFIG_HOTPLUG_CPU
4755
4756/*
4757 * Ensures that the idle task is using init_mm right before its cpu goes
4758 * offline.
4759 */
4760void idle_task_exit(void)
4761{
4762 struct mm_struct *mm = current->active_mm;
4763
4764 BUG_ON(cpu_online(smp_processor_id()));
4765
4766 if (mm != &init_mm)
4767 switch_mm(mm, &init_mm, current);
4768 mmdrop(mm);
4769}
4770
4771/*
4772 * Since this CPU is going 'away' for a while, fold any nr_active delta
4773 * we might have. Assumes we're called after migrate_tasks() so that the
4774 * nr_active count is stable.
4775 *
4776 * Also see the comment "Global load-average calculations".
4777 */
4778static void calc_load_migrate(struct rq *rq)
4779{
4780 long delta = calc_load_fold_active(rq);
4781 if (delta)
4782 atomic_long_add(delta, &calc_load_tasks);
4783}
4784
4785/*
4786 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4787 * try_to_wake_up()->select_task_rq().
4788 *
4789 * Called with rq->lock held even though we'er in stop_machine() and
4790 * there's no concurrency possible, we hold the required locks anyway
4791 * because of lock validation efforts.
4792 */
4793static void migrate_tasks(unsigned int dead_cpu)
4794{
4795 struct rq *rq = cpu_rq(dead_cpu);
4796 struct task_struct *next, *stop = rq->stop;
4797 int dest_cpu;
4798
4799 /*
4800 * Fudge the rq selection such that the below task selection loop
4801 * doesn't get stuck on the currently eligible stop task.
4802 *
4803 * We're currently inside stop_machine() and the rq is either stuck
4804 * in the stop_machine_cpu_stop() loop, or we're executing this code,
4805 * either way we should never end up calling schedule() until we're
4806 * done here.
4807 */
4808 rq->stop = NULL;
4809
4810 for ( ; ; ) {
4811 /*
4812 * There's this thread running, bail when that's the only
4813 * remaining thread.
4814 */
4815 if (rq->nr_running == 1)
4816 break;
4817
4818 next = pick_next_task(rq);
4819 BUG_ON(!next);
4820 next->sched_class->put_prev_task(rq, next);
4821
4822 /* Find suitable destination for @next, with force if needed. */
4823 dest_cpu = select_fallback_rq(dead_cpu, next);
4824 raw_spin_unlock(&rq->lock);
4825
4826 __migrate_task(next, dead_cpu, dest_cpu);
4827
4828 raw_spin_lock(&rq->lock);
4829 }
4830
4831 rq->stop = stop;
4832}
4833
4834#endif /* CONFIG_HOTPLUG_CPU */
4835
4836#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
4837
4838static struct ctl_table sd_ctl_dir[] = {
4839 {
4840 .procname = "sched_domain",
4841 .mode = 0555,
4842 },
4843 {}
4844};
4845
4846static struct ctl_table sd_ctl_root[] = {
4847 {
4848 .procname = "kernel",
4849 .mode = 0555,
4850 .child = sd_ctl_dir,
4851 },
4852 {}
4853};
4854
4855static struct ctl_table *sd_alloc_ctl_entry(int n)
4856{
4857 struct ctl_table *entry =
4858 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
4859
4860 return entry;
4861}
4862
4863static void sd_free_ctl_entry(struct ctl_table **tablep)
4864{
4865 struct ctl_table *entry;
4866
4867 /*
4868 * In the intermediate directories, both the child directory and
4869 * procname are dynamically allocated and could fail but the mode
4870 * will always be set. In the lowest directory the names are
4871 * static strings and all have proc handlers.
4872 */
4873 for (entry = *tablep; entry->mode; entry++) {
4874 if (entry->child)
4875 sd_free_ctl_entry(&entry->child);
4876 if (entry->proc_handler == NULL)
4877 kfree(entry->procname);
4878 }
4879
4880 kfree(*tablep);
4881 *tablep = NULL;
4882}
4883
4884static int min_load_idx = 0;
4885static int max_load_idx = CPU_LOAD_IDX_MAX;
4886
4887static void
4888set_table_entry(struct ctl_table *entry,
4889 const char *procname, void *data, int maxlen,
4890 umode_t mode, proc_handler *proc_handler,
4891 bool load_idx)
4892{
4893 entry->procname = procname;
4894 entry->data = data;
4895 entry->maxlen = maxlen;
4896 entry->mode = mode;
4897 entry->proc_handler = proc_handler;
4898
4899 if (load_idx) {
4900 entry->extra1 = &min_load_idx;
4901 entry->extra2 = &max_load_idx;
4902 }
4903}
4904
4905static struct ctl_table *
4906sd_alloc_ctl_domain_table(struct sched_domain *sd)
4907{
4908 struct ctl_table *table = sd_alloc_ctl_entry(13);
4909
4910 if (table == NULL)
4911 return NULL;
4912
4913 set_table_entry(&table[0], "min_interval", &sd->min_interval,
4914 sizeof(long), 0644, proc_doulongvec_minmax, false);
4915 set_table_entry(&table[1], "max_interval", &sd->max_interval,
4916 sizeof(long), 0644, proc_doulongvec_minmax, false);
4917 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
4918 sizeof(int), 0644, proc_dointvec_minmax, true);
4919 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
4920 sizeof(int), 0644, proc_dointvec_minmax, true);
4921 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
4922 sizeof(int), 0644, proc_dointvec_minmax, true);
4923 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
4924 sizeof(int), 0644, proc_dointvec_minmax, true);
4925 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
4926 sizeof(int), 0644, proc_dointvec_minmax, true);
4927 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
4928 sizeof(int), 0644, proc_dointvec_minmax, false);
4929 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
4930 sizeof(int), 0644, proc_dointvec_minmax, false);
4931 set_table_entry(&table[9], "cache_nice_tries",
4932 &sd->cache_nice_tries,
4933 sizeof(int), 0644, proc_dointvec_minmax, false);
4934 set_table_entry(&table[10], "flags", &sd->flags,
4935 sizeof(int), 0644, proc_dointvec_minmax, false);
4936 set_table_entry(&table[11], "name", sd->name,
4937 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
4938 /* &table[12] is terminator */
4939
4940 return table;
4941}
4942
4943static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
4944{
4945 struct ctl_table *entry, *table;
4946 struct sched_domain *sd;
4947 int domain_num = 0, i;
4948 char buf[32];
4949
4950 for_each_domain(cpu, sd)
4951 domain_num++;
4952 entry = table = sd_alloc_ctl_entry(domain_num + 1);
4953 if (table == NULL)
4954 return NULL;
4955
4956 i = 0;
4957 for_each_domain(cpu, sd) {
4958 snprintf(buf, 32, "domain%d", i);
4959 entry->procname = kstrdup(buf, GFP_KERNEL);
4960 entry->mode = 0555;
4961 entry->child = sd_alloc_ctl_domain_table(sd);
4962 entry++;
4963 i++;
4964 }
4965 return table;
4966}
4967
4968static struct ctl_table_header *sd_sysctl_header;
4969static void register_sched_domain_sysctl(void)
4970{
4971 int i, cpu_num = num_possible_cpus();
4972 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
4973 char buf[32];
4974
4975 WARN_ON(sd_ctl_dir[0].child);
4976 sd_ctl_dir[0].child = entry;
4977
4978 if (entry == NULL)
4979 return;
4980
4981 for_each_possible_cpu(i) {
4982 snprintf(buf, 32, "cpu%d", i);
4983 entry->procname = kstrdup(buf, GFP_KERNEL);
4984 entry->mode = 0555;
4985 entry->child = sd_alloc_ctl_cpu_table(i);
4986 entry++;
4987 }
4988
4989 WARN_ON(sd_sysctl_header);
4990 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
4991}
4992
4993/* may be called multiple times per register */
4994static void unregister_sched_domain_sysctl(void)
4995{
4996 if (sd_sysctl_header)
4997 unregister_sysctl_table(sd_sysctl_header);
4998 sd_sysctl_header = NULL;
4999 if (sd_ctl_dir[0].child)
5000 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5001}
5002#else
5003static void register_sched_domain_sysctl(void)
5004{
5005}
5006static void unregister_sched_domain_sysctl(void)
5007{
5008}
5009#endif
5010
5011static void set_rq_online(struct rq *rq)
5012{
5013 if (!rq->online) {
5014 const struct sched_class *class;
5015
5016 cpumask_set_cpu(rq->cpu, rq->rd->online);
5017 rq->online = 1;
5018
5019 for_each_class(class) {
5020 if (class->rq_online)
5021 class->rq_online(rq);
5022 }
5023 }
5024}
5025
5026static void set_rq_offline(struct rq *rq)
5027{
5028 if (rq->online) {
5029 const struct sched_class *class;
5030
5031 for_each_class(class) {
5032 if (class->rq_offline)
5033 class->rq_offline(rq);
5034 }
5035
5036 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5037 rq->online = 0;
5038 }
5039}
5040
5041/*
5042 * migration_call - callback that gets triggered when a CPU is added.
5043 * Here we can start up the necessary migration thread for the new CPU.
5044 */
5045static int __cpuinit
5046migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5047{
5048 int cpu = (long)hcpu;
5049 unsigned long flags;
5050 struct rq *rq = cpu_rq(cpu);
5051
5052 switch (action & ~CPU_TASKS_FROZEN) {
5053
5054 case CPU_UP_PREPARE:
5055 rq->calc_load_update = calc_load_update;
5056 break;
5057
5058 case CPU_ONLINE:
5059 /* Update our root-domain */
5060 raw_spin_lock_irqsave(&rq->lock, flags);
5061 if (rq->rd) {
5062 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5063
5064 set_rq_online(rq);
5065 }
5066 raw_spin_unlock_irqrestore(&rq->lock, flags);
5067 break;
5068
5069#ifdef CONFIG_HOTPLUG_CPU
5070 case CPU_DYING:
5071 sched_ttwu_pending();
5072 /* Update our root-domain */
5073 raw_spin_lock_irqsave(&rq->lock, flags);
5074 if (rq->rd) {
5075 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5076 set_rq_offline(rq);
5077 }
5078 migrate_tasks(cpu);
5079 BUG_ON(rq->nr_running != 1); /* the migration thread */
5080 raw_spin_unlock_irqrestore(&rq->lock, flags);
5081 break;
5082
5083 case CPU_DEAD:
5084 calc_load_migrate(rq);
5085 break;
5086#endif
5087 }
5088
5089 update_max_interval();
5090
5091 return NOTIFY_OK;
5092}
5093
5094/*
5095 * Register at high priority so that task migration (migrate_all_tasks)
5096 * happens before everything else. This has to be lower priority than
5097 * the notifier in the perf_event subsystem, though.
