sched: Replace post_schedule with a balance callback list
[deliverable/linux.git] / kernel / sched / core.c
... / ...
CommitLineData
1/*
2 * kernel/sched/core.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
33#include <linux/uaccess.h>
34#include <linux/highmem.h>
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
37#include <linux/capability.h>
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
40#include <linux/debug_locks.h>
41#include <linux/perf_event.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
45#include <linux/freezer.h>
46#include <linux/vmalloc.h>
47#include <linux/blkdev.h>
48#include <linux/delay.h>
49#include <linux/pid_namespace.h>
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/proc_fs.h>
58#include <linux/seq_file.h>
59#include <linux/sysctl.h>
60#include <linux/syscalls.h>
61#include <linux/times.h>
62#include <linux/tsacct_kern.h>
63#include <linux/kprobes.h>
64#include <linux/delayacct.h>
65#include <linux/unistd.h>
66#include <linux/pagemap.h>
67#include <linux/hrtimer.h>
68#include <linux/tick.h>
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
71#include <linux/ftrace.h>
72#include <linux/slab.h>
73#include <linux/init_task.h>
74#include <linux/binfmts.h>
75#include <linux/context_tracking.h>
76#include <linux/compiler.h>
77
78#include <asm/switch_to.h>
79#include <asm/tlb.h>
80#include <asm/irq_regs.h>
81#include <asm/mutex.h>
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
85
86#include "sched.h"
87#include "../workqueue_internal.h"
88#include "../smpboot.h"
89
90#define CREATE_TRACE_POINTS
91#include <trace/events/sched.h>
92
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
95
96static void update_rq_clock_task(struct rq *rq, s64 delta);
97
98void update_rq_clock(struct rq *rq)
99{
100 s64 delta;
101
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
105 return;
106
107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
108 if (delta < 0)
109 return;
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
112}
113
114/*
115 * Debugging: various feature bits
116 */
117
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
121const_debug unsigned int sysctl_sched_features =
122#include "features.h"
123 0;
124
125#undef SCHED_FEAT
126
127#ifdef CONFIG_SCHED_DEBUG
128#define SCHED_FEAT(name, enabled) \
129 #name ,
130
131static const char * const sched_feat_names[] = {
132#include "features.h"
133};
134
135#undef SCHED_FEAT
136
137static int sched_feat_show(struct seq_file *m, void *v)
138{
139 int i;
140
141 for (i = 0; i < __SCHED_FEAT_NR; i++) {
142 if (!(sysctl_sched_features & (1UL << i)))
143 seq_puts(m, "NO_");
144 seq_printf(m, "%s ", sched_feat_names[i]);
145 }
146 seq_puts(m, "\n");
147
148 return 0;
149}
150
151#ifdef HAVE_JUMP_LABEL
152
153#define jump_label_key__true STATIC_KEY_INIT_TRUE
154#define jump_label_key__false STATIC_KEY_INIT_FALSE
155
156#define SCHED_FEAT(name, enabled) \
157 jump_label_key__##enabled ,
158
159struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
160#include "features.h"
161};
162
163#undef SCHED_FEAT
164
165static void sched_feat_disable(int i)
166{
167 if (static_key_enabled(&sched_feat_keys[i]))
168 static_key_slow_dec(&sched_feat_keys[i]);
169}
170
171static void sched_feat_enable(int i)
172{
173 if (!static_key_enabled(&sched_feat_keys[i]))
174 static_key_slow_inc(&sched_feat_keys[i]);
175}
176#else
177static void sched_feat_disable(int i) { };
178static void sched_feat_enable(int i) { };
179#endif /* HAVE_JUMP_LABEL */
180
181static int sched_feat_set(char *cmp)
182{
183 int i;
184 int neg = 0;
185
186 if (strncmp(cmp, "NO_", 3) == 0) {
187 neg = 1;
188 cmp += 3;
189 }
190
191 for (i = 0; i < __SCHED_FEAT_NR; i++) {
192 if (strcmp(cmp, sched_feat_names[i]) == 0) {
193 if (neg) {
194 sysctl_sched_features &= ~(1UL << i);
195 sched_feat_disable(i);
196 } else {
197 sysctl_sched_features |= (1UL << i);
198 sched_feat_enable(i);
199 }
200 break;
201 }
202 }
203
204 return i;
205}
206
207static ssize_t
208sched_feat_write(struct file *filp, const char __user *ubuf,
209 size_t cnt, loff_t *ppos)
210{
211 char buf[64];
212 char *cmp;
213 int i;
214 struct inode *inode;
215
216 if (cnt > 63)
217 cnt = 63;
218
219 if (copy_from_user(&buf, ubuf, cnt))
220 return -EFAULT;
221
222 buf[cnt] = 0;
223 cmp = strstrip(buf);
224
225 /* Ensure the static_key remains in a consistent state */
226 inode = file_inode(filp);
227 mutex_lock(&inode->i_mutex);
228 i = sched_feat_set(cmp);
229 mutex_unlock(&inode->i_mutex);
230 if (i == __SCHED_FEAT_NR)
231 return -EINVAL;
232
233 *ppos += cnt;
234
235 return cnt;
236}
237
238static int sched_feat_open(struct inode *inode, struct file *filp)
239{
240 return single_open(filp, sched_feat_show, NULL);
241}
242
243static const struct file_operations sched_feat_fops = {
244 .open = sched_feat_open,
245 .write = sched_feat_write,
246 .read = seq_read,
247 .llseek = seq_lseek,
248 .release = single_release,
249};
250
251static __init int sched_init_debug(void)
252{
253 debugfs_create_file("sched_features", 0644, NULL, NULL,
254 &sched_feat_fops);
255
256 return 0;
257}
258late_initcall(sched_init_debug);
259#endif /* CONFIG_SCHED_DEBUG */
260
261/*
262 * Number of tasks to iterate in a single balance run.
263 * Limited because this is done with IRQs disabled.
264 */
265const_debug unsigned int sysctl_sched_nr_migrate = 32;
266
267/*
268 * period over which we average the RT time consumption, measured
269 * in ms.
270 *
271 * default: 1s
272 */
273const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
274
275/*
276 * period over which we measure -rt task cpu usage in us.
277 * default: 1s
278 */
279unsigned int sysctl_sched_rt_period = 1000000;
280
281__read_mostly int scheduler_running;
282
283/*
284 * part of the period that we allow rt tasks to run in us.
285 * default: 0.95s
286 */
287int sysctl_sched_rt_runtime = 950000;
288
289/* cpus with isolated domains */
290cpumask_var_t cpu_isolated_map;
291
292/*
293 * this_rq_lock - lock this runqueue and disable interrupts.
294 */
295static struct rq *this_rq_lock(void)
296 __acquires(rq->lock)
297{
298 struct rq *rq;
299
300 local_irq_disable();
301 rq = this_rq();
302 raw_spin_lock(&rq->lock);
303
304 return rq;
305}
306
307#ifdef CONFIG_SCHED_HRTICK
308/*
309 * Use HR-timers to deliver accurate preemption points.
310 */
311
312static void hrtick_clear(struct rq *rq)
313{
314 if (hrtimer_active(&rq->hrtick_timer))
315 hrtimer_cancel(&rq->hrtick_timer);
316}
317
318/*
319 * High-resolution timer tick.
320 * Runs from hardirq context with interrupts disabled.
321 */
322static enum hrtimer_restart hrtick(struct hrtimer *timer)
323{
324 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
325
326 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
327
328 raw_spin_lock(&rq->lock);
329 update_rq_clock(rq);
330 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
331 raw_spin_unlock(&rq->lock);
332
333 return HRTIMER_NORESTART;
334}
335
336#ifdef CONFIG_SMP
337
338static void __hrtick_restart(struct rq *rq)
339{
340 struct hrtimer *timer = &rq->hrtick_timer;
341
342 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
343}
344
345/*
346 * called from hardirq (IPI) context
347 */
348static void __hrtick_start(void *arg)
349{
350 struct rq *rq = arg;
351
352 raw_spin_lock(&rq->lock);
353 __hrtick_restart(rq);
354 rq->hrtick_csd_pending = 0;
355 raw_spin_unlock(&rq->lock);
356}
357
358/*
359 * Called to set the hrtick timer state.
360 *
361 * called with rq->lock held and irqs disabled
362 */
363void hrtick_start(struct rq *rq, u64 delay)
364{
365 struct hrtimer *timer = &rq->hrtick_timer;
366 ktime_t time;
367 s64 delta;
368
369 /*
370 * Don't schedule slices shorter than 10000ns, that just
371 * doesn't make sense and can cause timer DoS.
372 */
373 delta = max_t(s64, delay, 10000LL);
374 time = ktime_add_ns(timer->base->get_time(), delta);
375
376 hrtimer_set_expires(timer, time);
377
378 if (rq == this_rq()) {
379 __hrtick_restart(rq);
380 } else if (!rq->hrtick_csd_pending) {
381 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
382 rq->hrtick_csd_pending = 1;
383 }
384}
385
386static int
387hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
388{
389 int cpu = (int)(long)hcpu;
390
391 switch (action) {
392 case CPU_UP_CANCELED:
393 case CPU_UP_CANCELED_FROZEN:
394 case CPU_DOWN_PREPARE:
395 case CPU_DOWN_PREPARE_FROZEN:
396 case CPU_DEAD:
397 case CPU_DEAD_FROZEN:
398 hrtick_clear(cpu_rq(cpu));
399 return NOTIFY_OK;
400 }
401
402 return NOTIFY_DONE;
403}
404
405static __init void init_hrtick(void)
406{
407 hotcpu_notifier(hotplug_hrtick, 0);
408}
409#else
410/*
411 * Called to set the hrtick timer state.
412 *
413 * called with rq->lock held and irqs disabled
414 */
415void hrtick_start(struct rq *rq, u64 delay)
416{
417 /*
418 * Don't schedule slices shorter than 10000ns, that just
419 * doesn't make sense. Rely on vruntime for fairness.
420 */
421 delay = max_t(u64, delay, 10000LL);
422 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
423 HRTIMER_MODE_REL_PINNED);
424}
425
426static inline void init_hrtick(void)
427{
428}
429#endif /* CONFIG_SMP */
430
431static void init_rq_hrtick(struct rq *rq)
432{
433#ifdef CONFIG_SMP
434 rq->hrtick_csd_pending = 0;
435
436 rq->hrtick_csd.flags = 0;
437 rq->hrtick_csd.func = __hrtick_start;
438 rq->hrtick_csd.info = rq;
439#endif
440
441 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
442 rq->hrtick_timer.function = hrtick;
443}
444#else /* CONFIG_SCHED_HRTICK */
445static inline void hrtick_clear(struct rq *rq)
446{
447}
448
449static inline void init_rq_hrtick(struct rq *rq)
450{
451}
452
453static inline void init_hrtick(void)
454{
455}
456#endif /* CONFIG_SCHED_HRTICK */
457
458/*
459 * cmpxchg based fetch_or, macro so it works for different integer types
460 */
461#define fetch_or(ptr, val) \
462({ typeof(*(ptr)) __old, __val = *(ptr); \
463 for (;;) { \
464 __old = cmpxchg((ptr), __val, __val | (val)); \
465 if (__old == __val) \
466 break; \
467 __val = __old; \
468 } \
469 __old; \
470})
471
472#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
473/*
474 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
475 * this avoids any races wrt polling state changes and thereby avoids
476 * spurious IPIs.
477 */
478static bool set_nr_and_not_polling(struct task_struct *p)
479{
480 struct thread_info *ti = task_thread_info(p);
481 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
482}
483
484/*
485 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
486 *
487 * If this returns true, then the idle task promises to call
488 * sched_ttwu_pending() and reschedule soon.
489 */
490static bool set_nr_if_polling(struct task_struct *p)
491{
492 struct thread_info *ti = task_thread_info(p);
493 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
494
495 for (;;) {
496 if (!(val & _TIF_POLLING_NRFLAG))
497 return false;
498 if (val & _TIF_NEED_RESCHED)
499 return true;
500 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
501 if (old == val)
502 break;
503 val = old;
504 }
505 return true;
506}
507
508#else
509static bool set_nr_and_not_polling(struct task_struct *p)
510{
511 set_tsk_need_resched(p);
512 return true;
513}
514
515#ifdef CONFIG_SMP
516static bool set_nr_if_polling(struct task_struct *p)
517{
518 return false;
519}
520#endif
521#endif
522
523void wake_q_add(struct wake_q_head *head, struct task_struct *task)
524{
525 struct wake_q_node *node = &task->wake_q;
526
527 /*
528 * Atomically grab the task, if ->wake_q is !nil already it means
529 * its already queued (either by us or someone else) and will get the
530 * wakeup due to that.
531 *
532 * This cmpxchg() implies a full barrier, which pairs with the write
533 * barrier implied by the wakeup in wake_up_list().
534 */
535 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
536 return;
537
538 get_task_struct(task);
539
540 /*
541 * The head is context local, there can be no concurrency.
542 */
543 *head->lastp = node;
544 head->lastp = &node->next;
545}
546
547void wake_up_q(struct wake_q_head *head)
548{
549 struct wake_q_node *node = head->first;
550
551 while (node != WAKE_Q_TAIL) {
552 struct task_struct *task;
553
554 task = container_of(node, struct task_struct, wake_q);
555 BUG_ON(!task);
556 /* task can safely be re-inserted now */
557 node = node->next;
558 task->wake_q.next = NULL;
559
560 /*
561 * wake_up_process() implies a wmb() to pair with the queueing
562 * in wake_q_add() so as not to miss wakeups.
563 */
564 wake_up_process(task);
565 put_task_struct(task);
566 }
567}
568
569/*
570 * resched_curr - mark rq's current task 'to be rescheduled now'.
571 *
572 * On UP this means the setting of the need_resched flag, on SMP it
573 * might also involve a cross-CPU call to trigger the scheduler on
574 * the target CPU.
575 */
576void resched_curr(struct rq *rq)
577{
578 struct task_struct *curr = rq->curr;
579 int cpu;
580
581 lockdep_assert_held(&rq->lock);
582
583 if (test_tsk_need_resched(curr))
584 return;
585
586 cpu = cpu_of(rq);
587
588 if (cpu == smp_processor_id()) {
589 set_tsk_need_resched(curr);
590 set_preempt_need_resched();
591 return;
592 }
593
594 if (set_nr_and_not_polling(curr))
595 smp_send_reschedule(cpu);
596 else
597 trace_sched_wake_idle_without_ipi(cpu);
598}
599
600void resched_cpu(int cpu)
601{
602 struct rq *rq = cpu_rq(cpu);
603 unsigned long flags;
604
605 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
606 return;
607 resched_curr(rq);
608 raw_spin_unlock_irqrestore(&rq->lock, flags);
609}
610
611#ifdef CONFIG_SMP
612#ifdef CONFIG_NO_HZ_COMMON
613/*
614 * In the semi idle case, use the nearest busy cpu for migrating timers
615 * from an idle cpu. This is good for power-savings.
616 *
617 * We don't do similar optimization for completely idle system, as
618 * selecting an idle cpu will add more delays to the timers than intended
619 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
620 */
621int get_nohz_timer_target(int pinned)
622{
623 int cpu = smp_processor_id();
624 int i;
625 struct sched_domain *sd;
626
627 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
628 return cpu;
629
630 rcu_read_lock();
631 for_each_domain(cpu, sd) {
632 for_each_cpu(i, sched_domain_span(sd)) {
633 if (!idle_cpu(i)) {
634 cpu = i;
635 goto unlock;
636 }
637 }
638 }
639unlock:
640 rcu_read_unlock();
641 return cpu;
642}
643/*
644 * When add_timer_on() enqueues a timer into the timer wheel of an
645 * idle CPU then this timer might expire before the next timer event
646 * which is scheduled to wake up that CPU. In case of a completely
647 * idle system the next event might even be infinite time into the
648 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
649 * leaves the inner idle loop so the newly added timer is taken into
650 * account when the CPU goes back to idle and evaluates the timer
651 * wheel for the next timer event.
652 */
653static void wake_up_idle_cpu(int cpu)
654{
655 struct rq *rq = cpu_rq(cpu);
656
657 if (cpu == smp_processor_id())
658 return;
659
660 if (set_nr_and_not_polling(rq->idle))
661 smp_send_reschedule(cpu);
662 else
663 trace_sched_wake_idle_without_ipi(cpu);
664}
665
666static bool wake_up_full_nohz_cpu(int cpu)
667{
668 /*
669 * We just need the target to call irq_exit() and re-evaluate
670 * the next tick. The nohz full kick at least implies that.
671 * If needed we can still optimize that later with an
672 * empty IRQ.
673 */
674 if (tick_nohz_full_cpu(cpu)) {
675 if (cpu != smp_processor_id() ||
676 tick_nohz_tick_stopped())
677 tick_nohz_full_kick_cpu(cpu);
678 return true;
679 }
680
681 return false;
682}
683
684void wake_up_nohz_cpu(int cpu)
685{
686 if (!wake_up_full_nohz_cpu(cpu))
687 wake_up_idle_cpu(cpu);
688}
689
690static inline bool got_nohz_idle_kick(void)
691{
692 int cpu = smp_processor_id();
693
694 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
695 return false;
696
697 if (idle_cpu(cpu) && !need_resched())
698 return true;
699
700 /*
701 * We can't run Idle Load Balance on this CPU for this time so we
702 * cancel it and clear NOHZ_BALANCE_KICK
703 */
704 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
705 return false;
706}
707
708#else /* CONFIG_NO_HZ_COMMON */
709
710static inline bool got_nohz_idle_kick(void)
711{
712 return false;
713}
714
715#endif /* CONFIG_NO_HZ_COMMON */
716
717#ifdef CONFIG_NO_HZ_FULL
718bool sched_can_stop_tick(void)
719{
720 /*
721 * FIFO realtime policy runs the highest priority task. Other runnable
722 * tasks are of a lower priority. The scheduler tick does nothing.
723 */
724 if (current->policy == SCHED_FIFO)
725 return true;
726
727 /*
728 * Round-robin realtime tasks time slice with other tasks at the same
729 * realtime priority. Is this task the only one at this priority?
730 */
731 if (current->policy == SCHED_RR) {
732 struct sched_rt_entity *rt_se = &current->rt;
733
734 return rt_se->run_list.prev == rt_se->run_list.next;
735 }
736
737 /*
738 * More than one running task need preemption.
739 * nr_running update is assumed to be visible
740 * after IPI is sent from wakers.
741 */
742 if (this_rq()->nr_running > 1)
743 return false;
744
745 return true;
746}
747#endif /* CONFIG_NO_HZ_FULL */
748
749void sched_avg_update(struct rq *rq)
750{
751 s64 period = sched_avg_period();
752
753 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
754 /*
755 * Inline assembly required to prevent the compiler
756 * optimising this loop into a divmod call.
757 * See __iter_div_u64_rem() for another example of this.
758 */
759 asm("" : "+rm" (rq->age_stamp));
760 rq->age_stamp += period;
761 rq->rt_avg /= 2;
762 }
763}
764
765#endif /* CONFIG_SMP */
766
767#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
768 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
769/*
770 * Iterate task_group tree rooted at *from, calling @down when first entering a
771 * node and @up when leaving it for the final time.
772 *
773 * Caller must hold rcu_lock or sufficient equivalent.
774 */
775int walk_tg_tree_from(struct task_group *from,
776 tg_visitor down, tg_visitor up, void *data)
777{
778 struct task_group *parent, *child;
779 int ret;
780
781 parent = from;
782
783down:
784 ret = (*down)(parent, data);
785 if (ret)
786 goto out;
787 list_for_each_entry_rcu(child, &parent->children, siblings) {
788 parent = child;
789 goto down;
790
791up:
792 continue;
793 }
794 ret = (*up)(parent, data);
795 if (ret || parent == from)
796 goto out;
797
798 child = parent;
799 parent = parent->parent;
800 if (parent)
801 goto up;
802out:
803 return ret;
804}
805
806int tg_nop(struct task_group *tg, void *data)
807{
808 return 0;
809}
810#endif
811
812static void set_load_weight(struct task_struct *p)
813{
814 int prio = p->static_prio - MAX_RT_PRIO;
815 struct load_weight *load = &p->se.load;
816
817 /*
818 * SCHED_IDLE tasks get minimal weight:
819 */
820 if (p->policy == SCHED_IDLE) {
821 load->weight = scale_load(WEIGHT_IDLEPRIO);
822 load->inv_weight = WMULT_IDLEPRIO;
823 return;
824 }
825
826 load->weight = scale_load(prio_to_weight[prio]);
827 load->inv_weight = prio_to_wmult[prio];
828}
829
830static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
831{
832 update_rq_clock(rq);
833 sched_info_queued(rq, p);
834 p->sched_class->enqueue_task(rq, p, flags);
835}
836
837static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
838{
839 update_rq_clock(rq);
840 sched_info_dequeued(rq, p);
841 p->sched_class->dequeue_task(rq, p, flags);
842}
843
844void activate_task(struct rq *rq, struct task_struct *p, int flags)
845{
846 if (task_contributes_to_load(p))
847 rq->nr_uninterruptible--;
848
849 enqueue_task(rq, p, flags);
850}
851
852void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
853{
854 if (task_contributes_to_load(p))
855 rq->nr_uninterruptible++;
856
857 dequeue_task(rq, p, flags);
858}
859
860static void update_rq_clock_task(struct rq *rq, s64 delta)
861{
862/*
863 * In theory, the compile should just see 0 here, and optimize out the call
864 * to sched_rt_avg_update. But I don't trust it...
865 */
866#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
867 s64 steal = 0, irq_delta = 0;
868#endif
869#ifdef CONFIG_IRQ_TIME_ACCOUNTING
870 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
871
872 /*
873 * Since irq_time is only updated on {soft,}irq_exit, we might run into
874 * this case when a previous update_rq_clock() happened inside a
875 * {soft,}irq region.
876 *
877 * When this happens, we stop ->clock_task and only update the
878 * prev_irq_time stamp to account for the part that fit, so that a next
879 * update will consume the rest. This ensures ->clock_task is
880 * monotonic.
881 *
882 * It does however cause some slight miss-attribution of {soft,}irq
883 * time, a more accurate solution would be to update the irq_time using
884 * the current rq->clock timestamp, except that would require using
885 * atomic ops.
886 */
887 if (irq_delta > delta)
888 irq_delta = delta;
889
890 rq->prev_irq_time += irq_delta;
891 delta -= irq_delta;
892#endif
893#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
894 if (static_key_false((&paravirt_steal_rq_enabled))) {
895 steal = paravirt_steal_clock(cpu_of(rq));
896 steal -= rq->prev_steal_time_rq;
897
898 if (unlikely(steal > delta))
899 steal = delta;
900
901 rq->prev_steal_time_rq += steal;
902 delta -= steal;
903 }
904#endif
905
906 rq->clock_task += delta;
907
908#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
909 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
910 sched_rt_avg_update(rq, irq_delta + steal);
911#endif
912}
913
914void sched_set_stop_task(int cpu, struct task_struct *stop)
915{
916 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
917 struct task_struct *old_stop = cpu_rq(cpu)->stop;
918
919 if (stop) {
920 /*
921 * Make it appear like a SCHED_FIFO task, its something
922 * userspace knows about and won't get confused about.
923 *
924 * Also, it will make PI more or less work without too
925 * much confusion -- but then, stop work should not
926 * rely on PI working anyway.
927 */
928 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
929
930 stop->sched_class = &stop_sched_class;
931 }
932
933 cpu_rq(cpu)->stop = stop;
934
935 if (old_stop) {
936 /*
937 * Reset it back to a normal scheduling class so that
938 * it can die in pieces.
939 */
940 old_stop->sched_class = &rt_sched_class;
941 }
942}
943
944/*
945 * __normal_prio - return the priority that is based on the static prio
946 */
947static inline int __normal_prio(struct task_struct *p)
948{
949 return p->static_prio;
950}
951
952/*
953 * Calculate the expected normal priority: i.e. priority
954 * without taking RT-inheritance into account. Might be
955 * boosted by interactivity modifiers. Changes upon fork,
956 * setprio syscalls, and whenever the interactivity
957 * estimator recalculates.
958 */
959static inline int normal_prio(struct task_struct *p)
960{
961 int prio;
962
963 if (task_has_dl_policy(p))
964 prio = MAX_DL_PRIO-1;
965 else if (task_has_rt_policy(p))
966 prio = MAX_RT_PRIO-1 - p->rt_priority;
967 else
968 prio = __normal_prio(p);
969 return prio;
970}
971
972/*
973 * Calculate the current priority, i.e. the priority
974 * taken into account by the scheduler. This value might
975 * be boosted by RT tasks, or might be boosted by
976 * interactivity modifiers. Will be RT if the task got
977 * RT-boosted. If not then it returns p->normal_prio.