5098 */
5099static struct notifier_block __cpuinitdata migration_notifier = {
5100 .notifier_call = migration_call,
5101 .priority = CPU_PRI_MIGRATION,
5102};
5103
5104static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5105 unsigned long action, void *hcpu)
5106{
5107 switch (action & ~CPU_TASKS_FROZEN) {
5108 case CPU_STARTING:
5109 case CPU_DOWN_FAILED:
5110 set_cpu_active((long)hcpu, true);
5111 return NOTIFY_OK;
5112 default:
5113 return NOTIFY_DONE;
5114 }
5115}
5116
5117static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5118 unsigned long action, void *hcpu)
5119{
5120 switch (action & ~CPU_TASKS_FROZEN) {
5121 case CPU_DOWN_PREPARE:
5122 set_cpu_active((long)hcpu, false);
5123 return NOTIFY_OK;
5124 default:
5125 return NOTIFY_DONE;
5126 }
5127}
5128
5129static int __init migration_init(void)
5130{
5131 void *cpu = (void *)(long)smp_processor_id();
5132 int err;
5133
5134 /* Initialize migration for the boot CPU */
5135 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5136 BUG_ON(err == NOTIFY_BAD);
5137 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5138 register_cpu_notifier(&migration_notifier);
5139
5140 /* Register cpu active notifiers */
5141 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5142 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5143
5144 return 0;
5145}
5146early_initcall(migration_init);
5147#endif
5148
5149#ifdef CONFIG_SMP
5150
5151static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5152
5153#ifdef CONFIG_SCHED_DEBUG
5154
5155static __read_mostly int sched_debug_enabled;
5156
5157static int __init sched_debug_setup(char *str)
5158{
5159 sched_debug_enabled = 1;
5160
5161 return 0;
5162}
5163early_param("sched_debug", sched_debug_setup);
5164
5165static inline bool sched_debug(void)
5166{
5167 return sched_debug_enabled;
5168}
5169
5170static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5171 struct cpumask *groupmask)
5172{
5173 struct sched_group *group = sd->groups;
5174 char str[256];
5175
5176 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5177 cpumask_clear(groupmask);
5178
5179 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5180
5181 if (!(sd->flags & SD_LOAD_BALANCE)) {
5182 printk("does not load-balance\n");
5183 if (sd->parent)
5184 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5185 " has parent");
5186 return -1;
5187 }
5188
5189 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5190
5191 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5192 printk(KERN_ERR "ERROR: domain->span does not contain "
5193 "CPU%d\n", cpu);
5194 }
5195 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5196 printk(KERN_ERR "ERROR: domain->groups does not contain"
5197 " CPU%d\n", cpu);
5198 }
5199
5200 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5201 do {
5202 if (!group) {
5203 printk("\n");
5204 printk(KERN_ERR "ERROR: group is NULL\n");
5205 break;
5206 }
5207
5208 /*
5209 * Even though we initialize ->power to something semi-sane,
5210 * we leave power_orig unset. This allows us to detect if
5211 * domain iteration is still funny without causing /0 traps.
5212 */
5213 if (!group->sgp->power_orig) {
5214 printk(KERN_CONT "\n");
5215 printk(KERN_ERR "ERROR: domain->cpu_power not "
5216 "set\n");
5217 break;
5218 }
5219
5220 if (!cpumask_weight(sched_group_cpus(group))) {
5221 printk(KERN_CONT "\n");
5222 printk(KERN_ERR "ERROR: empty group\n");
5223 break;
5224 }
5225
5226 if (!(sd->flags & SD_OVERLAP) &&
5227 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5228 printk(KERN_CONT "\n");
5229 printk(KERN_ERR "ERROR: repeated CPUs\n");
5230 break;
5231 }
5232
5233 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5234
5235 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5236
5237 printk(KERN_CONT " %s", str);
5238 if (group->sgp->power != SCHED_POWER_SCALE) {
5239 printk(KERN_CONT " (cpu_power = %d)",
5240 group->sgp->power);
5241 }
5242
5243 group = group->next;
5244 } while (group != sd->groups);
5245 printk(KERN_CONT "\n");
5246
5247 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5248 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5249
5250 if (sd->parent &&
5251 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5252 printk(KERN_ERR "ERROR: parent span is not a superset "
5253 "of domain->span\n");
5254 return 0;
5255}
5256
5257static void sched_domain_debug(struct sched_domain *sd, int cpu)
5258{
5259 int level = 0;
5260
5261 if (!sched_debug_enabled)
5262 return;
5263
5264 if (!sd) {
5265 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5266 return;
5267 }
5268
5269 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5270
5271 for (;;) {
5272 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5273 break;
5274 level++;
5275 sd = sd->parent;
5276 if (!sd)
5277 break;
5278 }
5279}
5280#else /* !CONFIG_SCHED_DEBUG */
5281# define sched_domain_debug(sd, cpu) do { } while (0)
5282static inline bool sched_debug(void)
5283{
5284 return false;
5285}
5286#endif /* CONFIG_SCHED_DEBUG */
5287
5288static int sd_degenerate(struct sched_domain *sd)
5289{
5290 if (cpumask_weight(sched_domain_span(sd)) == 1)
5291 return 1;
5292
5293 /* Following flags need at least 2 groups */
5294 if (sd->flags & (SD_LOAD_BALANCE |
5295 SD_BALANCE_NEWIDLE |
5296 SD_BALANCE_FORK |
5297 SD_BALANCE_EXEC |
5298 SD_SHARE_CPUPOWER |
5299 SD_SHARE_PKG_RESOURCES)) {
5300 if (sd->groups != sd->groups->next)
5301 return 0;
5302 }
5303
5304 /* Following flags don't use groups */
5305 if (sd->flags & (SD_WAKE_AFFINE))
5306 return 0;
5307
5308 return 1;
5309}
5310
5311static int
5312sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5313{
5314 unsigned long cflags = sd->flags, pflags = parent->flags;
5315
5316 if (sd_degenerate(parent))
5317 return 1;
5318
5319 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5320 return 0;
5321
5322 /* Flags needing groups don't count if only 1 group in parent */
5323 if (parent->groups == parent->groups->next) {
5324 pflags &= ~(SD_LOAD_BALANCE |
5325 SD_BALANCE_NEWIDLE |
5326 SD_BALANCE_FORK |
5327 SD_BALANCE_EXEC |
5328 SD_SHARE_CPUPOWER |
5329 SD_SHARE_PKG_RESOURCES);
5330 if (nr_node_ids == 1)
5331 pflags &= ~SD_SERIALIZE;
5332 }
5333 if (~cflags & pflags)
5334 return 0;
5335
5336 return 1;
5337}
5338
5339static void free_rootdomain(struct rcu_head *rcu)
5340{
5341 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5342
5343 cpupri_cleanup(&rd->cpupri);
5344 free_cpumask_var(rd->rto_mask);
5345 free_cpumask_var(rd->online);
5346 free_cpumask_var(rd->span);
5347 kfree(rd);
5348}
5349
5350static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5351{
5352 struct root_domain *old_rd = NULL;
5353 unsigned long flags;
5354
5355 raw_spin_lock_irqsave(&rq->lock, flags);
5356
5357 if (rq->rd) {
5358 old_rd = rq->rd;
5359
5360 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5361 set_rq_offline(rq);
5362
5363 cpumask_clear_cpu(rq->cpu, old_rd->span);
5364
5365 /*
5366 * If we dont want to free the old_rt yet then
5367 * set old_rd to NULL to skip the freeing later
5368 * in this function:
5369 */
5370 if (!atomic_dec_and_test(&old_rd->refcount))
5371 old_rd = NULL;
5372 }
5373
5374 atomic_inc(&rd->refcount);
5375 rq->rd = rd;
5376
5377 cpumask_set_cpu(rq->cpu, rd->span);
5378 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5379 set_rq_online(rq);
5380
5381 raw_spin_unlock_irqrestore(&rq->lock, flags);
5382
5383 if (old_rd)
5384 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5385}
5386
5387static int init_rootdomain(struct root_domain *rd)
5388{
5389 memset(rd, 0, sizeof(*rd));
5390
5391 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5392 goto out;
5393 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5394 goto free_span;
5395 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5396 goto free_online;
5397
5398 if (cpupri_init(&rd->cpupri) != 0)
5399 goto free_rto_mask;
5400 return 0;
5401
5402free_rto_mask:
5403 free_cpumask_var(rd->rto_mask);
5404free_online:
5405 free_cpumask_var(rd->online);
5406free_span:
5407 free_cpumask_var(rd->span);
5408out:
5409 return -ENOMEM;
5410}
5411
5412/*
5413 * By default the system creates a single root-domain with all cpus as
5414 * members (mimicking the global state we have today).
5415 */
5416struct root_domain def_root_domain;
5417
5418static void init_defrootdomain(void)
5419{
5420 init_rootdomain(&def_root_domain);
5421
5422 atomic_set(&def_root_domain.refcount, 1);
5423}
5424
5425static struct root_domain *alloc_rootdomain(void)
5426{
5427 struct root_domain *rd;
5428
5429 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5430 if (!rd)
5431 return NULL;
5432
5433 if (init_rootdomain(rd) != 0) {
5434 kfree(rd);
5435 return NULL;
5436 }
5437
5438 return rd;
5439}
5440
5441static void free_sched_groups(struct sched_group *sg, int free_sgp)
5442{
5443 struct sched_group *tmp, *first;
5444
5445 if (!sg)
5446 return;
5447
5448 first = sg;
5449 do {
5450 tmp = sg->next;
5451
5452 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5453 kfree(sg->sgp);
5454
5455 kfree(sg);
5456 sg = tmp;
5457 } while (sg != first);
5458}
5459
5460static void free_sched_domain(struct rcu_head *rcu)
5461{
5462 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5463
5464 /*
5465 * If its an overlapping domain it has private groups, iterate and
5466 * nuke them all.
5467 */
5468 if (sd->flags & SD_OVERLAP) {
5469 free_sched_groups(sd->groups, 1);
5470 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5471 kfree(sd->groups->sgp);
5472 kfree(sd->groups);
5473 }
5474 kfree(sd);
5475}
5476
5477static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5478{
5479 call_rcu(&sd->rcu, free_sched_domain);
5480}
5481
5482static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5483{
5484 for (; sd; sd = sd->parent)
5485 destroy_sched_domain(sd, cpu);
5486}
5487
5488/*
5489 * Keep a special pointer to the highest sched_domain that has
5490 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5491 * allows us to avoid some pointer chasing select_idle_sibling().
5492 *
5493 * Also keep a unique ID per domain (we use the first cpu number in
5494 * the cpumask of the domain), this allows us to quickly tell if
5495 * two cpus are in the same cache domain, see cpus_share_cache().
5496 */
5497DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5498DEFINE_PER_CPU(int, sd_llc_id);
5499
5500static void update_top_cache_domain(int cpu)
5501{
5502 struct sched_domain *sd;
5503 int id = cpu;
5504
5505 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5506 if (sd)
5507 id = cpumask_first(sched_domain_span(sd));
5508
5509 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5510 per_cpu(sd_llc_id, cpu) = id;
5511}
5512
5513/*
5514 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5515 * hold the hotplug lock.
5516 */
5517static void
5518cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5519{
5520 struct rq *rq = cpu_rq(cpu);
5521 struct sched_domain *tmp;
5522
5523 /* Remove the sched domains which do not contribute to scheduling. */
5524 for (tmp = sd; tmp; ) {
5525 struct sched_domain *parent = tmp->parent;
5526 if (!parent)
5527 break;
5528
5529 if (sd_parent_degenerate(tmp, parent)) {
5530 tmp->parent = parent->parent;
5531 if (parent->parent)
5532 parent->parent->child = tmp;
5533 destroy_sched_domain(parent, cpu);
5534 } else
5535 tmp = tmp->parent;
5536 }
5537
5538 if (sd && sd_degenerate(sd)) {
5539 tmp = sd;
5540 sd = sd->parent;
5541 destroy_sched_domain(tmp, cpu);
5542 if (sd)
5543 sd->child = NULL;
5544 }
5545
5546 sched_domain_debug(sd, cpu);
5547
5548 rq_attach_root(rq, rd);
5549 tmp = rq->sd;
5550 rcu_assign_pointer(rq->sd, sd);
5551 destroy_sched_domains(tmp, cpu);
5552
5553 update_top_cache_domain(cpu);
5554}
5555
5556/* cpus with isolated domains */
5557static cpumask_var_t cpu_isolated_map;
5558
5559/* Setup the mask of cpus configured for isolated domains */
5560static int __init isolated_cpu_setup(char *str)
5561{
5562 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5563 cpulist_parse(str, cpu_isolated_map);
5564 return 1;
5565}
5566
5567__setup("isolcpus=", isolated_cpu_setup);
5568
5569static const struct cpumask *cpu_cpu_mask(int cpu)
5570{
5571 return cpumask_of_node(cpu_to_node(cpu));
5572}
5573
5574struct sd_data {
5575 struct sched_domain **__percpu sd;
5576 struct sched_group **__percpu sg;
5577 struct sched_group_power **__percpu sgp;
5578};
5579
5580struct s_data {
5581 struct sched_domain ** __percpu sd;
5582 struct root_domain *rd;
5583};
5584
5585enum s_alloc {
5586 sa_rootdomain,
5587 sa_sd,
5588 sa_sd_storage,
5589 sa_none,
5590};
5591
5592struct sched_domain_topology_level;
5593
5594typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
5595typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5596
5597#define SDTL_OVERLAP 0x01
5598
5599struct sched_domain_topology_level {
5600 sched_domain_init_f init;
5601 sched_domain_mask_f mask;
5602 int flags;
5603 int numa_level;
5604 struct sd_data data;
5605};
5606
5607/*
5608 * Build an iteration mask that can exclude certain CPUs from the upwards
5609 * domain traversal.