978 */
979static int effective_prio(struct task_struct *p)
980{
981 p->normal_prio = normal_prio(p);
982 /*
983 * If we are RT tasks or we were boosted to RT priority,
984 * keep the priority unchanged. Otherwise, update priority
985 * to the normal priority:
986 */
987 if (!rt_prio(p->prio))
988 return p->normal_prio;
989 return p->prio;
990}
991
992/**
993 * task_curr - is this task currently executing on a CPU?
994 * @p: the task in question.
995 *
996 * Return: 1 if the task is currently executing. 0 otherwise.
997 */
998inline int task_curr(const struct task_struct *p)
999{
1000 return cpu_curr(task_cpu(p)) == p;
1001}
1002
1003/*
1004 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
1005 */
1006static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1007 const struct sched_class *prev_class,
1008 int oldprio)
1009{
1010 if (prev_class != p->sched_class) {
1011 if (prev_class->switched_from)
1012 prev_class->switched_from(rq, p);
1013 /* Possble rq->lock 'hole'. */
1014 p->sched_class->switched_to(rq, p);
1015 } else if (oldprio != p->prio || dl_task(p))
1016 p->sched_class->prio_changed(rq, p, oldprio);
1017}
1018
1019void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1020{
1021 const struct sched_class *class;
1022
1023 if (p->sched_class == rq->curr->sched_class) {
1024 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1025 } else {
1026 for_each_class(class) {
1027 if (class == rq->curr->sched_class)
1028 break;
1029 if (class == p->sched_class) {
1030 resched_curr(rq);
1031 break;
1032 }
1033 }
1034 }
1035
1036 /*
1037 * A queue event has occurred, and we're going to schedule. In
1038 * this case, we can save a useless back to back clock update.
1039 */
1040 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1041 rq_clock_skip_update(rq, true);
1042}
1043
1044#ifdef CONFIG_SMP
1045void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1046{
1047#ifdef CONFIG_SCHED_DEBUG
1048 /*
1049 * We should never call set_task_cpu() on a blocked task,
1050 * ttwu() will sort out the placement.
1051 */
1052 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1053 !p->on_rq);
1054
1055#ifdef CONFIG_LOCKDEP
1056 /*
1057 * The caller should hold either p->pi_lock or rq->lock, when changing
1058 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1059 *
1060 * sched_move_task() holds both and thus holding either pins the cgroup,
1061 * see task_group().
1062 *
1063 * Furthermore, all task_rq users should acquire both locks, see
1064 * task_rq_lock().
1065 */
1066 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1067 lockdep_is_held(&task_rq(p)->lock)));
1068#endif
1069#endif
1070
1071 trace_sched_migrate_task(p, new_cpu);
1072
1073 if (task_cpu(p) != new_cpu) {
1074 if (p->sched_class->migrate_task_rq)
1075 p->sched_class->migrate_task_rq(p, new_cpu);
1076 p->se.nr_migrations++;
1077 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
1078 }
1079
1080 __set_task_cpu(p, new_cpu);
1081}
1082
1083static void __migrate_swap_task(struct task_struct *p, int cpu)
1084{
1085 if (task_on_rq_queued(p)) {
1086 struct rq *src_rq, *dst_rq;
1087
1088 src_rq = task_rq(p);
1089 dst_rq = cpu_rq(cpu);
1090
1091 deactivate_task(src_rq, p, 0);
1092 set_task_cpu(p, cpu);
1093 activate_task(dst_rq, p, 0);
1094 check_preempt_curr(dst_rq, p, 0);
1095 } else {
1096 /*
1097 * Task isn't running anymore; make it appear like we migrated
1098 * it before it went to sleep. This means on wakeup we make the
1099 * previous cpu our targer instead of where it really is.
1100 */
1101 p->wake_cpu = cpu;
1102 }
1103}
1104
1105struct migration_swap_arg {
1106 struct task_struct *src_task, *dst_task;
1107 int src_cpu, dst_cpu;
1108};
1109
1110static int migrate_swap_stop(void *data)
1111{
1112 struct migration_swap_arg *arg = data;
1113 struct rq *src_rq, *dst_rq;
1114 int ret = -EAGAIN;
1115
1116 src_rq = cpu_rq(arg->src_cpu);
1117 dst_rq = cpu_rq(arg->dst_cpu);
1118
1119 double_raw_lock(&arg->src_task->pi_lock,
1120 &arg->dst_task->pi_lock);
1121 double_rq_lock(src_rq, dst_rq);
1122 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1123 goto unlock;
1124
1125 if (task_cpu(arg->src_task) != arg->src_cpu)
1126 goto unlock;
1127
1128 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1129 goto unlock;
1130
1131 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1132 goto unlock;
1133
1134 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1135 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1136
1137 ret = 0;
1138
1139unlock:
1140 double_rq_unlock(src_rq, dst_rq);
1141 raw_spin_unlock(&arg->dst_task->pi_lock);
1142 raw_spin_unlock(&arg->src_task->pi_lock);
1143
1144 return ret;
1145}
1146
1147/*
1148 * Cross migrate two tasks
1149 */
1150int migrate_swap(struct task_struct *cur, struct task_struct *p)
1151{
1152 struct migration_swap_arg arg;
1153 int ret = -EINVAL;
1154
1155 arg = (struct migration_swap_arg){
1156 .src_task = cur,
1157 .src_cpu = task_cpu(cur),
1158 .dst_task = p,
1159 .dst_cpu = task_cpu(p),
1160 };
1161
1162 if (arg.src_cpu == arg.dst_cpu)
1163 goto out;
1164
1165 /*
1166 * These three tests are all lockless; this is OK since all of them
1167 * will be re-checked with proper locks held further down the line.
1168 */
1169 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1170 goto out;
1171
1172 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1173 goto out;
1174
1175 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1176 goto out;
1177
1178 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1179 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1180
1181out:
1182 return ret;
1183}
1184
1185struct migration_arg {
1186 struct task_struct *task;
1187 int dest_cpu;
1188};
1189
1190static int migration_cpu_stop(void *data);
1191
1192/*
1193 * wait_task_inactive - wait for a thread to unschedule.
1194 *
1195 * If @match_state is nonzero, it's the @p->state value just checked and
1196 * not expected to change. If it changes, i.e. @p might have woken up,
1197 * then return zero. When we succeed in waiting for @p to be off its CPU,
1198 * we return a positive number (its total switch count). If a second call
1199 * a short while later returns the same number, the caller can be sure that
1200 * @p has remained unscheduled the whole time.
1201 *
1202 * The caller must ensure that the task *will* unschedule sometime soon,
1203 * else this function might spin for a *long* time. This function can't
1204 * be called with interrupts off, or it may introduce deadlock with
1205 * smp_call_function() if an IPI is sent by the same process we are
1206 * waiting to become inactive.
1207 */
1208unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1209{
1210 unsigned long flags;
1211 int running, queued;
1212 unsigned long ncsw;
1213 struct rq *rq;
1214
1215 for (;;) {
1216 /*
1217 * We do the initial early heuristics without holding
1218 * any task-queue locks at all. We'll only try to get
1219 * the runqueue lock when things look like they will
1220 * work out!
1221 */
1222 rq = task_rq(p);
1223
1224 /*
1225 * If the task is actively running on another CPU
1226 * still, just relax and busy-wait without holding
1227 * any locks.
1228 *
1229 * NOTE! Since we don't hold any locks, it's not
1230 * even sure that "rq" stays as the right runqueue!
1231 * But we don't care, since "task_running()" will
1232 * return false if the runqueue has changed and p
1233 * is actually now running somewhere else!
1234 */
1235 while (task_running(rq, p)) {
1236 if (match_state && unlikely(p->state != match_state))
1237 return 0;
1238 cpu_relax();
1239 }
1240
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
1247 trace_sched_wait_task(p);
1248 running = task_running(rq, p);
1249 queued = task_on_rq_queued(p);
1250 ncsw = 0;
1251 if (!match_state || p->state == match_state)
1252 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1253 task_rq_unlock(rq, p, &flags);
1254
1255 /*
1256 * If it changed from the expected state, bail out now.
1257 */
1258 if (unlikely(!ncsw))
1259 break;
1260
1261 /*
1262 * Was it really running after all now that we
1263 * checked with the proper locks actually held?
1264 *
1265 * Oops. Go back and try again..
1266 */
1267 if (unlikely(running)) {
1268 cpu_relax();
1269 continue;
1270 }
1271
1272 /*
1273 * It's not enough that it's not actively running,
1274 * it must be off the runqueue _entirely_, and not
1275 * preempted!
1276 *
1277 * So if it was still runnable (but just not actively
1278 * running right now), it's preempted, and we should
1279 * yield - it could be a while.
1280 */
1281 if (unlikely(queued)) {
1282 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1283
1284 set_current_state(TASK_UNINTERRUPTIBLE);
1285 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1286 continue;
1287 }
1288
1289 /*
1290 * Ahh, all good. It wasn't running, and it wasn't
1291 * runnable, which means that it will never become
1292 * running in the future either. We're all done!
1293 */
1294 break;
1295 }
1296
1297 return ncsw;
1298}
1299
1300/***
1301 * kick_process - kick a running thread to enter/exit the kernel
1302 * @p: the to-be-kicked thread
1303 *
1304 * Cause a process which is running on another CPU to enter
1305 * kernel-mode, without any delay. (to get signals handled.)
1306 *
1307 * NOTE: this function doesn't have to take the runqueue lock,
1308 * because all it wants to ensure is that the remote task enters
1309 * the kernel. If the IPI races and the task has been migrated
1310 * to another CPU then no harm is done and the purpose has been
1311 * achieved as well.
1312 */
1313void kick_process(struct task_struct *p)
1314{
1315 int cpu;
1316
1317 preempt_disable();
1318 cpu = task_cpu(p);
1319 if ((cpu != smp_processor_id()) && task_curr(p))
1320 smp_send_reschedule(cpu);
1321 preempt_enable();
1322}
1323EXPORT_SYMBOL_GPL(kick_process);
1324#endif /* CONFIG_SMP */
1325
1326#ifdef CONFIG_SMP
1327/*
1328 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1329 */
1330static int select_fallback_rq(int cpu, struct task_struct *p)
1331{
1332 int nid = cpu_to_node(cpu);
1333 const struct cpumask *nodemask = NULL;
1334 enum { cpuset, possible, fail } state = cpuset;
1335 int dest_cpu;
1336
1337 /*
1338 * If the node that the cpu is on has been offlined, cpu_to_node()
1339 * will return -1. There is no cpu on the node, and we should
1340 * select the cpu on the other node.
1341 */
1342 if (nid != -1) {
1343 nodemask = cpumask_of_node(nid);
1344
1345 /* Look for allowed, online CPU in same node. */
1346 for_each_cpu(dest_cpu, nodemask) {
1347 if (!cpu_online(dest_cpu))
1348 continue;
1349 if (!cpu_active(dest_cpu))
1350 continue;
1351 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1352 return dest_cpu;
1353 }
1354 }
1355
1356 for (;;) {
1357 /* Any allowed, online CPU? */
1358 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
1359 if (!cpu_online(dest_cpu))
1360 continue;
1361 if (!cpu_active(dest_cpu))
1362 continue;
1363 goto out;
1364 }
1365
1366 switch (state) {
1367 case cpuset:
1368 /* No more Mr. Nice Guy. */
1369 cpuset_cpus_allowed_fallback(p);
1370 state = possible;
1371 break;
1372
1373 case possible:
1374 do_set_cpus_allowed(p, cpu_possible_mask);
1375 state = fail;
1376 break;
1377
1378 case fail:
1379 BUG();
1380 break;
1381 }
1382 }
1383
1384out:
1385 if (state != cpuset) {
1386 /*
1387 * Don't tell them about moving exiting tasks or
1388 * kernel threads (both mm NULL), since they never
1389 * leave kernel.
1390 */
1391 if (p->mm && printk_ratelimit()) {
1392 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1393 task_pid_nr(p), p->comm, cpu);
1394 }
1395 }
1396
1397 return dest_cpu;
1398}
1399
1400/*
1401 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1402 */
1403static inline
1404int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
1405{
1406 if (p->nr_cpus_allowed > 1)
1407 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
1408
1409 /*
1410 * In order not to call set_task_cpu() on a blocking task we need
1411 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1412 * cpu.
1413 *
1414 * Since this is common to all placement strategies, this lives here.