5610 *
5611 * Asymmetric node setups can result in situations where the domain tree is of
5612 * unequal depth, make sure to skip domains that already cover the entire
5613 * range.
5614 *
5615 * In that case build_sched_domains() will have terminated the iteration early
5616 * and our sibling sd spans will be empty. Domains should always include the
5617 * cpu they're built on, so check that.
5618 *
5619 */
5620static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5621{
5622 const struct cpumask *span = sched_domain_span(sd);
5623 struct sd_data *sdd = sd->private;
5624 struct sched_domain *sibling;
5625 int i;
5626
5627 for_each_cpu(i, span) {
5628 sibling = *per_cpu_ptr(sdd->sd, i);
5629 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5630 continue;
5631
5632 cpumask_set_cpu(i, sched_group_mask(sg));
5633 }
5634}
5635
5636/*
5637 * Return the canonical balance cpu for this group, this is the first cpu
5638 * of this group that's also in the iteration mask.
5639 */
5640int group_balance_cpu(struct sched_group *sg)
5641{
5642 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5643}
5644
5645static int
5646build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5647{
5648 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5649 const struct cpumask *span = sched_domain_span(sd);
5650 struct cpumask *covered = sched_domains_tmpmask;
5651 struct sd_data *sdd = sd->private;
5652 struct sched_domain *child;
5653 int i;
5654
5655 cpumask_clear(covered);
5656
5657 for_each_cpu(i, span) {
5658 struct cpumask *sg_span;
5659
5660 if (cpumask_test_cpu(i, covered))
5661 continue;
5662
5663 child = *per_cpu_ptr(sdd->sd, i);
5664
5665 /* See the comment near build_group_mask(). */
5666 if (!cpumask_test_cpu(i, sched_domain_span(child)))
5667 continue;
5668
5669 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5670 GFP_KERNEL, cpu_to_node(cpu));
5671
5672 if (!sg)
5673 goto fail;
5674
5675 sg_span = sched_group_cpus(sg);
5676 if (child->child) {
5677 child = child->child;
5678 cpumask_copy(sg_span, sched_domain_span(child));
5679 } else
5680 cpumask_set_cpu(i, sg_span);
5681
5682 cpumask_or(covered, covered, sg_span);
5683
5684 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
5685 if (atomic_inc_return(&sg->sgp->ref) == 1)
5686 build_group_mask(sd, sg);
5687
5688 /*
5689 * Initialize sgp->power such that even if we mess up the
5690 * domains and no possible iteration will get us here, we won't
5691 * die on a /0 trap.
5692 */
5693 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
5694
5695 /*
5696 * Make sure the first group of this domain contains the
5697 * canonical balance cpu. Otherwise the sched_domain iteration
5698 * breaks. See update_sg_lb_stats().
5699 */
5700 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5701 group_balance_cpu(sg) == cpu)
5702 groups = sg;
5703
5704 if (!first)
5705 first = sg;
5706 if (last)
5707 last->next = sg;
5708 last = sg;
5709 last->next = first;
5710 }
5711 sd->groups = groups;
5712
5713 return 0;
5714
5715fail:
5716 free_sched_groups(first, 0);
5717
5718 return -ENOMEM;
5719}
5720
5721static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5722{
5723 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5724 struct sched_domain *child = sd->child;
5725
5726 if (child)
5727 cpu = cpumask_first(sched_domain_span(child));
5728
5729 if (sg) {
5730 *sg = *per_cpu_ptr(sdd->sg, cpu);
5731 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
5732 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
5733 }
5734
5735 return cpu;
5736}
5737
5738/*
5739 * build_sched_groups will build a circular linked list of the groups
5740 * covered by the given span, and will set each group's ->cpumask correctly,
5741 * and ->cpu_power to 0.
5742 *
5743 * Assumes the sched_domain tree is fully constructed
5744 */
5745static int
5746build_sched_groups(struct sched_domain *sd, int cpu)
5747{
5748 struct sched_group *first = NULL, *last = NULL;
5749 struct sd_data *sdd = sd->private;
5750 const struct cpumask *span = sched_domain_span(sd);
5751 struct cpumask *covered;
5752 int i;
5753
5754 get_group(cpu, sdd, &sd->groups);
5755 atomic_inc(&sd->groups->ref);
5756
5757 if (cpu != cpumask_first(sched_domain_span(sd)))
5758 return 0;
5759
5760 lockdep_assert_held(&sched_domains_mutex);
5761 covered = sched_domains_tmpmask;
5762
5763 cpumask_clear(covered);
5764
5765 for_each_cpu(i, span) {
5766 struct sched_group *sg;
5767 int group = get_group(i, sdd, &sg);
5768 int j;
5769
5770 if (cpumask_test_cpu(i, covered))
5771 continue;
5772
5773 cpumask_clear(sched_group_cpus(sg));
5774 sg->sgp->power = 0;
5775 cpumask_setall(sched_group_mask(sg));
5776
5777 for_each_cpu(j, span) {
5778 if (get_group(j, sdd, NULL) != group)
5779 continue;
5780
5781 cpumask_set_cpu(j, covered);
5782 cpumask_set_cpu(j, sched_group_cpus(sg));
5783 }
5784
5785 if (!first)
5786 first = sg;
5787 if (last)
5788 last->next = sg;
5789 last = sg;
5790 }
5791 last->next = first;
5792
5793 return 0;
5794}
5795
5796/*
5797 * Initialize sched groups cpu_power.
5798 *
5799 * cpu_power indicates the capacity of sched group, which is used while
5800 * distributing the load between different sched groups in a sched domain.
5801 * Typically cpu_power for all the groups in a sched domain will be same unless
5802 * there are asymmetries in the topology. If there are asymmetries, group
5803 * having more cpu_power will pickup more load compared to the group having
5804 * less cpu_power.
5805 */
5806static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5807{
5808 struct sched_group *sg = sd->groups;
5809
5810 WARN_ON(!sd || !sg);
5811
5812 do {
5813 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
5814 sg = sg->next;
5815 } while (sg != sd->groups);
5816
5817 if (cpu != group_balance_cpu(sg))
5818 return;
5819
5820 update_group_power(sd, cpu);
5821 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
5822}
5823
5824int __weak arch_sd_sibling_asym_packing(void)
5825{
5826 return 0*SD_ASYM_PACKING;
5827}
5828
5829/*
5830 * Initializers for schedule domains
5831 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
5832 */
5833
5834#ifdef CONFIG_SCHED_DEBUG
5835# define SD_INIT_NAME(sd, type) sd->name = #type
5836#else
5837# define SD_INIT_NAME(sd, type) do { } while (0)
5838#endif
5839
5840#define SD_INIT_FUNC(type) \
5841static noinline struct sched_domain * \
5842sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
5843{ \
5844 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
5845 *sd = SD_##type##_INIT; \
5846 SD_INIT_NAME(sd, type); \
5847 sd->private = &tl->data; \
5848 return sd; \
5849}
5850
5851SD_INIT_FUNC(CPU)
5852#ifdef CONFIG_SCHED_SMT
5853 SD_INIT_FUNC(SIBLING)
5854#endif
5855#ifdef CONFIG_SCHED_MC
5856 SD_INIT_FUNC(MC)
5857#endif
5858#ifdef CONFIG_SCHED_BOOK
5859 SD_INIT_FUNC(BOOK)
5860#endif
5861
5862static int default_relax_domain_level = -1;
5863int sched_domain_level_max;
5864
5865static int __init setup_relax_domain_level(char *str)
5866{
5867 if (kstrtoint(str, 0, &default_relax_domain_level))
5868 pr_warn("Unable to set relax_domain_level\n");
5869
5870 return 1;
5871}
5872__setup("relax_domain_level=", setup_relax_domain_level);
5873
5874static void set_domain_attribute(struct sched_domain *sd,
5875 struct sched_domain_attr *attr)
5876{
5877 int request;
5878
5879 if (!attr || attr->relax_domain_level < 0) {
5880 if (default_relax_domain_level < 0)
5881 return;
5882 else
5883 request = default_relax_domain_level;
5884 } else
5885 request = attr->relax_domain_level;
5886 if (request < sd->level) {
5887 /* turn off idle balance on this domain */
5888 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5889 } else {
5890 /* turn on idle balance on this domain */
5891 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
5892 }
5893}
5894
5895static void __sdt_free(const struct cpumask *cpu_map);
5896static int __sdt_alloc(const struct cpumask *cpu_map);
5897
5898static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
5899 const struct cpumask *cpu_map)
5900{
5901 switch (what) {
5902 case sa_rootdomain:
5903 if (!atomic_read(&d->rd->refcount))
5904 free_rootdomain(&d->rd->rcu); /* fall through */
5905 case sa_sd:
5906 free_percpu(d->sd); /* fall through */
5907 case sa_sd_storage:
5908 __sdt_free(cpu_map); /* fall through */
5909 case sa_none:
5910 break;
5911 }
5912}
5913
5914static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
5915 const struct cpumask *cpu_map)
5916{
5917 memset(d, 0, sizeof(*d));
5918
5919 if (__sdt_alloc(cpu_map))
5920 return sa_sd_storage;
5921 d->sd = alloc_percpu(struct sched_domain *);
5922 if (!d->sd)
5923 return sa_sd_storage;
5924 d->rd = alloc_rootdomain();
5925 if (!d->rd)
5926 return sa_sd;
5927 return sa_rootdomain;
5928}
5929
5930/*
5931 * NULL the sd_data elements we've used to build the sched_domain and
5932 * sched_group structure so that the subsequent __free_domain_allocs()
5933 * will not free the data we're using.
5934 */
5935static void claim_allocations(int cpu, struct sched_domain *sd)
5936{
5937 struct sd_data *sdd = sd->private;
5938
5939 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
5940 *per_cpu_ptr(sdd->sd, cpu) = NULL;
5941
5942 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
5943 *per_cpu_ptr(sdd->sg, cpu) = NULL;
5944
5945 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
5946 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
5947}
5948
5949#ifdef CONFIG_SCHED_SMT
5950static const struct cpumask *cpu_smt_mask(int cpu)
5951{
5952 return topology_thread_cpumask(cpu);
5953}
5954#endif
5955
5956/*
5957 * Topology list, bottom-up.
5958 */
5959static struct sched_domain_topology_level default_topology[] = {
5960#ifdef CONFIG_SCHED_SMT
5961 { sd_init_SIBLING, cpu_smt_mask, },
5962#endif
5963#ifdef CONFIG_SCHED_MC
5964 { sd_init_MC, cpu_coregroup_mask, },
5965#endif
5966#ifdef CONFIG_SCHED_BOOK
5967 { sd_init_BOOK, cpu_book_mask, },
5968#endif
5969 { sd_init_CPU, cpu_cpu_mask, },
5970 { NULL, },
5971};
5972
5973static struct sched_domain_topology_level *sched_domain_topology = default_topology;
5974
5975#ifdef CONFIG_NUMA
5976
5977static int sched_domains_numa_levels;
5978static int *sched_domains_numa_distance;
5979static struct cpumask ***sched_domains_numa_masks;
5980static int sched_domains_curr_level;
5981
5982static inline int sd_local_flags(int level)
5983{
5984 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
5985 return 0;
5986
5987 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
5988}
5989
5990static struct sched_domain *
5991sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
5992{
5993 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
5994 int level = tl->numa_level;
5995 int sd_weight = cpumask_weight(
5996 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
5997
5998 *sd = (struct sched_domain){
5999 .min_interval = sd_weight,
6000 .max_interval = 2*sd_weight,
6001 .busy_factor = 32,
6002 .imbalance_pct = 125,
6003 .cache_nice_tries = 2,
6004 .busy_idx = 3,
6005 .idle_idx = 2,
6006 .newidle_idx = 0,
6007 .wake_idx = 0,
6008 .forkexec_idx = 0,
6009
6010 .flags = 1*SD_LOAD_BALANCE
6011 | 1*SD_BALANCE_NEWIDLE
6012 | 0*SD_BALANCE_EXEC
6013 | 0*SD_BALANCE_FORK
6014 | 0*SD_BALANCE_WAKE
6015 | 0*SD_WAKE_AFFINE
6016 | 0*SD_SHARE_CPUPOWER
6017 | 0*SD_SHARE_PKG_RESOURCES
6018 | 1*SD_SERIALIZE
6019 | 0*SD_PREFER_SIBLING
6020 | sd_local_flags(level)
6021 ,
6022 .last_balance = jiffies,
6023 .balance_interval = sd_weight,
6024 };
6025 SD_INIT_NAME(sd, NUMA);
6026 sd->private = &tl->data;
6027
6028 /*
6029 * Ugly hack to pass state to sd_numa_mask()...
6030 */
6031 sched_domains_curr_level = tl->numa_level;
6032
6033 return sd;
6034}
6035
6036static const struct cpumask *sd_numa_mask(int cpu)
6037{
6038 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6039}
6040
6041static void sched_numa_warn(const char *str)
6042{
6043 static int done = false;
6044 int i,j;
6045
6046 if (done)
6047 return;
6048
6049 done = true;
6050
6051 printk(KERN_WARNING "ERROR: %s\n\n", str);
6052
6053 for (i = 0; i < nr_node_ids; i++) {
6054 printk(KERN_WARNING " ");
6055 for (j = 0; j < nr_node_ids; j++)
6056 printk(KERN_CONT "%02d ", node_distance(i,j));
6057 printk(KERN_CONT "\n");
6058 }
6059 printk(KERN_WARNING "\n");
6060}
6061
6062static bool find_numa_distance(int distance)
6063{
6064 int i;
6065
6066 if (distance == node_distance(0, 0))
6067 return true;
6068
6069 for (i = 0; i < sched_domains_numa_levels; i++) {
6070 if (sched_domains_numa_distance[i] == distance)
6071 return true;
6072 }
6073
6074 return false;
6075}
6076
6077static void sched_init_numa(void)
6078{
6079 int next_distance, curr_distance = node_distance(0, 0);
6080 struct sched_domain_topology_level *tl;
6081 int level = 0;
6082 int i, j, k;
6083
6084 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6085 if (!sched_domains_numa_distance)
6086 return;
6087
6088 /*
6089 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6090 * unique distances in the node_distance() table.
6091 *
6092 * Assumes node_distance(0,j) includes all distances in
6093 * node_distance(i,j) in order to avoid cubic time.
6094 */
6095 next_distance = curr_distance;
6096 for (i = 0; i < nr_node_ids; i++) {
6097 for (j = 0; j < nr_node_ids; j++) {
6098 for (k = 0; k < nr_node_ids; k++) {
6099 int distance = node_distance(i, k);
6100
6101 if (distance > curr_distance &&
6102 (distance < next_distance ||
6103 next_distance == curr_distance))
6104 next_distance = distance;
6105
6106 /*
6107 * While not a strong assumption it would be nice to know
6108 * about cases where if node A is connected to B, B is not
6109 * equally connected to A.
6110 */
6111 if (sched_debug() && node_distance(k, i) != distance)
6112 sched_numa_warn("Node-distance not symmetric");
6113
6114 if (sched_debug() && i && !find_numa_distance(distance))
6115 sched_numa_warn("Node-0 not representative");
6116 }
6117 if (next_distance != curr_distance) {
6118 sched_domains_numa_distance[level++] = next_distance;
6119 sched_domains_numa_levels = level;
6120 curr_distance = next_distance;
6121 } else break;
6122 }
6123
6124 /*
6125 * In case of sched_debug() we verify the above assumption.
6126 */
6127 if (!sched_debug())
6128 break;
6129 }
6130 /*
6131 * 'level' contains the number of unique distances, excluding the
6132 * identity distance node_distance(i,i).
6133 *
6134 * The sched_domains_nume_distance[] array includes the actual distance
6135 * numbers.
6136 */
6137
6138 /*
6139 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6140 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6141 * the array will contain less then 'level' members. This could be
6142 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6143 * in other functions.
6144 *
6145 * We reset it to 'level' at the end of this function.
6146 */
6147 sched_domains_numa_levels = 0;
6148
6149 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6150 if (!sched_domains_numa_masks)
6151 return;
6152
6153 /*
6154 * Now for each level, construct a mask per node which contains all
6155 * cpus of nodes that are that many hops away from us.
6156 */
6157 for (i = 0; i < level; i++) {
6158 sched_domains_numa_masks[i] =
6159 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6160 if (!sched_domains_numa_masks[i])
6161 return;
6162
6163 for (j = 0; j < nr_node_ids; j++) {
6164 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6165 if (!mask)
6166 return;
6167
6168 sched_domains_numa_masks[i][j] = mask;
6169
6170 for (k = 0; k < nr_node_ids; k++) {
6171 if (node_distance(j, k) > sched_domains_numa_distance[i])
6172 continue;
6173
6174 cpumask_or(mask, mask, cpumask_of_node(k));
6175 }
6176 }
6177 }
6178
6179 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6180 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6181 if (!tl)
6182 return;
6183
6184 /*
6185 * Copy the default topology bits..
6186 */
6187 for (i = 0; default_topology[i].init; i++)
6188 tl[i] = default_topology[i];
6189
6190 /*
6191 * .. and append 'j' levels of NUMA goodness.
6192 */
6193 for (j = 0; j < level; i++, j++) {
6194 tl[i] = (struct sched_domain_topology_level){
6195 .init = sd_numa_init,
6196 .mask = sd_numa_mask,
6197 .flags = SDTL_OVERLAP,
6198 .numa_level = j,
6199 };
6200 }
6201
6202 sched_domain_topology = tl;
6203
6204 sched_domains_numa_levels = level;
6205}
6206
6207static void sched_domains_numa_masks_set(int cpu)
6208{
6209 int i, j;
6210 int node = cpu_to_node(cpu);
6211
6212 for (i = 0; i < sched_domains_numa_levels; i++) {
6213 for (j = 0; j < nr_node_ids; j++) {
6214 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6215 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6216 }
6217 }
6218}
6219
6220static void sched_domains_numa_masks_clear(int cpu)
6221{
6222 int i, j;
6223 for (i = 0; i < sched_domains_numa_levels; i++) {
6224 for (j = 0; j < nr_node_ids; j++)
6225 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6226 }
6227}
6228
6229/*
6230 * Update sched_domains_numa_masks[level][node] array when new cpus
6231 * are onlined.
6232 */
6233static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6234 unsigned long action,
6235 void *hcpu)
6236{
6237 int cpu = (long)hcpu;
6238
6239 switch (action & ~CPU_TASKS_FROZEN) {
6240 case CPU_ONLINE:
6241 sched_domains_numa_masks_set(cpu);
6242 break;
6243
6244 case CPU_DEAD:
6245 sched_domains_numa_masks_clear(cpu);
6246 break;
6247
6248 default:
6249 return NOTIFY_DONE;
6250 }
6251
6252 return NOTIFY_OK;
6253}
6254#else
6255static inline void sched_init_numa(void)
6256{
6257}
6258
6259static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6260 unsigned long action,
6261 void *hcpu)
6262{
6263 return 0;
6264}
6265#endif /* CONFIG_NUMA */
6266
6267static int __sdt_alloc(const struct cpumask *cpu_map)
6268{
6269 struct sched_domain_topology_level *tl;
6270 int j;
6271
6272 for (tl = sched_domain_topology; tl->init; tl++) {
6273 struct sd_data *sdd = &tl->data;
6274
6275 sdd->sd = alloc_percpu(struct sched_domain *);
6276 if (!sdd->sd)
6277 return -ENOMEM;
6278
6279 sdd->sg = alloc_percpu(struct sched_group *);
6280 if (!sdd->sg)
6281 return -ENOMEM;
6282
6283 sdd->sgp = alloc_percpu(struct sched_group_power *);
6284 if (!sdd->sgp)
6285 return -ENOMEM;
6286
6287 for_each_cpu(j, cpu_map) {
6288 struct sched_domain *sd;
6289 struct sched_group *sg;
6290 struct sched_group_power *sgp;
6291
6292 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6293 GFP_KERNEL, cpu_to_node(j));
6294 if (!sd)
6295 return -ENOMEM;
6296
6297 *per_cpu_ptr(sdd->sd, j) = sd;
6298
6299 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6300 GFP_KERNEL, cpu_to_node(j));
6301 if (!sg)
6302 return -ENOMEM;
6303
6304 sg->next = sg;
6305
6306 *per_cpu_ptr(sdd->sg, j) = sg;
6307
6308 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
6309 GFP_KERNEL, cpu_to_node(j));
6310 if (!sgp)
6311 return -ENOMEM;
6312
6313 *per_cpu_ptr(sdd->sgp, j) = sgp;
6314 }
6315 }
6316
6317 return 0;
6318}
6319
6320static void __sdt_free(const struct cpumask *cpu_map)
6321{
6322 struct sched_domain_topology_level *tl;
6323 int j;
6324
6325 for (tl = sched_domain_topology; tl->init; tl++) {
6326 struct sd_data *sdd = &tl->data;
6327
6328 for_each_cpu(j, cpu_map) {
6329 struct sched_domain *sd;
6330
6331 if (sdd->sd) {
6332 sd = *per_cpu_ptr(sdd->sd, j);
6333 if (sd && (sd->flags & SD_OVERLAP))
6334 free_sched_groups(sd->groups, 0);
6335 kfree(*per_cpu_ptr(sdd->sd, j));
6336 }
6337
6338 if (sdd->sg)
6339 kfree(*per_cpu_ptr(sdd->sg, j));
6340 if (sdd->sgp)
6341 kfree(*per_cpu_ptr(sdd->sgp, j));
6342 }
6343 free_percpu(sdd->sd);
6344 sdd->sd = NULL;
6345 free_percpu(sdd->sg);
6346 sdd->sg = NULL;
6347 free_percpu(sdd->sgp);
6348 sdd->sgp = NULL;
6349 }
6350}
6351
6352struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6353 struct s_data *d, const struct cpumask *cpu_map,
6354 struct sched_domain_attr *attr, struct sched_domain *child,
6355 int cpu)
6356{
6357 struct sched_domain *sd = tl->init(tl, cpu);
6358 if (!sd)
6359 return child;
6360
6361 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6362 if (child) {
6363 sd->level = child->level + 1;
6364 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6365 child->parent = sd;
6366 }
6367 sd->child = child;
6368 set_domain_attribute(sd, attr);
6369
6370 return sd;
6371}
6372
6373/*
6374 * Build sched domains for a given set of cpus and attach the sched domains
6375 * to the individual cpus
6376 */
6377static int build_sched_domains(const struct cpumask *cpu_map,
6378 struct sched_domain_attr *attr)
6379{
6380 enum s_alloc alloc_state = sa_none;
6381 struct sched_domain *sd;
6382 struct s_data d;
6383 int i, ret = -ENOMEM;
6384
6385 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6386 if (alloc_state != sa_rootdomain)
6387 goto error;
6388
6389 /* Set up domains for cpus specified by the cpu_map. */
6390 for_each_cpu(i, cpu_map) {
6391 struct sched_domain_topology_level *tl;
6392
6393 sd = NULL;
6394 for (tl = sched_domain_topology; tl->init; tl++) {
6395 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
6396 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6397 sd->flags |= SD_OVERLAP;
6398 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6399 break;
6400 }
6401
6402 while (sd->child)
6403 sd = sd->child;
6404
6405 *per_cpu_ptr(d.sd, i) = sd;
6406 }
6407
6408 /* Build the groups for the domains */
6409 for_each_cpu(i, cpu_map) {
6410 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6411 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6412 if (sd->flags & SD_OVERLAP) {
6413 if (build_overlap_sched_groups(sd, i))
6414 goto error;
6415 } else {
6416 if (build_sched_groups(sd, i))
6417 goto error;
6418 }
6419 }
6420 }
6421
6422 /* Calculate CPU power for physical packages and nodes */
6423 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6424 if (!cpumask_test_cpu(i, cpu_map))
6425 continue;
6426
6427 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6428 claim_allocations(i, sd);
6429 init_sched_groups_power(i, sd);
6430 }
6431 }
6432
6433 /* Attach the domains */
6434 rcu_read_lock();
6435 for_each_cpu(i, cpu_map) {
6436 sd = *per_cpu_ptr(d.sd, i);
6437 cpu_attach_domain(sd, d.rd, i);
6438 }
6439 rcu_read_unlock();
6440
6441 ret = 0;
6442error:
6443 __free_domain_allocs(&d, alloc_state, cpu_map);
6444 return ret;
6445}
6446
6447static cpumask_var_t *doms_cur; /* current sched domains */
6448static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6449static struct sched_domain_attr *dattr_cur;
6450 /* attribues of custom domains in 'doms_cur' */
6451
6452/*
6453 * Special case: If a kmalloc of a doms_cur partition (array of
6454 * cpumask) fails, then fallback to a single sched domain,
6455 * as determined by the single cpumask fallback_doms.