1415 *
1416 * [ this allows ->select_task() to simply return task_cpu(p) and
1417 * not worry about this generic constraint ]
1418 */
1419 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
1420 !cpu_online(cpu)))
1421 cpu = select_fallback_rq(task_cpu(p), p);
1422
1423 return cpu;
1424}
1425
1426static void update_avg(u64 *avg, u64 sample)
1427{
1428 s64 diff = sample - *avg;
1429 *avg += diff >> 3;
1430}
1431#endif
1432
1433static void
1434ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
1435{
1436#ifdef CONFIG_SCHEDSTATS
1437 struct rq *rq = this_rq();
1438
1439#ifdef CONFIG_SMP
1440 int this_cpu = smp_processor_id();
1441
1442 if (cpu == this_cpu) {
1443 schedstat_inc(rq, ttwu_local);
1444 schedstat_inc(p, se.statistics.nr_wakeups_local);
1445 } else {
1446 struct sched_domain *sd;
1447
1448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
1449 rcu_read_lock();
1450 for_each_domain(this_cpu, sd) {
1451 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1452 schedstat_inc(sd, ttwu_wake_remote);
1453 break;
1454 }
1455 }
1456 rcu_read_unlock();
1457 }
1458
1459 if (wake_flags & WF_MIGRATED)
1460 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1461
1462#endif /* CONFIG_SMP */
1463
1464 schedstat_inc(rq, ttwu_count);
1465 schedstat_inc(p, se.statistics.nr_wakeups);
1466
1467 if (wake_flags & WF_SYNC)
1468 schedstat_inc(p, se.statistics.nr_wakeups_sync);
1469
1470#endif /* CONFIG_SCHEDSTATS */
1471}
1472
1473static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1474{
1475 activate_task(rq, p, en_flags);
1476 p->on_rq = TASK_ON_RQ_QUEUED;
1477
1478 /* if a worker is waking up, notify workqueue */
1479 if (p->flags & PF_WQ_WORKER)
1480 wq_worker_waking_up(p, cpu_of(rq));
1481}
1482
1483/*
1484 * Mark the task runnable and perform wakeup-preemption.
1485 */
1486static void
1487ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489 check_preempt_curr(rq, p, wake_flags);
1490 trace_sched_wakeup(p, true);
1491
1492 p->state = TASK_RUNNING;
1493#ifdef CONFIG_SMP
1494 if (p->sched_class->task_woken)
1495 p->sched_class->task_woken(rq, p);
1496
1497 if (rq->idle_stamp) {
1498 u64 delta = rq_clock(rq) - rq->idle_stamp;
1499 u64 max = 2*rq->max_idle_balance_cost;
1500
1501 update_avg(&rq->avg_idle, delta);
1502
1503 if (rq->avg_idle > max)
1504 rq->avg_idle = max;
1505
1506 rq->idle_stamp = 0;
1507 }
1508#endif
1509}
1510
1511static void
1512ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1513{
1514#ifdef CONFIG_SMP
1515 if (p->sched_contributes_to_load)
1516 rq->nr_uninterruptible--;
1517#endif
1518
1519 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1520 ttwu_do_wakeup(rq, p, wake_flags);
1521}
1522
1523/*
1524 * Called in case the task @p isn't fully descheduled from its runqueue,
1525 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1526 * since all we need to do is flip p->state to TASK_RUNNING, since
1527 * the task is still ->on_rq.
1528 */
1529static int ttwu_remote(struct task_struct *p, int wake_flags)
1530{
1531 struct rq *rq;
1532 int ret = 0;
1533
1534 rq = __task_rq_lock(p);
1535 if (task_on_rq_queued(p)) {
1536 /* check_preempt_curr() may use rq clock */
1537 update_rq_clock(rq);
1538 ttwu_do_wakeup(rq, p, wake_flags);
1539 ret = 1;
1540 }
1541 __task_rq_unlock(rq);
1542
1543 return ret;
1544}
1545
1546#ifdef CONFIG_SMP
1547void sched_ttwu_pending(void)
1548{
1549 struct rq *rq = this_rq();
1550 struct llist_node *llist = llist_del_all(&rq->wake_list);
1551 struct task_struct *p;
1552 unsigned long flags;
1553
1554 if (!llist)
1555 return;
1556
1557 raw_spin_lock_irqsave(&rq->lock, flags);
1558
1559 while (llist) {
1560 p = llist_entry(llist, struct task_struct, wake_entry);
1561 llist = llist_next(llist);
1562 ttwu_do_activate(rq, p, 0);
1563 }
1564
1565 raw_spin_unlock_irqrestore(&rq->lock, flags);
1566}
1567
1568void scheduler_ipi(void)
1569{
1570 /*
1571 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1572 * TIF_NEED_RESCHED remotely (for the first time) will also send
1573 * this IPI.
1574 */
1575 preempt_fold_need_resched();
1576
1577 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
1578 return;
1579
1580 /*
1581 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1582 * traditionally all their work was done from the interrupt return
1583 * path. Now that we actually do some work, we need to make sure
1584 * we do call them.
1585 *
1586 * Some archs already do call them, luckily irq_enter/exit nest
1587 * properly.
1588 *
1589 * Arguably we should visit all archs and update all handlers,
1590 * however a fair share of IPIs are still resched only so this would
1591 * somewhat pessimize the simple resched case.
1592 */
1593 irq_enter();
1594 sched_ttwu_pending();
1595
1596 /*
1597 * Check if someone kicked us for doing the nohz idle load balance.
1598 */
1599 if (unlikely(got_nohz_idle_kick())) {
1600 this_rq()->idle_balance = 1;
1601 raise_softirq_irqoff(SCHED_SOFTIRQ);
1602 }
1603 irq_exit();
1604}
1605
1606static void ttwu_queue_remote(struct task_struct *p, int cpu)
1607{
1608 struct rq *rq = cpu_rq(cpu);
1609
1610 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1611 if (!set_nr_if_polling(rq->idle))
1612 smp_send_reschedule(cpu);
1613 else
1614 trace_sched_wake_idle_without_ipi(cpu);
1615 }
1616}
1617
1618void wake_up_if_idle(int cpu)
1619{
1620 struct rq *rq = cpu_rq(cpu);
1621 unsigned long flags;
1622
1623 rcu_read_lock();
1624
1625 if (!is_idle_task(rcu_dereference(rq->curr)))
1626 goto out;
1627
1628 if (set_nr_if_polling(rq->idle)) {
1629 trace_sched_wake_idle_without_ipi(cpu);
1630 } else {
1631 raw_spin_lock_irqsave(&rq->lock, flags);
1632 if (is_idle_task(rq->curr))
1633 smp_send_reschedule(cpu);
1634 /* Else cpu is not in idle, do nothing here */
1635 raw_spin_unlock_irqrestore(&rq->lock, flags);
1636 }
1637
1638out:
1639 rcu_read_unlock();
1640}
1641
1642bool cpus_share_cache(int this_cpu, int that_cpu)
1643{
1644 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1645}
1646#endif /* CONFIG_SMP */
1647
1648static void ttwu_queue(struct task_struct *p, int cpu)
1649{
1650 struct rq *rq = cpu_rq(cpu);
1651
1652#if defined(CONFIG_SMP)
1653 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
1654 sched_clock_cpu(cpu); /* sync clocks x-cpu */
1655 ttwu_queue_remote(p, cpu);
1656 return;
1657 }
1658#endif
1659
1660 raw_spin_lock(&rq->lock);
1661 ttwu_do_activate(rq, p, 0);
1662 raw_spin_unlock(&rq->lock);
1663}
1664
1665/**
1666 * try_to_wake_up - wake up a thread
1667 * @p: the thread to be awakened
1668 * @state: the mask of task states that can be woken
1669 * @wake_flags: wake modifier flags (WF_*)
1670 *
1671 * Put it on the run-queue if it's not already there. The "current"
1672 * thread is always on the run-queue (except when the actual
1673 * re-schedule is in progress), and as such you're allowed to do
1674 * the simpler "current->state = TASK_RUNNING" to mark yourself
1675 * runnable without the overhead of this.
1676 *
1677 * Return: %true if @p was woken up, %false if it was already running.
1678 * or @state didn't match @p's state.
1679 */
1680static int
1681try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1682{
1683 unsigned long flags;
1684 int cpu, success = 0;
1685
1686 /*
1687 * If we are going to wake up a thread waiting for CONDITION we
1688 * need to ensure that CONDITION=1 done by the caller can not be
1689 * reordered with p->state check below. This pairs with mb() in
1690 * set_current_state() the waiting thread does.
1691 */
1692 smp_mb__before_spinlock();
1693 raw_spin_lock_irqsave(&p->pi_lock, flags);
1694 if (!(p->state & state))
1695 goto out;
1696
1697 success = 1; /* we're going to change ->state */
1698 cpu = task_cpu(p);
1699
1700 if (p->on_rq && ttwu_remote(p, wake_flags))
1701 goto stat;
1702
1703#ifdef CONFIG_SMP
1704 /*
1705 * If the owning (remote) cpu is still in the middle of schedule() with
1706 * this task as prev, wait until its done referencing the task.
1707 */
1708 while (p->on_cpu)
1709 cpu_relax();
1710 /*
1711 * Pairs with the smp_wmb() in finish_lock_switch().
1712 */
1713 smp_rmb();
1714
1715 p->sched_contributes_to_load = !!task_contributes_to_load(p);
1716 p->state = TASK_WAKING;
1717
1718 if (p->sched_class->task_waking)
1719 p->sched_class->task_waking(p);
1720
1721 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
1722 if (task_cpu(p) != cpu) {
1723 wake_flags |= WF_MIGRATED;
1724 set_task_cpu(p, cpu);
1725 }
1726#endif /* CONFIG_SMP */
1727
1728 ttwu_queue(p, cpu);
1729stat:
1730 ttwu_stat(p, cpu, wake_flags);
1731out:
1732 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1733
1734 return success;
1735}
1736
1737/**
1738 * try_to_wake_up_local - try to wake up a local task with rq lock held
1739 * @p: the thread to be awakened
1740 *
1741 * Put @p on the run-queue if it's not already there. The caller must
1742 * ensure that this_rq() is locked, @p is bound to this_rq() and not
1743 * the current task.
1744 */
1745static void try_to_wake_up_local(struct task_struct *p)
1746{
1747 struct rq *rq = task_rq(p);
1748
1749 if (WARN_ON_ONCE(rq != this_rq()) ||
1750 WARN_ON_ONCE(p == current))
1751 return;
1752
1753 lockdep_assert_held(&rq->lock);
1754
1755 if (!raw_spin_trylock(&p->pi_lock)) {
1756 raw_spin_unlock(&rq->lock);
1757 raw_spin_lock(&p->pi_lock);
1758 raw_spin_lock(&rq->lock);
1759 }
1760
1761 if (!(p->state & TASK_NORMAL))
1762 goto out;
1763
1764 if (!task_on_rq_queued(p))
1765 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1766
1767 ttwu_do_wakeup(rq, p, 0);
1768 ttwu_stat(p, smp_processor_id(), 0);
1769out:
1770 raw_spin_unlock(&p->pi_lock);
1771}
1772
1773/**
1774 * wake_up_process - Wake up a specific process
1775 * @p: The process to be woken up.
1776 *
1777 * Attempt to wake up the nominated process and move it to the set of runnable
1778 * processes.
1779 *
1780 * Return: 1 if the process was woken up, 0 if it was already running.
1781 *
1782 * It may be assumed that this function implies a write memory barrier before
1783 * changing the task state if and only if any tasks are woken up.
1784 */
1785int wake_up_process(struct task_struct *p)
1786{
1787 WARN_ON(task_is_stopped_or_traced(p));
1788 return try_to_wake_up(p, TASK_NORMAL, 0);
1789}
1790EXPORT_SYMBOL(wake_up_process);
1791
1792int wake_up_state(struct task_struct *p, unsigned int state)
1793{
1794 return try_to_wake_up(p, state, 0);
1795}
1796
1797/*
1798 * This function clears the sched_dl_entity static params.
1799 */
1800void __dl_clear_params(struct task_struct *p)
1801{
1802 struct sched_dl_entity *dl_se = &p->dl;
1803
1804 dl_se->dl_runtime = 0;
1805 dl_se->dl_deadline = 0;
1806 dl_se->dl_period = 0;
1807 dl_se->flags = 0;
1808 dl_se->dl_bw = 0;
1809
1810 dl_se->dl_throttled = 0;
1811 dl_se->dl_new = 1;
1812 dl_se->dl_yielded = 0;
1813}
1814
1815/*
1816 * Perform scheduler related setup for a newly forked process p.
1817 * p is forked by current.