6456 */
6457static cpumask_var_t fallback_doms;
6458
6459/*
6460 * arch_update_cpu_topology lets virtualized architectures update the
6461 * cpu core maps. It is supposed to return 1 if the topology changed
6462 * or 0 if it stayed the same.
6463 */
6464int __attribute__((weak)) arch_update_cpu_topology(void)
6465{
6466 return 0;
6467}
6468
6469cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6470{
6471 int i;
6472 cpumask_var_t *doms;
6473
6474 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6475 if (!doms)
6476 return NULL;
6477 for (i = 0; i < ndoms; i++) {
6478 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6479 free_sched_domains(doms, i);
6480 return NULL;
6481 }
6482 }
6483 return doms;
6484}
6485
6486void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6487{
6488 unsigned int i;
6489 for (i = 0; i < ndoms; i++)
6490 free_cpumask_var(doms[i]);
6491 kfree(doms);
6492}
6493
6494/*
6495 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6496 * For now this just excludes isolated cpus, but could be used to
6497 * exclude other special cases in the future.
6498 */
6499static int init_sched_domains(const struct cpumask *cpu_map)
6500{
6501 int err;
6502
6503 arch_update_cpu_topology();
6504 ndoms_cur = 1;
6505 doms_cur = alloc_sched_domains(ndoms_cur);
6506 if (!doms_cur)
6507 doms_cur = &fallback_doms;
6508 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6509 err = build_sched_domains(doms_cur[0], NULL);
6510 register_sched_domain_sysctl();
6511
6512 return err;
6513}
6514
6515/*
6516 * Detach sched domains from a group of cpus specified in cpu_map
6517 * These cpus will now be attached to the NULL domain
6518 */
6519static void detach_destroy_domains(const struct cpumask *cpu_map)
6520{
6521 int i;
6522
6523 rcu_read_lock();
6524 for_each_cpu(i, cpu_map)
6525 cpu_attach_domain(NULL, &def_root_domain, i);
6526 rcu_read_unlock();
6527}
6528
6529/* handle null as "default" */
6530static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6531 struct sched_domain_attr *new, int idx_new)
6532{
6533 struct sched_domain_attr tmp;
6534
6535 /* fast path */
6536 if (!new && !cur)
6537 return 1;
6538
6539 tmp = SD_ATTR_INIT;
6540 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6541 new ? (new + idx_new) : &tmp,
6542 sizeof(struct sched_domain_attr));
6543}
6544
6545/*
6546 * Partition sched domains as specified by the 'ndoms_new'
6547 * cpumasks in the array doms_new[] of cpumasks. This compares
6548 * doms_new[] to the current sched domain partitioning, doms_cur[].
6549 * It destroys each deleted domain and builds each new domain.
6550 *
6551 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6552 * The masks don't intersect (don't overlap.) We should setup one
6553 * sched domain for each mask. CPUs not in any of the cpumasks will
6554 * not be load balanced. If the same cpumask appears both in the
6555 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6556 * it as it is.
6557 *
6558 * The passed in 'doms_new' should be allocated using
6559 * alloc_sched_domains. This routine takes ownership of it and will
6560 * free_sched_domains it when done with it. If the caller failed the
6561 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6562 * and partition_sched_domains() will fallback to the single partition
6563 * 'fallback_doms', it also forces the domains to be rebuilt.
6564 *
6565 * If doms_new == NULL it will be replaced with cpu_online_mask.
6566 * ndoms_new == 0 is a special case for destroying existing domains,
6567 * and it will not create the default domain.
6568 *
6569 * Call with hotplug lock held
6570 */
6571void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6572 struct sched_domain_attr *dattr_new)
6573{
6574 int i, j, n;
6575 int new_topology;
6576
6577 mutex_lock(&sched_domains_mutex);
6578
6579 /* always unregister in case we don't destroy any domains */
6580 unregister_sched_domain_sysctl();
6581
6582 /* Let architecture update cpu core mappings. */
6583 new_topology = arch_update_cpu_topology();
6584
6585 n = doms_new ? ndoms_new : 0;
6586
6587 /* Destroy deleted domains */
6588 for (i = 0; i < ndoms_cur; i++) {
6589 for (j = 0; j < n && !new_topology; j++) {
6590 if (cpumask_equal(doms_cur[i], doms_new[j])
6591 && dattrs_equal(dattr_cur, i, dattr_new, j))
6592 goto match1;
6593 }
6594 /* no match - a current sched domain not in new doms_new[] */
6595 detach_destroy_domains(doms_cur[i]);
6596match1:
6597 ;
6598 }
6599
6600 if (doms_new == NULL) {
6601 ndoms_cur = 0;
6602 doms_new = &fallback_doms;
6603 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6604 WARN_ON_ONCE(dattr_new);
6605 }
6606
6607 /* Build new domains */
6608 for (i = 0; i < ndoms_new; i++) {
6609 for (j = 0; j < ndoms_cur && !new_topology; j++) {
6610 if (cpumask_equal(doms_new[i], doms_cur[j])
6611 && dattrs_equal(dattr_new, i, dattr_cur, j))
6612 goto match2;
6613 }
6614 /* no match - add a new doms_new */
6615 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6616match2:
6617 ;
6618 }
6619
6620 /* Remember the new sched domains */
6621 if (doms_cur != &fallback_doms)
6622 free_sched_domains(doms_cur, ndoms_cur);
6623 kfree(dattr_cur); /* kfree(NULL) is safe */
6624 doms_cur = doms_new;
6625 dattr_cur = dattr_new;
6626 ndoms_cur = ndoms_new;
6627
6628 register_sched_domain_sysctl();
6629
6630 mutex_unlock(&sched_domains_mutex);
6631}
6632
6633static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6634
6635/*
6636 * Update cpusets according to cpu_active mask. If cpusets are
6637 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6638 * around partition_sched_domains().
6639 *
6640 * If we come here as part of a suspend/resume, don't touch cpusets because we
6641 * want to restore it back to its original state upon resume anyway.
6642 */
6643static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6644 void *hcpu)
6645{
6646 switch (action) {
6647 case CPU_ONLINE_FROZEN:
6648 case CPU_DOWN_FAILED_FROZEN:
6649
6650 /*
6651 * num_cpus_frozen tracks how many CPUs are involved in suspend
6652 * resume sequence. As long as this is not the last online
6653 * operation in the resume sequence, just build a single sched
6654 * domain, ignoring cpusets.
6655 */
6656 num_cpus_frozen--;
6657 if (likely(num_cpus_frozen)) {
6658 partition_sched_domains(1, NULL, NULL);
6659 break;
6660 }
6661
6662 /*
6663 * This is the last CPU online operation. So fall through and
6664 * restore the original sched domains by considering the
6665 * cpuset configurations.
6666 */
6667
6668 case CPU_ONLINE:
6669 case CPU_DOWN_FAILED:
6670 cpuset_update_active_cpus(true);
6671 break;
6672 default:
6673 return NOTIFY_DONE;
6674 }
6675 return NOTIFY_OK;
6676}
6677
6678static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6679 void *hcpu)
6680{
6681 switch (action) {
6682 case CPU_DOWN_PREPARE:
6683 cpuset_update_active_cpus(false);
6684 break;
6685 case CPU_DOWN_PREPARE_FROZEN:
6686 num_cpus_frozen++;
6687 partition_sched_domains(1, NULL, NULL);
6688 break;
6689 default:
6690 return NOTIFY_DONE;
6691 }
6692 return NOTIFY_OK;
6693}
6694
6695void __init sched_init_smp(void)
6696{
6697 cpumask_var_t non_isolated_cpus;
6698
6699 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
6700 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
6701
6702 sched_init_numa();
6703
6704 get_online_cpus();
6705 mutex_lock(&sched_domains_mutex);
6706 init_sched_domains(cpu_active_mask);
6707 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6708 if (cpumask_empty(non_isolated_cpus))
6709 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
6710 mutex_unlock(&sched_domains_mutex);
6711 put_online_cpus();
6712
6713 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
6714 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6715 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
6716
6717 /* RT runtime code needs to handle some hotplug events */
6718 hotcpu_notifier(update_runtime, 0);
6719
6720 init_hrtick();
6721
6722 /* Move init over to a non-isolated CPU */
6723 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
6724 BUG();
6725 sched_init_granularity();
6726 free_cpumask_var(non_isolated_cpus);
6727
6728 init_sched_rt_class();
6729}
6730#else
6731void __init sched_init_smp(void)
6732{
6733 sched_init_granularity();
6734}
6735#endif /* CONFIG_SMP */
6736
6737const_debug unsigned int sysctl_timer_migration = 1;
6738
6739int in_sched_functions(unsigned long addr)
6740{
6741 return in_lock_functions(addr) ||
6742 (addr >= (unsigned long)__sched_text_start
6743 && addr < (unsigned long)__sched_text_end);
6744}
6745
6746#ifdef CONFIG_CGROUP_SCHED
6747struct task_group root_task_group;
6748LIST_HEAD(task_groups);
6749#endif
6750
6751DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6752
6753void __init sched_init(void)
6754{
6755 int i, j;
6756 unsigned long alloc_size = 0, ptr;
6757
6758#ifdef CONFIG_FAIR_GROUP_SCHED
6759 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6760#endif
6761#ifdef CONFIG_RT_GROUP_SCHED
6762 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
6763#endif
6764#ifdef CONFIG_CPUMASK_OFFSTACK
6765 alloc_size += num_possible_cpus() * cpumask_size();
6766#endif
6767 if (alloc_size) {
6768 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
6769
6770#ifdef CONFIG_FAIR_GROUP_SCHED
6771 root_task_group.se = (struct sched_entity **)ptr;
6772 ptr += nr_cpu_ids * sizeof(void **);
6773
6774 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6775 ptr += nr_cpu_ids * sizeof(void **);
6776
6777#endif /* CONFIG_FAIR_GROUP_SCHED */
6778#ifdef CONFIG_RT_GROUP_SCHED
6779 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6780 ptr += nr_cpu_ids * sizeof(void **);
6781
6782 root_task_group.rt_rq = (struct rt_rq **)ptr;
6783 ptr += nr_cpu_ids * sizeof(void **);
6784
6785#endif /* CONFIG_RT_GROUP_SCHED */
6786#ifdef CONFIG_CPUMASK_OFFSTACK
6787 for_each_possible_cpu(i) {
6788 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
6789 ptr += cpumask_size();
6790 }
6791#endif /* CONFIG_CPUMASK_OFFSTACK */
6792 }
6793
6794#ifdef CONFIG_SMP
6795 init_defrootdomain();
6796#endif
6797
6798 init_rt_bandwidth(&def_rt_bandwidth,
6799 global_rt_period(), global_rt_runtime());
6800
6801#ifdef CONFIG_RT_GROUP_SCHED
6802 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6803 global_rt_period(), global_rt_runtime());
6804#endif /* CONFIG_RT_GROUP_SCHED */
6805
6806#ifdef CONFIG_CGROUP_SCHED
6807 list_add(&root_task_group.list, &task_groups);
6808 INIT_LIST_HEAD(&root_task_group.children);
6809 INIT_LIST_HEAD(&root_task_group.siblings);
6810 autogroup_init(&init_task);
6811
6812#endif /* CONFIG_CGROUP_SCHED */
6813
6814#ifdef CONFIG_CGROUP_CPUACCT
6815 root_cpuacct.cpustat = &kernel_cpustat;
6816 root_cpuacct.cpuusage = alloc_percpu(u64);
6817 /* Too early, not expected to fail */
6818 BUG_ON(!root_cpuacct.cpuusage);
6819#endif
6820 for_each_possible_cpu(i) {
6821 struct rq *rq;
6822
6823 rq = cpu_rq(i);
6824 raw_spin_lock_init(&rq->lock);
6825 rq->nr_running = 0;
6826 rq->calc_load_active = 0;
6827 rq->calc_load_update = jiffies + LOAD_FREQ;
6828 init_cfs_rq(&rq->cfs);
6829 init_rt_rq(&rq->rt, rq);
6830#ifdef CONFIG_FAIR_GROUP_SCHED
6831 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6832 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6833 /*
6834 * How much cpu bandwidth does root_task_group get?
6835 *
6836 * In case of task-groups formed thr' the cgroup filesystem, it
6837 * gets 100% of the cpu resources in the system. This overall
6838 * system cpu resource is divided among the tasks of
6839 * root_task_group and its child task-groups in a fair manner,
6840 * based on each entity's (task or task-group's) weight
6841 * (se->load.weight).
6842 *
6843 * In other words, if root_task_group has 10 tasks of weight
6844 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6845 * then A0's share of the cpu resource is:
6846 *
6847 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6848 *
6849 * We achieve this by letting root_task_group's tasks sit
6850 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6851 */
6852 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6853 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6854#endif /* CONFIG_FAIR_GROUP_SCHED */
6855
6856 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6857#ifdef CONFIG_RT_GROUP_SCHED
6858 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
6859 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6860#endif
6861
6862 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6863 rq->cpu_load[j] = 0;
6864
6865 rq->last_load_update_tick = jiffies;
6866
6867#ifdef CONFIG_SMP
6868 rq->sd = NULL;
6869 rq->rd = NULL;
6870 rq->cpu_power = SCHED_POWER_SCALE;
6871 rq->post_schedule = 0;
6872 rq->active_balance = 0;
6873 rq->next_balance = jiffies;
6874 rq->push_cpu = 0;
6875 rq->cpu = i;
6876 rq->online = 0;
6877 rq->idle_stamp = 0;
6878 rq->avg_idle = 2*sysctl_sched_migration_cost;
6879
6880 INIT_LIST_HEAD(&rq->cfs_tasks);
6881
6882 rq_attach_root(rq, &def_root_domain);
6883#ifdef CONFIG_NO_HZ
6884 rq->nohz_flags = 0;
6885#endif
6886#endif
6887 init_rq_hrtick(rq);
6888 atomic_set(&rq->nr_iowait, 0);
6889 }
6890
6891 set_load_weight(&init_task);
6892
6893#ifdef CONFIG_PREEMPT_NOTIFIERS
6894 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6895#endif
6896
6897#ifdef CONFIG_RT_MUTEXES
6898 plist_head_init(&init_task.pi_waiters);
6899#endif
6900
6901 /*
6902 * The boot idle thread does lazy MMU switching as well:
6903 */
6904 atomic_inc(&init_mm.mm_count);
6905 enter_lazy_tlb(&init_mm, current);
6906
6907 /*
6908 * Make us the idle thread. Technically, schedule() should not be
6909 * called from this thread, however somewhere below it might be,
6910 * but because we are the idle thread, we just pick up running again
6911 * when this runqueue becomes "idle".
6912 */
6913 init_idle(current, smp_processor_id());
6914
6915 calc_load_update = jiffies + LOAD_FREQ;
6916
6917 /*
6918 * During early bootup we pretend to be a normal task:
6919 */
6920 current->sched_class = &fair_sched_class;
6921
6922#ifdef CONFIG_SMP
6923 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
6924 /* May be allocated at isolcpus cmdline parse time */
6925 if (cpu_isolated_map == NULL)
6926 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
6927 idle_thread_set_boot_cpu();
6928#endif
6929 init_sched_fair_class();
6930
6931 scheduler_running = 1;
6932}
6933
6934#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6935static inline int preempt_count_equals(int preempt_offset)
6936{
6937 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
6938
6939 return (nested == preempt_offset);
6940}
6941
6942void __might_sleep(const char *file, int line, int preempt_offset)
6943{
6944 static unsigned long prev_jiffy; /* ratelimiting */
6945
6946 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
6947 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
6948 system_state != SYSTEM_RUNNING || oops_in_progress)
6949 return;
6950 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6951 return;
6952 prev_jiffy = jiffies;
6953
6954 printk(KERN_ERR
6955 "BUG: sleeping function called from invalid context at %s:%d\n",
6956 file, line);
6957 printk(KERN_ERR
6958 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6959 in_atomic(), irqs_disabled(),
6960 current->pid, current->comm);
6961
6962 debug_show_held_locks(current);
6963 if (irqs_disabled())
6964 print_irqtrace_events(current);
6965 dump_stack();
6966}
6967EXPORT_SYMBOL(__might_sleep);
6968#endif
6969
6970#ifdef CONFIG_MAGIC_SYSRQ
6971static void normalize_task(struct rq *rq, struct task_struct *p)
6972{
6973 const struct sched_class *prev_class = p->sched_class;
6974 int old_prio = p->prio;
6975 int on_rq;
6976
6977 on_rq = p->on_rq;
6978 if (on_rq)
6979 dequeue_task(rq, p, 0);
6980 __setscheduler(rq, p, SCHED_NORMAL, 0);
6981 if (on_rq) {
6982 enqueue_task(rq, p, 0);
6983 resched_task(rq->curr);
6984 }
6985
6986 check_class_changed(rq, p, prev_class, old_prio);
6987}
6988
6989void normalize_rt_tasks(void)
6990{
6991 struct task_struct *g, *p;
6992 unsigned long flags;
6993 struct rq *rq;
6994
6995 read_lock_irqsave(&tasklist_lock, flags);
6996 do_each_thread(g, p) {
6997 /*
6998 * Only normalize user tasks:
6999 */
7000 if (!p->mm)
7001 continue;
7002
7003 p->se.exec_start = 0;
7004#ifdef CONFIG_SCHEDSTATS
7005 p->se.statistics.wait_start = 0;
7006 p->se.statistics.sleep_start = 0;
7007 p->se.statistics.block_start = 0;
7008#endif
7009
7010 if (!rt_task(p)) {
7011 /*
7012 * Renice negative nice level userspace
7013 * tasks back to 0:
7014 */
7015 if (TASK_NICE(p) < 0 && p->mm)
7016 set_user_nice(p, 0);
7017 continue;
7018 }
7019
7020 raw_spin_lock(&p->pi_lock);
7021 rq = __task_rq_lock(p);
7022
7023 normalize_task(rq, p);
7024
7025 __task_rq_unlock(rq);
7026 raw_spin_unlock(&p->pi_lock);
7027 } while_each_thread(g, p);
7028
7029 read_unlock_irqrestore(&tasklist_lock, flags);
7030}
7031
7032#endif /* CONFIG_MAGIC_SYSRQ */
7033
7034#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7035/*
7036 * These functions are only useful for the IA64 MCA handling, or kdb.
7037 *
7038 * They can only be called when the whole system has been
7039 * stopped - every CPU needs to be quiescent, and no scheduling
7040 * activity can take place. Using them for anything else would
7041 * be a serious bug, and as a result, they aren't even visible
7042 * under any other configuration.
7043 */
7044
7045/**
7046 * curr_task - return the current task for a given cpu.
7047 * @cpu: the processor in question.
7048 *
7049 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7050 */
7051struct task_struct *curr_task(int cpu)
7052{
7053 return cpu_curr(cpu);
7054}
7055
7056#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7057
7058#ifdef CONFIG_IA64
7059/**
7060 * set_curr_task - set the current task for a given cpu.
7061 * @cpu: the processor in question.
7062 * @p: the task pointer to set.
7063 *
7064 * Description: This function must only be used when non-maskable interrupts
7065 * are serviced on a separate stack. It allows the architecture to switch the
7066 * notion of the current task on a cpu in a non-blocking manner. This function
7067 * must be called with all CPU's synchronized, and interrupts disabled, the
7068 * and caller must save the original value of the current task (see
7069 * curr_task() above) and restore that value before reenabling interrupts and
7070 * re-starting the system.
7071 *
7072 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7073 */
7074void set_curr_task(int cpu, struct task_struct *p)
7075{
7076 cpu_curr(cpu) = p;
7077}
7078
7079#endif
7080
7081#ifdef CONFIG_CGROUP_SCHED
7082/* task_group_lock serializes the addition/removal of task groups */
7083static DEFINE_SPINLOCK(task_group_lock);
7084
7085static void free_sched_group(struct task_group *tg)
7086{
7087 free_fair_sched_group(tg);
7088 free_rt_sched_group(tg);
7089 autogroup_free(tg);
7090 kfree(tg);
7091}
7092
7093/* allocate runqueue etc for a new task group */
7094struct task_group *sched_create_group(struct task_group *parent)
7095{
7096 struct task_group *tg;
7097 unsigned long flags;
7098
7099 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7100 if (!tg)
7101 return ERR_PTR(-ENOMEM);
7102
7103 if (!alloc_fair_sched_group(tg, parent))
7104 goto err;
7105
7106 if (!alloc_rt_sched_group(tg, parent))
7107 goto err;
7108
7109 spin_lock_irqsave(&task_group_lock, flags);
7110 list_add_rcu(&tg->list, &task_groups);
7111
7112 WARN_ON(!parent); /* root should already exist */
7113
7114 tg->parent = parent;
7115 INIT_LIST_HEAD(&tg->children);
7116 list_add_rcu(&tg->siblings, &parent->children);
7117 spin_unlock_irqrestore(&task_group_lock, flags);
7118
7119 return tg;
7120
7121err:
7122 free_sched_group(tg);
7123 return ERR_PTR(-ENOMEM);
7124}
7125
7126/* rcu callback to free various structures associated with a task group */
7127static void free_sched_group_rcu(struct rcu_head *rhp)
7128{
7129 /* now it should be safe to free those cfs_rqs */
7130 free_sched_group(container_of(rhp, struct task_group, rcu));
7131}
7132
7133/* Destroy runqueue etc associated with a task group */
7134void sched_destroy_group(struct task_group *tg)
7135{
7136 unsigned long flags;
7137 int i;
7138
7139 /* end participation in shares distribution */
7140 for_each_possible_cpu(i)
7141 unregister_fair_sched_group(tg, i);
7142
7143 spin_lock_irqsave(&task_group_lock, flags);
7144 list_del_rcu(&tg->list);
7145 list_del_rcu(&tg->siblings);
7146 spin_unlock_irqrestore(&task_group_lock, flags);
7147
7148 /* wait for possible concurrent references to cfs_rqs complete */
7149 call_rcu(&tg->rcu, free_sched_group_rcu);
7150}
7151
7152/* change task's runqueue when it moves between groups.
7153 * The caller of this function should have put the task in its new group
7154 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7155 * reflect its new group.
7156 */
7157void sched_move_task(struct task_struct *tsk)
7158{
7159 struct task_group *tg;
7160 int on_rq, running;
7161 unsigned long flags;
7162 struct rq *rq;
7163
7164 rq = task_rq_lock(tsk, &flags);
7165
7166 running = task_current(rq, tsk);
7167 on_rq = tsk->on_rq;
7168
7169 if (on_rq)
7170 dequeue_task(rq, tsk, 0);
7171 if (unlikely(running))
7172 tsk->sched_class->put_prev_task(rq, tsk);
7173
7174 tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
7175 lockdep_is_held(&tsk->sighand->siglock)),
7176 struct task_group, css);
7177 tg = autogroup_task_group(tsk, tg);
7178 tsk->sched_task_group = tg;
7179
7180#ifdef CONFIG_FAIR_GROUP_SCHED
7181 if (tsk->sched_class->task_move_group)
7182 tsk->sched_class->task_move_group(tsk, on_rq);
7183 else
7184#endif
7185 set_task_rq(tsk, task_cpu(tsk));
7186
7187 if (unlikely(running))
7188 tsk->sched_class->set_curr_task(rq);
7189 if (on_rq)
7190 enqueue_task(rq, tsk, 0);
7191
7192 task_rq_unlock(rq, tsk, &flags);
7193}
7194#endif /* CONFIG_CGROUP_SCHED */
7195
7196#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
7197static unsigned long to_ratio(u64 period, u64 runtime)
7198{
7199 if (runtime == RUNTIME_INF)
7200 return 1ULL << 20;
7201
7202 return div64_u64(runtime << 20, period);
7203}
7204#endif
7205
7206#ifdef CONFIG_RT_GROUP_SCHED
7207/*
7208 * Ensure that the real time constraints are schedulable.