1818 *
1819 * __sched_fork() is basic setup used by init_idle() too:
1820 */
1821static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
1822{
1823 p->on_rq = 0;
1824
1825 p->se.on_rq = 0;
1826 p->se.exec_start = 0;
1827 p->se.sum_exec_runtime = 0;
1828 p->se.prev_sum_exec_runtime = 0;
1829 p->se.nr_migrations = 0;
1830 p->se.vruntime = 0;
1831#ifdef CONFIG_SMP
1832 p->se.avg.decay_count = 0;
1833#endif
1834 INIT_LIST_HEAD(&p->se.group_node);
1835
1836#ifdef CONFIG_SCHEDSTATS
1837 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1838#endif
1839
1840 RB_CLEAR_NODE(&p->dl.rb_node);
1841 init_dl_task_timer(&p->dl);
1842 __dl_clear_params(p);
1843
1844 INIT_LIST_HEAD(&p->rt.run_list);
1845
1846#ifdef CONFIG_PREEMPT_NOTIFIERS
1847 INIT_HLIST_HEAD(&p->preempt_notifiers);
1848#endif
1849
1850#ifdef CONFIG_NUMA_BALANCING
1851 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
1852 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1853 p->mm->numa_scan_seq = 0;
1854 }
1855
1856 if (clone_flags & CLONE_VM)
1857 p->numa_preferred_nid = current->numa_preferred_nid;
1858 else
1859 p->numa_preferred_nid = -1;
1860
1861 p->node_stamp = 0ULL;
1862 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
1863 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
1864 p->numa_work.next = &p->numa_work;
1865 p->numa_faults = NULL;
1866 p->last_task_numa_placement = 0;
1867 p->last_sum_exec_runtime = 0;
1868
1869 p->numa_group = NULL;
1870#endif /* CONFIG_NUMA_BALANCING */
1871}
1872
1873#ifdef CONFIG_NUMA_BALANCING
1874#ifdef CONFIG_SCHED_DEBUG
1875void set_numabalancing_state(bool enabled)
1876{
1877 if (enabled)
1878 sched_feat_set("NUMA");
1879 else
1880 sched_feat_set("NO_NUMA");
1881}
1882#else
1883__read_mostly bool numabalancing_enabled;
1884
1885void set_numabalancing_state(bool enabled)
1886{
1887 numabalancing_enabled = enabled;
1888}
1889#endif /* CONFIG_SCHED_DEBUG */
1890
1891#ifdef CONFIG_PROC_SYSCTL
1892int sysctl_numa_balancing(struct ctl_table *table, int write,
1893 void __user *buffer, size_t *lenp, loff_t *ppos)
1894{
1895 struct ctl_table t;
1896 int err;
1897 int state = numabalancing_enabled;
1898
1899 if (write && !capable(CAP_SYS_ADMIN))
1900 return -EPERM;
1901
1902 t = *table;
1903 t.data = &state;
1904 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1905 if (err < 0)
1906 return err;
1907 if (write)
1908 set_numabalancing_state(state);
1909 return err;
1910}
1911#endif
1912#endif
1913
1914/*
1915 * fork()/clone()-time setup:
1916 */
1917int sched_fork(unsigned long clone_flags, struct task_struct *p)
1918{
1919 unsigned long flags;
1920 int cpu = get_cpu();
1921
1922 __sched_fork(clone_flags, p);
1923 /*
1924 * We mark the process as running here. This guarantees that
1925 * nobody will actually run it, and a signal or other external
1926 * event cannot wake it up and insert it on the runqueue either.
1927 */
1928 p->state = TASK_RUNNING;
1929
1930 /*
1931 * Make sure we do not leak PI boosting priority to the child.
1932 */
1933 p->prio = current->normal_prio;
1934
1935 /*
1936 * Revert to default priority/policy on fork if requested.
1937 */
1938 if (unlikely(p->sched_reset_on_fork)) {
1939 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1940 p->policy = SCHED_NORMAL;
1941 p->static_prio = NICE_TO_PRIO(0);
1942 p->rt_priority = 0;
1943 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1944 p->static_prio = NICE_TO_PRIO(0);
1945
1946 p->prio = p->normal_prio = __normal_prio(p);
1947 set_load_weight(p);
1948
1949 /*
1950 * We don't need the reset flag anymore after the fork. It has
1951 * fulfilled its duty:
1952 */
1953 p->sched_reset_on_fork = 0;
1954 }
1955
1956 if (dl_prio(p->prio)) {
1957 put_cpu();
1958 return -EAGAIN;
1959 } else if (rt_prio(p->prio)) {
1960 p->sched_class = &rt_sched_class;
1961 } else {
1962 p->sched_class = &fair_sched_class;
1963 }
1964
1965 if (p->sched_class->task_fork)
1966 p->sched_class->task_fork(p);
1967
1968 /*
1969 * The child is not yet in the pid-hash so no cgroup attach races,
1970 * and the cgroup is pinned to this child due to cgroup_fork()
1971 * is ran before sched_fork().
1972 *
1973 * Silence PROVE_RCU.
1974 */
1975 raw_spin_lock_irqsave(&p->pi_lock, flags);
1976 set_task_cpu(p, cpu);
1977 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1978
1979#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1980 if (likely(sched_info_on()))
1981 memset(&p->sched_info, 0, sizeof(p->sched_info));
1982#endif
1983#if defined(CONFIG_SMP)
1984 p->on_cpu = 0;
1985#endif
1986 init_task_preempt_count(p);
1987#ifdef CONFIG_SMP
1988 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1989 RB_CLEAR_NODE(&p->pushable_dl_tasks);
1990#endif
1991
1992 put_cpu();
1993 return 0;
1994}
1995
1996unsigned long to_ratio(u64 period, u64 runtime)
1997{
1998 if (runtime == RUNTIME_INF)
1999 return 1ULL << 20;
2000
2001 /*
2002 * Doing this here saves a lot of checks in all
2003 * the calling paths, and returning zero seems
2004 * safe for them anyway.
2005 */
2006 if (period == 0)
2007 return 0;
2008
2009 return div64_u64(runtime << 20, period);
2010}
2011
2012#ifdef CONFIG_SMP
2013inline struct dl_bw *dl_bw_of(int i)
2014{
2015 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2016 "sched RCU must be held");
2017 return &cpu_rq(i)->rd->dl_bw;
2018}
2019
2020static inline int dl_bw_cpus(int i)
2021{
2022 struct root_domain *rd = cpu_rq(i)->rd;
2023 int cpus = 0;
2024
2025 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2026 "sched RCU must be held");
2027 for_each_cpu_and(i, rd->span, cpu_active_mask)
2028 cpus++;
2029
2030 return cpus;
2031}
2032#else
2033inline struct dl_bw *dl_bw_of(int i)
2034{
2035 return &cpu_rq(i)->dl.dl_bw;
2036}
2037
2038static inline int dl_bw_cpus(int i)
2039{
2040 return 1;
2041}
2042#endif
2043
2044/*
2045 * We must be sure that accepting a new task (or allowing changing the
2046 * parameters of an existing one) is consistent with the bandwidth
2047 * constraints. If yes, this function also accordingly updates the currently
2048 * allocated bandwidth to reflect the new situation.
2049 *
2050 * This function is called while holding p's rq->lock.
2051 *
2052 * XXX we should delay bw change until the task's 0-lag point, see
2053 * __setparam_dl().
2054 */
2055static int dl_overflow(struct task_struct *p, int policy,
2056 const struct sched_attr *attr)
2057{
2058
2059 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2060 u64 period = attr->sched_period ?: attr->sched_deadline;
2061 u64 runtime = attr->sched_runtime;
2062 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2063 int cpus, err = -1;
2064
2065 if (new_bw == p->dl.dl_bw)
2066 return 0;
2067
2068 /*
2069 * Either if a task, enters, leave, or stays -deadline but changes
2070 * its parameters, we may need to update accordingly the total
2071 * allocated bandwidth of the container.
2072 */
2073 raw_spin_lock(&dl_b->lock);
2074 cpus = dl_bw_cpus(task_cpu(p));
2075 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2076 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2077 __dl_add(dl_b, new_bw);
2078 err = 0;
2079 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2080 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2081 __dl_clear(dl_b, p->dl.dl_bw);
2082 __dl_add(dl_b, new_bw);
2083 err = 0;
2084 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2085 __dl_clear(dl_b, p->dl.dl_bw);
2086 err = 0;
2087 }
2088 raw_spin_unlock(&dl_b->lock);
2089
2090 return err;
2091}
2092
2093extern void init_dl_bw(struct dl_bw *dl_b);
2094
2095/*
2096 * wake_up_new_task - wake up a newly created task for the first time.
2097 *
2098 * This function will do some initial scheduler statistics housekeeping
2099 * that must be done for every newly created context, then puts the task
2100 * on the runqueue and wakes it.
2101 */
2102void wake_up_new_task(struct task_struct *p)
2103{
2104 unsigned long flags;
2105 struct rq *rq;
2106
2107 raw_spin_lock_irqsave(&p->pi_lock, flags);
2108#ifdef CONFIG_SMP
2109 /*
2110 * Fork balancing, do it here and not earlier because:
2111 * - cpus_allowed can change in the fork path
2112 * - any previously selected cpu might disappear through hotplug
2113 */
2114 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
2115#endif
2116
2117 /* Initialize new task's runnable average */
2118 init_task_runnable_average(p);
2119 rq = __task_rq_lock(p);
2120 activate_task(rq, p, 0);
2121 p->on_rq = TASK_ON_RQ_QUEUED;
2122 trace_sched_wakeup_new(p, true);
2123 check_preempt_curr(rq, p, WF_FORK);
2124#ifdef CONFIG_SMP
2125 if (p->sched_class->task_woken)
2126 p->sched_class->task_woken(rq, p);
2127#endif
2128 task_rq_unlock(rq, p, &flags);
2129}
2130
2131#ifdef CONFIG_PREEMPT_NOTIFIERS
2132
2133/**
2134 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2135 * @notifier: notifier struct to register
2136 */
2137void preempt_notifier_register(struct preempt_notifier *notifier)
2138{
2139 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2140}
2141EXPORT_SYMBOL_GPL(preempt_notifier_register);
2142
2143/**
2144 * preempt_notifier_unregister - no longer interested in preemption notifications
2145 * @notifier: notifier struct to unregister
2146 *
2147 * This is safe to call from within a preemption notifier.
2148 */
2149void preempt_notifier_unregister(struct preempt_notifier *notifier)
2150{
2151 hlist_del(&notifier->link);
2152}
2153EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2154
2155static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2156{
2157 struct preempt_notifier *notifier;
2158
2159 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2160 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2161}
2162
2163static void
2164fire_sched_out_preempt_notifiers(struct task_struct *curr,
2165 struct task_struct *next)
2166{
2167 struct preempt_notifier *notifier;
2168
2169 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
2170 notifier->ops->sched_out(notifier, next);
2171}
2172
2173#else /* !CONFIG_PREEMPT_NOTIFIERS */
2174
2175static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2176{
2177}
2178
2179static void
2180fire_sched_out_preempt_notifiers(struct task_struct *curr,
2181 struct task_struct *next)
2182{
2183}
2184
2185#endif /* CONFIG_PREEMPT_NOTIFIERS */
2186
2187/**
2188 * prepare_task_switch - prepare to switch tasks
2189 * @rq: the runqueue preparing to switch
2190 * @prev: the current task that is being switched out
2191 * @next: the task we are going to switch to.
2192 *
2193 * This is called with the rq lock held and interrupts off. It must
2194 * be paired with a subsequent finish_task_switch after the context
2195 * switch.
2196 *
2197 * prepare_task_switch sets up locking and calls architecture specific
2198 * hooks.
2199 */
2200static inline void
2201prepare_task_switch(struct rq *rq, struct task_struct *prev,
2202 struct task_struct *next)
2203{
2204 trace_sched_switch(prev, next);
2205 sched_info_switch(rq, prev, next);
2206 perf_event_task_sched_out(prev, next);
2207 fire_sched_out_preempt_notifiers(prev, next);
2208 prepare_lock_switch(rq, next);
2209 prepare_arch_switch(next);
2210}
2211
2212/**
2213 * finish_task_switch - clean up after a task-switch
2214 * @prev: the thread we just switched away from.
2215 *
2216 * finish_task_switch must be called after the context switch, paired
2217 * with a prepare_task_switch call before the context switch.
2218 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2219 * and do any other architecture-specific cleanup actions.
2220 *
2221 * Note that we may have delayed dropping an mm in context_switch(). If
2222 * so, we finish that here outside of the runqueue lock. (Doing it
2223 * with the lock held can cause deadlocks; see schedule() for
2224 * details.)
2225 *
2226 * The context switch have flipped the stack from under us and restored the
2227 * local variables which were saved when this task called schedule() in the
2228 * past. prev == current is still correct but we need to recalculate this_rq
2229 * because prev may have moved to another CPU.