7209 */
7210static DEFINE_MUTEX(rt_constraints_mutex);
7211
7212/* Must be called with tasklist_lock held */
7213static inline int tg_has_rt_tasks(struct task_group *tg)
7214{
7215 struct task_struct *g, *p;
7216
7217 do_each_thread(g, p) {
7218 if (rt_task(p) && task_rq(p)->rt.tg == tg)
7219 return 1;
7220 } while_each_thread(g, p);
7221
7222 return 0;
7223}
7224
7225struct rt_schedulable_data {
7226 struct task_group *tg;
7227 u64 rt_period;
7228 u64 rt_runtime;
7229};
7230
7231static int tg_rt_schedulable(struct task_group *tg, void *data)
7232{
7233 struct rt_schedulable_data *d = data;
7234 struct task_group *child;
7235 unsigned long total, sum = 0;
7236 u64 period, runtime;
7237
7238 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7239 runtime = tg->rt_bandwidth.rt_runtime;
7240
7241 if (tg == d->tg) {
7242 period = d->rt_period;
7243 runtime = d->rt_runtime;
7244 }
7245
7246 /*
7247 * Cannot have more runtime than the period.
7248 */
7249 if (runtime > period && runtime != RUNTIME_INF)
7250 return -EINVAL;
7251
7252 /*
7253 * Ensure we don't starve existing RT tasks.
7254 */
7255 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7256 return -EBUSY;
7257
7258 total = to_ratio(period, runtime);
7259
7260 /*
7261 * Nobody can have more than the global setting allows.
7262 */
7263 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7264 return -EINVAL;
7265
7266 /*
7267 * The sum of our children's runtime should not exceed our own.
7268 */
7269 list_for_each_entry_rcu(child, &tg->children, siblings) {
7270 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7271 runtime = child->rt_bandwidth.rt_runtime;
7272
7273 if (child == d->tg) {
7274 period = d->rt_period;
7275 runtime = d->rt_runtime;
7276 }
7277
7278 sum += to_ratio(period, runtime);
7279 }
7280
7281 if (sum > total)
7282 return -EINVAL;
7283
7284 return 0;
7285}
7286
7287static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7288{
7289 int ret;
7290
7291 struct rt_schedulable_data data = {
7292 .tg = tg,
7293 .rt_period = period,
7294 .rt_runtime = runtime,
7295 };
7296
7297 rcu_read_lock();
7298 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7299 rcu_read_unlock();
7300
7301 return ret;
7302}
7303
7304static int tg_set_rt_bandwidth(struct task_group *tg,
7305 u64 rt_period, u64 rt_runtime)
7306{
7307 int i, err = 0;
7308
7309 mutex_lock(&rt_constraints_mutex);
7310 read_lock(&tasklist_lock);
7311 err = __rt_schedulable(tg, rt_period, rt_runtime);
7312 if (err)
7313 goto unlock;
7314
7315 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7316 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7317 tg->rt_bandwidth.rt_runtime = rt_runtime;
7318
7319 for_each_possible_cpu(i) {
7320 struct rt_rq *rt_rq = tg->rt_rq[i];
7321
7322 raw_spin_lock(&rt_rq->rt_runtime_lock);
7323 rt_rq->rt_runtime = rt_runtime;
7324 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7325 }
7326 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7327unlock:
7328 read_unlock(&tasklist_lock);
7329 mutex_unlock(&rt_constraints_mutex);
7330
7331 return err;
7332}
7333
7334int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7335{
7336 u64 rt_runtime, rt_period;
7337
7338 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7339 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7340 if (rt_runtime_us < 0)
7341 rt_runtime = RUNTIME_INF;
7342
7343 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7344}
7345
7346long sched_group_rt_runtime(struct task_group *tg)
7347{
7348 u64 rt_runtime_us;
7349
7350 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7351 return -1;
7352
7353 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7354 do_div(rt_runtime_us, NSEC_PER_USEC);
7355 return rt_runtime_us;
7356}
7357
7358int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7359{
7360 u64 rt_runtime, rt_period;
7361
7362 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7363 rt_runtime = tg->rt_bandwidth.rt_runtime;
7364
7365 if (rt_period == 0)
7366 return -EINVAL;
7367
7368 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7369}
7370
7371long sched_group_rt_period(struct task_group *tg)
7372{
7373 u64 rt_period_us;
7374
7375 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7376 do_div(rt_period_us, NSEC_PER_USEC);
7377 return rt_period_us;
7378}
7379
7380static int sched_rt_global_constraints(void)
7381{
7382 u64 runtime, period;
7383 int ret = 0;
7384
7385 if (sysctl_sched_rt_period <= 0)
7386 return -EINVAL;
7387
7388 runtime = global_rt_runtime();
7389 period = global_rt_period();
7390
7391 /*
7392 * Sanity check on the sysctl variables.
7393 */
7394 if (runtime > period && runtime != RUNTIME_INF)
7395 return -EINVAL;
7396
7397 mutex_lock(&rt_constraints_mutex);
7398 read_lock(&tasklist_lock);
7399 ret = __rt_schedulable(NULL, 0, 0);
7400 read_unlock(&tasklist_lock);
7401 mutex_unlock(&rt_constraints_mutex);
7402
7403 return ret;
7404}
7405
7406int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7407{
7408 /* Don't accept realtime tasks when there is no way for them to run */
7409 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7410 return 0;
7411
7412 return 1;
7413}
7414
7415#else /* !CONFIG_RT_GROUP_SCHED */
7416static int sched_rt_global_constraints(void)
7417{
7418 unsigned long flags;
7419 int i;
7420
7421 if (sysctl_sched_rt_period <= 0)
7422 return -EINVAL;
7423
7424 /*
7425 * There's always some RT tasks in the root group
7426 * -- migration, kstopmachine etc..
7427 */
7428 if (sysctl_sched_rt_runtime == 0)
7429 return -EBUSY;
7430
7431 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7432 for_each_possible_cpu(i) {
7433 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7434
7435 raw_spin_lock(&rt_rq->rt_runtime_lock);
7436 rt_rq->rt_runtime = global_rt_runtime();
7437 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7438 }
7439 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7440
7441 return 0;
7442}
7443#endif /* CONFIG_RT_GROUP_SCHED */
7444
7445int sched_rt_handler(struct ctl_table *table, int write,
7446 void __user *buffer, size_t *lenp,
7447 loff_t *ppos)
7448{
7449 int ret;
7450 int old_period, old_runtime;
7451 static DEFINE_MUTEX(mutex);
7452
7453 mutex_lock(&mutex);
7454 old_period = sysctl_sched_rt_period;
7455 old_runtime = sysctl_sched_rt_runtime;
7456
7457 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7458
7459 if (!ret && write) {
7460 ret = sched_rt_global_constraints();
7461 if (ret) {
7462 sysctl_sched_rt_period = old_period;
7463 sysctl_sched_rt_runtime = old_runtime;
7464 } else {
7465 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7466 def_rt_bandwidth.rt_period =
7467 ns_to_ktime(global_rt_period());
7468 }
7469 }
7470 mutex_unlock(&mutex);
7471
7472 return ret;
7473}
7474
7475#ifdef CONFIG_CGROUP_SCHED
7476
7477/* return corresponding task_group object of a cgroup */
7478static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7479{
7480 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7481 struct task_group, css);
7482}
7483
7484static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
7485{
7486 struct task_group *tg, *parent;
7487
7488 if (!cgrp->parent) {
7489 /* This is early initialization for the top cgroup */
7490 return &root_task_group.css;
7491 }
7492
7493 parent = cgroup_tg(cgrp->parent);
7494 tg = sched_create_group(parent);
7495 if (IS_ERR(tg))
7496 return ERR_PTR(-ENOMEM);
7497
7498 return &tg->css;
7499}
7500
7501static void cpu_cgroup_destroy(struct cgroup *cgrp)
7502{
7503 struct task_group *tg = cgroup_tg(cgrp);
7504
7505 sched_destroy_group(tg);
7506}
7507
7508static int cpu_cgroup_can_attach(struct cgroup *cgrp,
7509 struct cgroup_taskset *tset)
7510{
7511 struct task_struct *task;
7512
7513 cgroup_taskset_for_each(task, cgrp, tset) {
7514#ifdef CONFIG_RT_GROUP_SCHED
7515 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7516 return -EINVAL;
7517#else
7518 /* We don't support RT-tasks being in separate groups */
7519 if (task->sched_class != &fair_sched_class)
7520 return -EINVAL;
7521#endif
7522 }
7523 return 0;
7524}
7525
7526static void cpu_cgroup_attach(struct cgroup *cgrp,
7527 struct cgroup_taskset *tset)
7528{
7529 struct task_struct *task;
7530
7531 cgroup_taskset_for_each(task, cgrp, tset)
7532 sched_move_task(task);
7533}
7534
7535static void
7536cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7537 struct task_struct *task)
7538{
7539 /*
7540 * cgroup_exit() is called in the copy_process() failure path.
7541 * Ignore this case since the task hasn't ran yet, this avoids
7542 * trying to poke a half freed task state from generic code.
7543 */
7544 if (!(task->flags & PF_EXITING))
7545 return;
7546
7547 sched_move_task(task);
7548}
7549
7550#ifdef CONFIG_FAIR_GROUP_SCHED
7551static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7552 u64 shareval)
7553{
7554 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
7555}
7556
7557static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
7558{
7559 struct task_group *tg = cgroup_tg(cgrp);
7560
7561 return (u64) scale_load_down(tg->shares);
7562}
7563
7564#ifdef CONFIG_CFS_BANDWIDTH
7565static DEFINE_MUTEX(cfs_constraints_mutex);
7566
7567const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7568const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7569
7570static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7571
7572static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7573{
7574 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7575 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7576
7577 if (tg == &root_task_group)
7578 return -EINVAL;
7579
7580 /*
7581 * Ensure we have at some amount of bandwidth every period. This is
7582 * to prevent reaching a state of large arrears when throttled via
7583 * entity_tick() resulting in prolonged exit starvation.
7584 */
7585 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7586 return -EINVAL;
7587
7588 /*
7589 * Likewise, bound things on the otherside by preventing insane quota
7590 * periods. This also allows us to normalize in computing quota
7591 * feasibility.
7592 */
7593 if (period > max_cfs_quota_period)
7594 return -EINVAL;
7595
7596 mutex_lock(&cfs_constraints_mutex);
7597 ret = __cfs_schedulable(tg, period, quota);
7598 if (ret)
7599 goto out_unlock;
7600
7601 runtime_enabled = quota != RUNTIME_INF;
7602 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7603 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
7604 raw_spin_lock_irq(&cfs_b->lock);
7605 cfs_b->period = ns_to_ktime(period);
7606 cfs_b->quota = quota;
7607
7608 __refill_cfs_bandwidth_runtime(cfs_b);
7609 /* restart the period timer (if active) to handle new period expiry */
7610 if (runtime_enabled && cfs_b->timer_active) {
7611 /* force a reprogram */
7612 cfs_b->timer_active = 0;
7613 __start_cfs_bandwidth(cfs_b);
7614 }
7615 raw_spin_unlock_irq(&cfs_b->lock);
7616
7617 for_each_possible_cpu(i) {
7618 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7619 struct rq *rq = cfs_rq->rq;
7620
7621 raw_spin_lock_irq(&rq->lock);
7622 cfs_rq->runtime_enabled = runtime_enabled;
7623 cfs_rq->runtime_remaining = 0;
7624
7625 if (cfs_rq->throttled)
7626 unthrottle_cfs_rq(cfs_rq);
7627 raw_spin_unlock_irq(&rq->lock);
7628 }
7629out_unlock:
7630 mutex_unlock(&cfs_constraints_mutex);
7631
7632 return ret;
7633}
7634
7635int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7636{
7637 u64 quota, period;
7638
7639 period = ktime_to_ns(tg->cfs_bandwidth.period);
7640 if (cfs_quota_us < 0)
7641 quota = RUNTIME_INF;
7642 else
7643 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7644
7645 return tg_set_cfs_bandwidth(tg, period, quota);
7646}
7647
7648long tg_get_cfs_quota(struct task_group *tg)
7649{
7650 u64 quota_us;
7651
7652 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7653 return -1;
7654
7655 quota_us = tg->cfs_bandwidth.quota;
7656 do_div(quota_us, NSEC_PER_USEC);
7657
7658 return quota_us;
7659}
7660
7661int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7662{
7663 u64 quota, period;
7664
7665 period = (u64)cfs_period_us * NSEC_PER_USEC;
7666 quota = tg->cfs_bandwidth.quota;
7667
7668 return tg_set_cfs_bandwidth(tg, period, quota);
7669}
7670
7671long tg_get_cfs_period(struct task_group *tg)
7672{
7673 u64 cfs_period_us;
7674
7675 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7676 do_div(cfs_period_us, NSEC_PER_USEC);
7677
7678 return cfs_period_us;
7679}
7680
7681static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7682{
7683 return tg_get_cfs_quota(cgroup_tg(cgrp));
7684}
7685
7686static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7687 s64 cfs_quota_us)
7688{
7689 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7690}
7691
7692static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7693{
7694 return tg_get_cfs_period(cgroup_tg(cgrp));
7695}
7696
7697static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7698 u64 cfs_period_us)
7699{
7700 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7701}
7702
7703struct cfs_schedulable_data {
7704 struct task_group *tg;
7705 u64 period, quota;
7706};
7707
7708/*
7709 * normalize group quota/period to be quota/max_period
7710 * note: units are usecs
7711 */
7712static u64 normalize_cfs_quota(struct task_group *tg,
7713 struct cfs_schedulable_data *d)
7714{
7715 u64 quota, period;
7716
7717 if (tg == d->tg) {
7718 period = d->period;
7719 quota = d->quota;
7720 } else {
7721 period = tg_get_cfs_period(tg);
7722 quota = tg_get_cfs_quota(tg);
7723 }
7724
7725 /* note: these should typically be equivalent */
7726 if (quota == RUNTIME_INF || quota == -1)
7727 return RUNTIME_INF;
7728
7729 return to_ratio(period, quota);
7730}
7731
7732static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7733{
7734 struct cfs_schedulable_data *d = data;
7735 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7736 s64 quota = 0, parent_quota = -1;
7737
7738 if (!tg->parent) {
7739 quota = RUNTIME_INF;
7740 } else {
7741 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7742
7743 quota = normalize_cfs_quota(tg, d);
7744 parent_quota = parent_b->hierarchal_quota;
7745
7746 /*
7747 * ensure max(child_quota) <= parent_quota, inherit when no
7748 * limit is set
7749 */
7750 if (quota == RUNTIME_INF)
7751 quota = parent_quota;
7752 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7753 return -EINVAL;
7754 }
7755 cfs_b->hierarchal_quota = quota;
7756
7757 return 0;
7758}
7759
7760static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7761{
7762 int ret;
7763 struct cfs_schedulable_data data = {
7764 .tg = tg,
7765 .period = period,
7766 .quota = quota,
7767 };
7768
7769 if (quota != RUNTIME_INF) {
7770 do_div(data.period, NSEC_PER_USEC);
7771 do_div(data.quota, NSEC_PER_USEC);
7772 }
7773
7774 rcu_read_lock();
7775 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7776 rcu_read_unlock();
7777
7778 return ret;
7779}
7780
7781static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
7782 struct cgroup_map_cb *cb)
7783{
7784 struct task_group *tg = cgroup_tg(cgrp);
7785 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7786
7787 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
7788 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
7789 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
7790
7791 return 0;
7792}
7793#endif /* CONFIG_CFS_BANDWIDTH */
7794#endif /* CONFIG_FAIR_GROUP_SCHED */
7795
7796#ifdef CONFIG_RT_GROUP_SCHED
7797static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7798 s64 val)
7799{
7800 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7801}
7802
7803static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
7804{
7805 return sched_group_rt_runtime(cgroup_tg(cgrp));
7806}
7807
7808static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7809 u64 rt_period_us)
7810{
7811 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
7812}
7813
7814static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
7815{
7816 return sched_group_rt_period(cgroup_tg(cgrp));
7817}
7818#endif /* CONFIG_RT_GROUP_SCHED */
7819
7820static struct cftype cpu_files[] = {
7821#ifdef CONFIG_FAIR_GROUP_SCHED
7822 {
7823 .name = "shares",
7824 .read_u64 = cpu_shares_read_u64,
7825 .write_u64 = cpu_shares_write_u64,
7826 },
7827#endif
7828#ifdef CONFIG_CFS_BANDWIDTH
7829 {
7830 .name = "cfs_quota_us",
7831 .read_s64 = cpu_cfs_quota_read_s64,
7832 .write_s64 = cpu_cfs_quota_write_s64,
7833 },
7834 {
7835 .name = "cfs_period_us",
7836 .read_u64 = cpu_cfs_period_read_u64,
7837 .write_u64 = cpu_cfs_period_write_u64,
7838 },
7839 {
7840 .name = "stat",
7841 .read_map = cpu_stats_show,
7842 },
7843#endif
7844#ifdef CONFIG_RT_GROUP_SCHED
7845 {
7846 .name = "rt_runtime_us",
7847 .read_s64 = cpu_rt_runtime_read,
7848 .write_s64 = cpu_rt_runtime_write,
7849 },
7850 {
7851 .name = "rt_period_us",
7852 .read_u64 = cpu_rt_period_read_uint,
7853 .write_u64 = cpu_rt_period_write_uint,
7854 },
7855#endif
7856 { } /* terminate */
7857};
7858
7859struct cgroup_subsys cpu_cgroup_subsys = {
7860 .name = "cpu",
7861 .create = cpu_cgroup_create,
7862 .destroy = cpu_cgroup_destroy,
7863 .can_attach = cpu_cgroup_can_attach,
7864 .attach = cpu_cgroup_attach,
7865 .exit = cpu_cgroup_exit,
7866 .subsys_id = cpu_cgroup_subsys_id,
7867 .base_cftypes = cpu_files,
7868 .early_init = 1,
7869};
7870
7871#endif /* CONFIG_CGROUP_SCHED */
7872
7873#ifdef CONFIG_CGROUP_CPUACCT
7874
7875/*
7876 * CPU accounting code for task groups.
7877 *
7878 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7879 * (balbir@in.ibm.com).
7880 */
7881
7882struct cpuacct root_cpuacct;
7883
7884/* create a new cpu accounting group */
7885static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
7886{
7887 struct cpuacct *ca;
7888
7889 if (!cgrp->parent)
7890 return &root_cpuacct.css;
7891
7892 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7893 if (!ca)
7894 goto out;
7895
7896 ca->cpuusage = alloc_percpu(u64);
7897 if (!ca->cpuusage)
7898 goto out_free_ca;
7899
7900 ca->cpustat = alloc_percpu(struct kernel_cpustat);
7901 if (!ca->cpustat)
7902 goto out_free_cpuusage;
7903
7904 return &ca->css;
7905
7906out_free_cpuusage:
7907 free_percpu(ca->cpuusage);
7908out_free_ca:
7909 kfree(ca);
7910out:
7911 return ERR_PTR(-ENOMEM);
7912}
7913
7914/* destroy an existing cpu accounting group */
7915static void cpuacct_destroy(struct cgroup *cgrp)
7916{
7917 struct cpuacct *ca = cgroup_ca(cgrp);
7918
7919 free_percpu(ca->cpustat);
7920 free_percpu(ca->cpuusage);
7921 kfree(ca);
7922}
7923
7924static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
7925{
7926 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7927 u64 data;
7928
7929#ifndef CONFIG_64BIT
7930 /*
7931 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
7932 */
7933 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7934 data = *cpuusage;
7935 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7936#else
7937 data = *cpuusage;
7938#endif
7939
7940 return data;
7941}
7942
7943static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
7944{
7945 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
7946
7947#ifndef CONFIG_64BIT
7948 /*
7949 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
7950 */
7951 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
7952 *cpuusage = val;
7953 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
7954#else
7955 *cpuusage = val;
7956#endif
7957}
7958
7959/* return total cpu usage (in nanoseconds) of a group */
7960static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
7961{
7962 struct cpuacct *ca = cgroup_ca(cgrp);
7963 u64 totalcpuusage = 0;
7964 int i;
7965
7966 for_each_present_cpu(i)
7967 totalcpuusage += cpuacct_cpuusage_read(ca, i);
7968
7969 return totalcpuusage;
7970}
7971
7972static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
7973 u64 reset)
7974{
7975 struct cpuacct *ca = cgroup_ca(cgrp);
7976 int err = 0;
7977 int i;
7978
7979 if (reset) {
7980 err = -EINVAL;
7981 goto out;
7982 }
7983
7984 for_each_present_cpu(i)
7985 cpuacct_cpuusage_write(ca, i, 0);
7986
7987out:
7988 return err;
7989}
7990
7991static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
7992 struct seq_file *m)
7993{
7994 struct cpuacct *ca = cgroup_ca(cgroup);
7995 u64 percpu;
7996 int i;
7997
7998 for_each_present_cpu(i) {
7999 percpu = cpuacct_cpuusage_read(ca, i);
8000 seq_printf(m, "%llu ", (unsigned long long) percpu);
8001 }
8002 seq_printf(m, "\n");
8003 return 0;
8004}
8005
8006static const char *cpuacct_stat_desc[] = {
8007 [CPUACCT_STAT_USER] = "user",
8008 [CPUACCT_STAT_SYSTEM] = "system",
8009};
8010
8011static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8012 struct cgroup_map_cb *cb)
8013{
8014 struct cpuacct *ca = cgroup_ca(cgrp);
8015 int cpu;
8016 s64 val = 0;
8017
8018 for_each_online_cpu(cpu) {
8019 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8020 val += kcpustat->cpustat[CPUTIME_USER];
8021 val += kcpustat->cpustat[CPUTIME_NICE];
8022 }
8023 val = cputime64_to_clock_t(val);
8024 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
8025
8026 val = 0;
8027 for_each_online_cpu(cpu) {
8028 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8029 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8030 val += kcpustat->cpustat[CPUTIME_IRQ];
8031 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
8032 }
8033
8034 val = cputime64_to_clock_t(val);
8035 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8036
8037 return 0;
8038}
8039
8040static struct cftype files[] = {
8041 {
8042 .name = "usage",
8043 .read_u64 = cpuusage_read,
8044 .write_u64 = cpuusage_write,
8045 },
8046 {
8047 .name = "usage_percpu",
8048 .read_seq_string = cpuacct_percpu_seq_read,
8049 },
8050 {
8051 .name = "stat",
8052 .read_map = cpuacct_stats_show,
8053 },
8054 { } /* terminate */
8055};
8056
8057/*
8058 * charge this task's execution time to its accounting group.
8059 *
8060 * called with rq->lock held.
8061 */
8062void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8063{
8064 struct cpuacct *ca;
8065 int cpu;
8066
8067 if (unlikely(!cpuacct_subsys.active))
8068 return;
8069
8070 cpu = task_cpu(tsk);
8071
8072 rcu_read_lock();
8073
8074 ca = task_ca(tsk);
8075
8076 for (; ca; ca = parent_ca(ca)) {
8077 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8078 *cpuusage += cputime;
8079 }
8080
8081 rcu_read_unlock();
8082}
8083
8084struct cgroup_subsys cpuacct_subsys = {
8085 .name = "cpuacct",
8086 .create = cpuacct_create,
8087 .destroy = cpuacct_destroy,
8088 .subsys_id = cpuacct_subsys_id,
8089 .base_cftypes = files,
8090};
8091#endif /* CONFIG_CGROUP_CPUACCT */
This page took 0.060803 seconds and 5 git commands to generate.