2230 */
2231static struct rq *finish_task_switch(struct task_struct *prev)
2232 __releases(rq->lock)
2233{
2234 struct rq *rq = this_rq();
2235 struct mm_struct *mm = rq->prev_mm;
2236 long prev_state;
2237
2238 rq->prev_mm = NULL;
2239
2240 /*
2241 * A task struct has one reference for the use as "current".
2242 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2243 * schedule one last time. The schedule call will never return, and
2244 * the scheduled task must drop that reference.
2245 * The test for TASK_DEAD must occur while the runqueue locks are
2246 * still held, otherwise prev could be scheduled on another cpu, die
2247 * there before we look at prev->state, and then the reference would
2248 * be dropped twice.
2249 * Manfred Spraul <manfred@colorfullife.com>
2250 */
2251 prev_state = prev->state;
2252 vtime_task_switch(prev);
2253 finish_arch_switch(prev);
2254 perf_event_task_sched_in(prev, current);
2255 finish_lock_switch(rq, prev);
2256 finish_arch_post_lock_switch();
2257
2258 fire_sched_in_preempt_notifiers(current);
2259 if (mm)
2260 mmdrop(mm);
2261 if (unlikely(prev_state == TASK_DEAD)) {
2262 if (prev->sched_class->task_dead)
2263 prev->sched_class->task_dead(prev);
2264
2265 /*
2266 * Remove function-return probe instances associated with this
2267 * task and put them back on the free list.
2268 */
2269 kprobe_flush_task(prev);
2270 put_task_struct(prev);
2271 }
2272
2273 tick_nohz_task_switch(current);
2274 return rq;
2275}
2276
2277#ifdef CONFIG_SMP
2278
2279/* rq->lock is NOT held, but preemption is disabled */
2280static void __balance_callback(struct rq *rq)
2281{
2282 struct callback_head *head, *next;
2283 void (*func)(struct rq *rq);
2284 unsigned long flags;
2285
2286 raw_spin_lock_irqsave(&rq->lock, flags);
2287 head = rq->balance_callback;
2288 rq->balance_callback = NULL;
2289 while (head) {
2290 func = (void (*)(struct rq *))head->func;
2291 next = head->next;
2292 head->next = NULL;
2293 head = next;
2294
2295 func(rq);
2296 }
2297 raw_spin_unlock_irqrestore(&rq->lock, flags);
2298}
2299
2300static inline void balance_callback(struct rq *rq)
2301{
2302 if (unlikely(rq->balance_callback))
2303 __balance_callback(rq);
2304}
2305
2306#else
2307
2308static inline void balance_callback(struct rq *rq)
2309{
2310}
2311
2312#endif
2313
2314/**
2315 * schedule_tail - first thing a freshly forked thread must call.
2316 * @prev: the thread we just switched away from.
2317 */
2318asmlinkage __visible void schedule_tail(struct task_struct *prev)
2319 __releases(rq->lock)
2320{
2321 struct rq *rq;
2322
2323 /* finish_task_switch() drops rq->lock and enables preemtion */
2324 preempt_disable();
2325 rq = finish_task_switch(prev);
2326 balance_callback(rq);
2327 preempt_enable();
2328
2329 if (current->set_child_tid)
2330 put_user(task_pid_vnr(current), current->set_child_tid);
2331}
2332
2333/*
2334 * context_switch - switch to the new MM and the new thread's register state.
2335 */
2336static inline struct rq *
2337context_switch(struct rq *rq, struct task_struct *prev,
2338 struct task_struct *next)
2339{
2340 struct mm_struct *mm, *oldmm;
2341
2342 prepare_task_switch(rq, prev, next);
2343
2344 mm = next->mm;
2345 oldmm = prev->active_mm;
2346 /*
2347 * For paravirt, this is coupled with an exit in switch_to to
2348 * combine the page table reload and the switch backend into
2349 * one hypercall.
2350 */
2351 arch_start_context_switch(prev);
2352
2353 if (!mm) {
2354 next->active_mm = oldmm;
2355 atomic_inc(&oldmm->mm_count);
2356 enter_lazy_tlb(oldmm, next);
2357 } else
2358 switch_mm(oldmm, mm, next);
2359
2360 if (!prev->mm) {
2361 prev->active_mm = NULL;
2362 rq->prev_mm = oldmm;
2363 }
2364 /*
2365 * Since the runqueue lock will be released by the next
2366 * task (which is an invalid locking op but in the case
2367 * of the scheduler it's an obvious special-case), so we
2368 * do an early lockdep release here:
2369 */
2370 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2371
2372 context_tracking_task_switch(prev, next);
2373 /* Here we just switch the register state and the stack. */
2374 switch_to(prev, next, prev);
2375 barrier();
2376
2377 return finish_task_switch(prev);
2378}
2379
2380/*
2381 * nr_running and nr_context_switches:
2382 *
2383 * externally visible scheduler statistics: current number of runnable
2384 * threads, total number of context switches performed since bootup.
2385 */
2386unsigned long nr_running(void)
2387{
2388 unsigned long i, sum = 0;
2389
2390 for_each_online_cpu(i)
2391 sum += cpu_rq(i)->nr_running;
2392
2393 return sum;
2394}
2395
2396/*
2397 * Check if only the current task is running on the cpu.
2398 */
2399bool single_task_running(void)
2400{
2401 if (cpu_rq(smp_processor_id())->nr_running == 1)
2402 return true;
2403 else
2404 return false;
2405}
2406EXPORT_SYMBOL(single_task_running);
2407
2408unsigned long long nr_context_switches(void)
2409{
2410 int i;
2411 unsigned long long sum = 0;
2412
2413 for_each_possible_cpu(i)
2414 sum += cpu_rq(i)->nr_switches;
2415
2416 return sum;
2417}
2418
2419unsigned long nr_iowait(void)
2420{
2421 unsigned long i, sum = 0;
2422
2423 for_each_possible_cpu(i)
2424 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2425
2426 return sum;
2427}
2428
2429unsigned long nr_iowait_cpu(int cpu)
2430{
2431 struct rq *this = cpu_rq(cpu);
2432 return atomic_read(&this->nr_iowait);
2433}
2434
2435void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2436{
2437 struct rq *rq = this_rq();
2438 *nr_waiters = atomic_read(&rq->nr_iowait);
2439 *load = rq->load.weight;
2440}
2441
2442#ifdef CONFIG_SMP
2443
2444/*
2445 * sched_exec - execve() is a valuable balancing opportunity, because at
2446 * this point the task has the smallest effective memory and cache footprint.
2447 */
2448void sched_exec(void)
2449{
2450 struct task_struct *p = current;
2451 unsigned long flags;
2452 int dest_cpu;
2453
2454 raw_spin_lock_irqsave(&p->pi_lock, flags);
2455 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
2456 if (dest_cpu == smp_processor_id())
2457 goto unlock;
2458
2459 if (likely(cpu_active(dest_cpu))) {
2460 struct migration_arg arg = { p, dest_cpu };
2461
2462 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2463 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
2464 return;
2465 }
2466unlock:
2467 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2468}
2469
2470#endif
2471
2472DEFINE_PER_CPU(struct kernel_stat, kstat);
2473DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
2474
2475EXPORT_PER_CPU_SYMBOL(kstat);
2476EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
2477
2478/*
2479 * Return accounted runtime for the task.
2480 * In case the task is currently running, return the runtime plus current's
2481 * pending runtime that have not been accounted yet.
2482 */
2483unsigned long long task_sched_runtime(struct task_struct *p)
2484{
2485 unsigned long flags;
2486 struct rq *rq;
2487 u64 ns;
2488
2489#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2490 /*
2491 * 64-bit doesn't need locks to atomically read a 64bit value.
2492 * So we have a optimization chance when the task's delta_exec is 0.
2493 * Reading ->on_cpu is racy, but this is ok.
2494 *
2495 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2496 * If we race with it entering cpu, unaccounted time is 0. This is
2497 * indistinguishable from the read occurring a few cycles earlier.
2498 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2499 * been accounted, so we're correct here as well.
2500 */
2501 if (!p->on_cpu || !task_on_rq_queued(p))
2502 return p->se.sum_exec_runtime;
2503#endif
2504
2505 rq = task_rq_lock(p, &flags);
2506 /*
2507 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2508 * project cycles that may never be accounted to this
2509 * thread, breaking clock_gettime().
2510 */
2511 if (task_current(rq, p) && task_on_rq_queued(p)) {
2512 update_rq_clock(rq);
2513 p->sched_class->update_curr(rq);
2514 }
2515 ns = p->se.sum_exec_runtime;
2516 task_rq_unlock(rq, p, &flags);
2517
2518 return ns;
2519}
2520
2521/*
2522 * This function gets called by the timer code, with HZ frequency.
2523 * We call it with interrupts disabled.
2524 */
2525void scheduler_tick(void)
2526{
2527 int cpu = smp_processor_id();
2528 struct rq *rq = cpu_rq(cpu);
2529 struct task_struct *curr = rq->curr;
2530
2531 sched_clock_tick();
2532
2533 raw_spin_lock(&rq->lock);
2534 update_rq_clock(rq);
2535 curr->sched_class->task_tick(rq, curr, 0);
2536 update_cpu_load_active(rq);
2537 calc_global_load_tick(rq);
2538 raw_spin_unlock(&rq->lock);
2539
2540 perf_event_task_tick();
2541
2542#ifdef CONFIG_SMP
2543 rq->idle_balance = idle_cpu(cpu);
2544 trigger_load_balance(rq);
2545#endif
2546 rq_last_tick_reset(rq);
2547}
2548
2549#ifdef CONFIG_NO_HZ_FULL
2550/**
2551 * scheduler_tick_max_deferment
2552 *
2553 * Keep at least one tick per second when a single
2554 * active task is running because the scheduler doesn't
2555 * yet completely support full dynticks environment.
2556 *
2557 * This makes sure that uptime, CFS vruntime, load
2558 * balancing, etc... continue to move forward, even
2559 * with a very low granularity.
2560 *
2561 * Return: Maximum deferment in nanoseconds.
2562 */
2563u64 scheduler_tick_max_deferment(void)
2564{
2565 struct rq *rq = this_rq();
2566 unsigned long next, now = READ_ONCE(jiffies);
2567
2568 next = rq->last_sched_tick + HZ;
2569
2570 if (time_before_eq(next, now))
2571 return 0;
2572
2573 return jiffies_to_nsecs(next - now);
2574}
2575#endif
2576
2577notrace unsigned long get_parent_ip(unsigned long addr)
2578{
2579 if (in_lock_functions(addr)) {
2580 addr = CALLER_ADDR2;
2581 if (in_lock_functions(addr))
2582 addr = CALLER_ADDR3;
2583 }
2584 return addr;
2585}
2586
2587#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2588 defined(CONFIG_PREEMPT_TRACER))
2589
2590void preempt_count_add(int val)
2591{
2592#ifdef CONFIG_DEBUG_PREEMPT
2593 /*
2594 * Underflow?
2595 */
2596 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2597 return;
2598#endif
2599 __preempt_count_add(val);
2600#ifdef CONFIG_DEBUG_PREEMPT
2601 /*
2602 * Spinlock count overflowing soon?
2603 */
2604 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2605 PREEMPT_MASK - 10);
2606#endif
2607 if (preempt_count() == val) {
2608 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2609#ifdef CONFIG_DEBUG_PREEMPT
2610 current->preempt_disable_ip = ip;
2611#endif
2612 trace_preempt_off(CALLER_ADDR0, ip);
2613 }
2614}
2615EXPORT_SYMBOL(preempt_count_add);
2616NOKPROBE_SYMBOL(preempt_count_add);
2617
2618void preempt_count_sub(int val)
2619{
2620#ifdef CONFIG_DEBUG_PREEMPT
2621 /*
2622 * Underflow?
2623 */
2624 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
2625 return;
2626 /*
2627 * Is the spinlock portion underflowing?
2628 */
2629 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2630 !(preempt_count() & PREEMPT_MASK)))
2631 return;
2632#endif
2633
2634 if (preempt_count() == val)
2635 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
2636 __preempt_count_sub(val);
2637}
2638EXPORT_SYMBOL(preempt_count_sub);
2639NOKPROBE_SYMBOL(preempt_count_sub);
2640
2641#endif
2642
2643/*
2644 * Print scheduling while atomic bug:
2645 */
2646static noinline void __schedule_bug(struct task_struct *prev)
2647{
2648 if (oops_in_progress)
2649 return;
2650
2651 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2652 prev->comm, prev->pid, preempt_count());
2653
2654 debug_show_held_locks(prev);
2655 print_modules();
2656 if (irqs_disabled())
2657 print_irqtrace_events(prev);
2658#ifdef CONFIG_DEBUG_PREEMPT
2659 if (in_atomic_preempt_off()) {
2660 pr_err("Preemption disabled at:");
2661 print_ip_sym(current->preempt_disable_ip);
2662 pr_cont("\n");
2663 }
2664#endif
2665 dump_stack();
2666 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
2667}
2668
2669/*
2670 * Various schedule()-time debugging checks and statistics:
2671 */
2672static inline void schedule_debug(struct task_struct *prev)
2673{
2674#ifdef CONFIG_SCHED_STACK_END_CHECK
2675 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2676#endif
2677 /*
2678 * Test if we are atomic. Since do_exit() needs to call into
2679 * schedule() atomically, we ignore that path. Otherwise whine
2680 * if we are scheduling when we should not.
2681 */
2682 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
2683 __schedule_bug(prev);
2684 rcu_sleep_check();
2685
2686 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2687
2688 schedstat_inc(this_rq(), sched_count);
2689}
2690
2691/*
2692 * Pick up the highest-prio task:
2693 */
2694static inline struct task_struct *
2695pick_next_task(struct rq *rq, struct task_struct *prev)
2696{
2697 const struct sched_class *class = &fair_sched_class;
2698 struct task_struct *p;
2699
2700 /*
2701 * Optimization: we know that if all tasks are in
2702 * the fair class we can call that function directly:
2703 */
2704 if (likely(prev->sched_class == class &&
2705 rq->nr_running == rq->cfs.h_nr_running)) {
2706 p = fair_sched_class.pick_next_task(rq, prev);
2707 if (unlikely(p == RETRY_TASK))
2708 goto again;
2709
2710 /* assumes fair_sched_class->next == idle_sched_class */
2711 if (unlikely(!p))
2712 p = idle_sched_class.pick_next_task(rq, prev);
2713
2714 return p;
2715 }
2716
2717again:
2718 for_each_class(class) {
2719 p = class->pick_next_task(rq, prev);
2720 if (p) {
2721 if (unlikely(p == RETRY_TASK))
2722 goto again;
2723 return p;
2724 }
2725 }
2726
2727 BUG(); /* the idle class will always have a runnable task */
2728}
2729
2730/*
2731 * __schedule() is the main scheduler function.
2732 *
2733 * The main means of driving the scheduler and thus entering this function are:
2734 *
2735 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2736 *
2737 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2738 * paths. For example, see arch/x86/entry_64.S.
2739 *
2740 * To drive preemption between tasks, the scheduler sets the flag in timer
2741 * interrupt handler scheduler_tick().
2742 *
2743 * 3. Wakeups don't really cause entry into schedule(). They add a
2744 * task to the run-queue and that's it.
2745 *
2746 * Now, if the new task added to the run-queue preempts the current
2747 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2748 * called on the nearest possible occasion:
2749 *
2750 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2751 *
2752 * - in syscall or exception context, at the next outmost
2753 * preempt_enable(). (this might be as soon as the wake_up()'s
2754 * spin_unlock()!)
2755 *
2756 * - in IRQ context, return from interrupt-handler to
2757 * preemptible context
2758 *
2759 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2760 * then at the next:
2761 *
2762 * - cond_resched() call
2763 * - explicit schedule() call
2764 * - return from syscall or exception to user-space
2765 * - return from interrupt-handler to user-space
2766 *
2767 * WARNING: must be called with preemption disabled!
2768 */
2769static void __sched __schedule(void)
2770{
2771 struct task_struct *prev, *next;
2772 unsigned long *switch_count;
2773 struct rq *rq;
2774 int cpu;
2775
2776 cpu = smp_processor_id();
2777 rq = cpu_rq(cpu);
2778 rcu_note_context_switch();
2779 prev = rq->curr;
2780
2781 schedule_debug(prev);
2782
2783 if (sched_feat(HRTICK))
2784 hrtick_clear(rq);
2785
2786 /*
2787 * Make sure that signal_pending_state()->signal_pending() below
2788 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2789 * done by the caller to avoid the race with signal_wake_up().
2790 */
2791 smp_mb__before_spinlock();
2792 raw_spin_lock_irq(&rq->lock);
2793
2794 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2795
2796 switch_count = &prev->nivcsw;
2797 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2798 if (unlikely(signal_pending_state(prev->state, prev))) {
2799 prev->state = TASK_RUNNING;
2800 } else {
2801 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2802 prev->on_rq = 0;
2803
2804 /*
2805 * If a worker went to sleep, notify and ask workqueue
2806 * whether it wants to wake up a task to maintain
2807 * concurrency.
2808 */
2809 if (prev->flags & PF_WQ_WORKER) {
2810 struct task_struct *to_wakeup;
2811
2812 to_wakeup = wq_worker_sleeping(prev, cpu);
2813 if (to_wakeup)
2814 try_to_wake_up_local(to_wakeup);
2815 }
2816 }
2817 switch_count = &prev->nvcsw;
2818 }
2819
2820 if (task_on_rq_queued(prev))
2821 update_rq_clock(rq);
2822
2823 next = pick_next_task(rq, prev);
2824 clear_tsk_need_resched(prev);
2825 clear_preempt_need_resched();
2826 rq->clock_skip_update = 0;
2827
2828 if (likely(prev != next)) {
2829 rq->nr_switches++;
2830 rq->curr = next;
2831 ++*switch_count;
2832
2833 rq = context_switch(rq, prev, next); /* unlocks the rq */
2834 cpu = cpu_of(rq);
2835 } else
2836 raw_spin_unlock_irq(&rq->lock);
2837
2838 balance_callback(rq);
2839}
2840
2841static inline void sched_submit_work(struct task_struct *tsk)
2842{
2843 if (!tsk->state || tsk_is_pi_blocked(tsk))
2844 return;
2845 /*
2846 * If we are going to sleep and we have plugged IO queued,
2847 * make sure to submit it to avoid deadlocks.
2848 */
2849 if (blk_needs_flush_plug(tsk))
2850 blk_schedule_flush_plug(tsk);
2851}
2852
2853asmlinkage __visible void __sched schedule(void)
2854{
2855 struct task_struct *tsk = current;
2856
2857 sched_submit_work(tsk);
2858 do {
2859 preempt_disable();
2860 __schedule();
2861 sched_preempt_enable_no_resched();
2862 } while (need_resched());
2863}
2864EXPORT_SYMBOL(schedule);
2865
2866#ifdef CONFIG_CONTEXT_TRACKING
2867asmlinkage __visible void __sched schedule_user(void)
2868{
2869 /*
2870 * If we come here after a random call to set_need_resched(),
2871 * or we have been woken up remotely but the IPI has not yet arrived,
2872 * we haven't yet exited the RCU idle mode. Do it here manually until
2873 * we find a better solution.
2874 *
2875 * NB: There are buggy callers of this function. Ideally we
2876 * should warn if prev_state != CONTEXT_USER, but that will trigger
2877 * too frequently to make sense yet.
2878 */
2879 enum ctx_state prev_state = exception_enter();
2880 schedule();
2881 exception_exit(prev_state);
2882}
2883#endif
2884
2885/**
2886 * schedule_preempt_disabled - called with preemption disabled
2887 *
2888 * Returns with preemption disabled. Note: preempt_count must be 1
2889 */
2890void __sched schedule_preempt_disabled(void)
2891{
2892 sched_preempt_enable_no_resched();
2893 schedule();
2894 preempt_disable();
2895}
2896
2897static void __sched notrace preempt_schedule_common(void)
2898{
2899 do {
2900 preempt_active_enter();
2901 __schedule();
2902 preempt_active_exit();
2903
2904 /*
2905 * Check again in case we missed a preemption opportunity
2906 * between schedule and now.
2907 */
2908 } while (need_resched());
2909}
2910
2911#ifdef CONFIG_PREEMPT
2912/*
2913 * this is the entry point to schedule() from in-kernel preemption
2914 * off of preempt_enable. Kernel preemptions off return from interrupt
2915 * occur there and call schedule directly.
2916 */
2917asmlinkage __visible void __sched notrace preempt_schedule(void)
2918{
2919 /*
2920 * If there is a non-zero preempt_count or interrupts are disabled,
2921 * we do not want to preempt the current task. Just return..
2922 */
2923 if (likely(!preemptible()))
2924 return;
2925
2926 preempt_schedule_common();
2927}
2928NOKPROBE_SYMBOL(preempt_schedule);
2929EXPORT_SYMBOL(preempt_schedule);
2930
2931/**
2932 * preempt_schedule_notrace - preempt_schedule called by tracing
2933 *
2934 * The tracing infrastructure uses preempt_enable_notrace to prevent
2935 * recursion and tracing preempt enabling caused by the tracing
2936 * infrastructure itself. But as tracing can happen in areas coming
2937 * from userspace or just about to enter userspace, a preempt enable
2938 * can occur before user_exit() is called. This will cause the scheduler
2939 * to be called when the system is still in usermode.
2940 *
2941 * To prevent this, the preempt_enable_notrace will use this function
2942 * instead of preempt_schedule() to exit user context if needed before
2943 * calling the scheduler.
2944 */
2945asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
2946{
2947 enum ctx_state prev_ctx;
2948
2949 if (likely(!preemptible()))
2950 return;
2951
2952 do {
2953 /*
2954 * Use raw __prempt_count() ops that don't call function.
2955 * We can't call functions before disabling preemption which
2956 * disarm preemption tracing recursions.
2957 */
2958 __preempt_count_add(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2959 barrier();
2960 /*
2961 * Needs preempt disabled in case user_exit() is traced
2962 * and the tracer calls preempt_enable_notrace() causing
2963 * an infinite recursion.
2964 */
2965 prev_ctx = exception_enter();
2966 __schedule();
2967 exception_exit(prev_ctx);
2968
2969 barrier();
2970 __preempt_count_sub(PREEMPT_ACTIVE + PREEMPT_DISABLE_OFFSET);
2971 } while (need_resched());
2972}
2973EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
2974
2975#endif /* CONFIG_PREEMPT */
2976
2977/*
2978 * this is the entry point to schedule() from kernel preemption
2979 * off of irq context.
2980 * Note, that this is called and return with irqs disabled. This will
2981 * protect us against recursive calling from irq.
2982 */
2983asmlinkage __visible void __sched preempt_schedule_irq(void)
2984{
2985 enum ctx_state prev_state;
2986
2987 /* Catch callers which need to be fixed */
2988 BUG_ON(preempt_count() || !irqs_disabled());
2989
2990 prev_state = exception_enter();
2991
2992 do {
2993 preempt_active_enter();
2994 local_irq_enable();
2995 __schedule();
2996 local_irq_disable();
2997 preempt_active_exit();
2998 } while (need_resched());
2999
3000 exception_exit(prev_state);
3001}
3002
3003int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3004 void *key)
3005{
3006 return try_to_wake_up(curr->private, mode, wake_flags);
3007}
3008EXPORT_SYMBOL(default_wake_function);
3009
3010#ifdef CONFIG_RT_MUTEXES
3011
3012/*
3013 * rt_mutex_setprio - set the current priority of a task
3014 * @p: task
3015 * @prio: prio value (kernel-internal form)
3016 *
3017 * This function changes the 'effective' priority of a task. It does
3018 * not touch ->normal_prio like __setscheduler().
3019 *
3020 * Used by the rt_mutex code to implement priority inheritance
3021 * logic. Call site only calls if the priority of the task changed.
3022 */
3023void rt_mutex_setprio(struct task_struct *p, int prio)
3024{
3025 int oldprio, queued, running, enqueue_flag = 0;
3026 struct rq *rq;
3027 const struct sched_class *prev_class;
3028
3029 BUG_ON(prio > MAX_PRIO);
3030
3031 rq = __task_rq_lock(p);
3032
3033 /*
3034 * Idle task boosting is a nono in general. There is one
3035 * exception, when PREEMPT_RT and NOHZ is active:
3036 *
3037 * The idle task calls get_next_timer_interrupt() and holds
3038 * the timer wheel base->lock on the CPU and another CPU wants
3039 * to access the timer (probably to cancel it). We can safely
3040 * ignore the boosting request, as the idle CPU runs this code
3041 * with interrupts disabled and will complete the lock
3042 * protected section without being interrupted. So there is no
3043 * real need to boost.
3044 */
3045 if (unlikely(p == rq->idle)) {
3046 WARN_ON(p != rq->curr);
3047 WARN_ON(p->pi_blocked_on);
3048 goto out_unlock;
3049 }
3050
3051 trace_sched_pi_setprio(p, prio);
3052 oldprio = p->prio;
3053 prev_class = p->sched_class;
3054 queued = task_on_rq_queued(p);
3055 running = task_current(rq, p);
3056 if (queued)
3057 dequeue_task(rq, p, 0);
3058 if (running)
3059 put_prev_task(rq, p);
3060
3061 /*
3062 * Boosting condition are:
3063 * 1. -rt task is running and holds mutex A
3064 * --> -dl task blocks on mutex A
3065 *
3066 * 2. -dl task is running and holds mutex A
3067 * --> -dl task blocks on mutex A and could preempt the
3068 * running task
3069 */
3070 if (dl_prio(prio)) {
3071 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3072 if (!dl_prio(p->normal_prio) ||
3073 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
3074 p->dl.dl_boosted = 1;
3075 p->dl.dl_throttled = 0;
3076 enqueue_flag = ENQUEUE_REPLENISH;
3077 } else
3078 p->dl.dl_boosted = 0;
3079 p->sched_class = &dl_sched_class;
3080 } else if (rt_prio(prio)) {
3081 if (dl_prio(oldprio))
3082 p->dl.dl_boosted = 0;
3083 if (oldprio < prio)
3084 enqueue_flag = ENQUEUE_HEAD;
3085 p->sched_class = &rt_sched_class;
3086 } else {
3087 if (dl_prio(oldprio))
3088 p->dl.dl_boosted = 0;
3089 if (rt_prio(oldprio))
3090 p->rt.timeout = 0;
3091 p->sched_class = &fair_sched_class;
3092 }
3093
3094 p->prio = prio;
3095
3096 if (running)
3097 p->sched_class->set_curr_task(rq);
3098 if (queued)
3099 enqueue_task(rq, p, enqueue_flag);
3100
3101 check_class_changed(rq, p, prev_class, oldprio);
3102out_unlock:
3103 __task_rq_unlock(rq);
3104}
3105#endif
3106
3107void set_user_nice(struct task_struct *p, long nice)
3108{
3109 int old_prio, delta, queued;
3110 unsigned long flags;
3111 struct rq *rq;
3112
3113 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
3114 return;
3115 /*
3116 * We have to be careful, if called from sys_setpriority(),
3117 * the task might be in the middle of scheduling on another CPU.
3118 */
3119 rq = task_rq_lock(p, &flags);
3120 /*
3121 * The RT priorities are set via sched_setscheduler(), but we still
3122 * allow the 'normal' nice value to be set - but as expected
3123 * it wont have any effect on scheduling until the task is
3124 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3125 */
3126 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3127 p->static_prio = NICE_TO_PRIO(nice);
3128 goto out_unlock;
3129 }
3130 queued = task_on_rq_queued(p);
3131 if (queued)
3132 dequeue_task(rq, p, 0);
3133
3134 p->static_prio = NICE_TO_PRIO(nice);
3135 set_load_weight(p);
3136 old_prio = p->prio;
3137 p->prio = effective_prio(p);
3138 delta = p->prio - old_prio;
3139
3140 if (queued) {
3141 enqueue_task(rq, p, 0);
3142 /*
3143 * If the task increased its priority or is running and
3144 * lowered its priority, then reschedule its CPU:
3145 */
3146 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3147 resched_curr(rq);
3148 }
3149out_unlock:
3150 task_rq_unlock(rq, p, &flags);
3151}
3152EXPORT_SYMBOL(set_user_nice);
3153
3154/*
3155 * can_nice - check if a task can reduce its nice value
3156 * @p: task
3157 * @nice: nice value
3158 */
3159int can_nice(const struct task_struct *p, const int nice)
3160{
3161 /* convert nice value [19,-20] to rlimit style value [1,40] */
3162 int nice_rlim = nice_to_rlimit(nice);
3163
3164 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
3165 capable(CAP_SYS_NICE));
3166}
3167
3168#ifdef __ARCH_WANT_SYS_NICE
3169
3170/*
3171 * sys_nice - change the priority of the current process.
3172 * @increment: priority increment
3173 *
3174 * sys_setpriority is a more generic, but much slower function that
3175 * does similar things.
3176 */
3177SYSCALL_DEFINE1(nice, int, increment)
3178{
3179 long nice, retval;
3180
3181 /*
3182 * Setpriority might change our priority at the same moment.
3183 * We don't have to worry. Conceptually one call occurs first
3184 * and we have a single winner.
3185 */
3186 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
3187 nice = task_nice(current) + increment;
3188
3189 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
3190 if (increment < 0 && !can_nice(current, nice))
3191 return -EPERM;
3192
3193 retval = security_task_setnice(current, nice);
3194 if (retval)
3195 return retval;
3196
3197 set_user_nice(current, nice);
3198 return 0;
3199}
3200
3201#endif
3202
3203/**
3204 * task_prio - return the priority value of a given task.
3205 * @p: the task in question.
3206 *
3207 * Return: The priority value as seen by users in /proc.
3208 * RT tasks are offset by -200. Normal tasks are centered
3209 * around 0, value goes from -16 to +15.
3210 */
3211int task_prio(const struct task_struct *p)
3212{
3213 return p->prio - MAX_RT_PRIO;
3214}
3215
3216/**
3217 * idle_cpu - is a given cpu idle currently?
3218 * @cpu: the processor in question.
3219 *
3220 * Return: 1 if the CPU is currently idle. 0 otherwise.
3221 */
3222int idle_cpu(int cpu)
3223{
3224 struct rq *rq = cpu_rq(cpu);
3225
3226 if (rq->curr != rq->idle)
3227 return 0;
3228
3229 if (rq->nr_running)
3230 return 0;
3231
3232#ifdef CONFIG_SMP
3233 if (!llist_empty(&rq->wake_list))
3234 return 0;
3235#endif
3236
3237 return 1;
3238}
3239
3240/**
3241 * idle_task - return the idle task for a given cpu.
3242 * @cpu: the processor in question.
3243 *
3244 * Return: The idle task for the cpu @cpu.
3245 */
3246struct task_struct *idle_task(int cpu)
3247{
3248 return cpu_rq(cpu)->idle;
3249}
3250
3251/**
3252 * find_process_by_pid - find a process with a matching PID value.
3253 * @pid: the pid in question.
3254 *
3255 * The task of @pid, if found. %NULL otherwise.
3256 */
3257static struct task_struct *find_process_by_pid(pid_t pid)
3258{
3259 return pid ? find_task_by_vpid(pid) : current;
3260}
3261
3262/*
3263 * This function initializes the sched_dl_entity of a newly becoming
3264 * SCHED_DEADLINE task.
3265 *
3266 * Only the static values are considered here, the actual runtime and the
3267 * absolute deadline will be properly calculated when the task is enqueued
3268 * for the first time with its new policy.
3269 */
3270static void
3271__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3272{
3273 struct sched_dl_entity *dl_se = &p->dl;
3274
3275 dl_se->dl_runtime = attr->sched_runtime;
3276 dl_se->dl_deadline = attr->sched_deadline;
3277 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3278 dl_se->flags = attr->sched_flags;
3279 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3280
3281 /*
3282 * Changing the parameters of a task is 'tricky' and we're not doing
3283 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3284 *
3285 * What we SHOULD do is delay the bandwidth release until the 0-lag
3286 * point. This would include retaining the task_struct until that time
3287 * and change dl_overflow() to not immediately decrement the current
3288 * amount.
3289 *
3290 * Instead we retain the current runtime/deadline and let the new
3291 * parameters take effect after the current reservation period lapses.
3292 * This is safe (albeit pessimistic) because the 0-lag point is always
3293 * before the current scheduling deadline.
3294 *
3295 * We can still have temporary overloads because we do not delay the
3296 * change in bandwidth until that time; so admission control is
3297 * not on the safe side. It does however guarantee tasks will never
3298 * consume more than promised.
3299 */
3300}
3301
3302/*
3303 * sched_setparam() passes in -1 for its policy, to let the functions
3304 * it calls know not to change it.
3305 */
3306#define SETPARAM_POLICY -1
3307
3308static void __setscheduler_params(struct task_struct *p,
3309 const struct sched_attr *attr)
3310{
3311 int policy = attr->sched_policy;
3312
3313 if (policy == SETPARAM_POLICY)
3314 policy = p->policy;
3315
3316 p->policy = policy;
3317
3318 if (dl_policy(policy))
3319 __setparam_dl(p, attr);
3320 else if (fair_policy(policy))
3321 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3322
3323 /*
3324 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3325 * !rt_policy. Always setting this ensures that things like
3326 * getparam()/getattr() don't report silly values for !rt tasks.
3327 */
3328 p->rt_priority = attr->sched_priority;
3329 p->normal_prio = normal_prio(p);
3330 set_load_weight(p);
3331}
3332
3333/* Actually do priority change: must hold pi & rq lock. */
3334static void __setscheduler(struct rq *rq, struct task_struct *p,
3335 const struct sched_attr *attr, bool keep_boost)
3336{
3337 __setscheduler_params(p, attr);
3338
3339 /*
3340 * Keep a potential priority boosting if called from
3341 * sched_setscheduler().
3342 */
3343 if (keep_boost)
3344 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3345 else
3346 p->prio = normal_prio(p);
3347
3348 if (dl_prio(p->prio))
3349 p->sched_class = &dl_sched_class;
3350 else if (rt_prio(p->prio))
3351 p->sched_class = &rt_sched_class;
3352 else
3353 p->sched_class = &fair_sched_class;
3354}
3355
3356static void
3357__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3358{
3359 struct sched_dl_entity *dl_se = &p->dl;
3360
3361 attr->sched_priority = p->rt_priority;
3362 attr->sched_runtime = dl_se->dl_runtime;
3363 attr->sched_deadline = dl_se->dl_deadline;
3364 attr->sched_period = dl_se->dl_period;
3365 attr->sched_flags = dl_se->flags;
3366}
3367
3368/*
3369 * This function validates the new parameters of a -deadline task.
3370 * We ask for the deadline not being zero, and greater or equal
3371 * than the runtime, as well as the period of being zero or
3372 * greater than deadline. Furthermore, we have to be sure that
3373 * user parameters are above the internal resolution of 1us (we
3374 * check sched_runtime only since it is always the smaller one) and
3375 * below 2^63 ns (we have to check both sched_deadline and
3376 * sched_period, as the latter can be zero).
3377 */
3378static bool
3379__checkparam_dl(const struct sched_attr *attr)
3380{
3381 /* deadline != 0 */
3382 if (attr->sched_deadline == 0)
3383 return false;
3384
3385 /*
3386 * Since we truncate DL_SCALE bits, make sure we're at least
3387 * that big.
3388 */
3389 if (attr->sched_runtime < (1ULL << DL_SCALE))
3390 return false;
3391
3392 /*
3393 * Since we use the MSB for wrap-around and sign issues, make
3394 * sure it's not set (mind that period can be equal to zero).
3395 */
3396 if (attr->sched_deadline & (1ULL << 63) ||
3397 attr->sched_period & (1ULL << 63))
3398 return false;
3399
3400 /* runtime <= deadline <= period (if period != 0) */
3401 if ((attr->sched_period != 0 &&
3402 attr->sched_period < attr->sched_deadline) ||
3403 attr->sched_deadline < attr->sched_runtime)
3404 return false;
3405
3406 return true;
3407}
3408
3409/*
3410 * check the target process has a UID that matches the current process's
3411 */
3412static bool check_same_owner(struct task_struct *p)
3413{
3414 const struct cred *cred = current_cred(), *pcred;
3415 bool match;
3416
3417 rcu_read_lock();
3418 pcred = __task_cred(p);
3419 match = (uid_eq(cred->euid, pcred->euid) ||
3420 uid_eq(cred->euid, pcred->uid));
3421 rcu_read_unlock();
3422 return match;
3423}
3424
3425static bool dl_param_changed(struct task_struct *p,
3426 const struct sched_attr *attr)
3427{
3428 struct sched_dl_entity *dl_se = &p->dl;
3429
3430 if (dl_se->dl_runtime != attr->sched_runtime ||
3431 dl_se->dl_deadline != attr->sched_deadline ||
3432 dl_se->dl_period != attr->sched_period ||
3433 dl_se->flags != attr->sched_flags)
3434 return true;
3435
3436 return false;
3437}
3438
3439static int __sched_setscheduler(struct task_struct *p,
3440 const struct sched_attr *attr,
3441 bool user)
3442{
3443 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3444 MAX_RT_PRIO - 1 - attr->sched_priority;
3445 int retval, oldprio, oldpolicy = -1, queued, running;
3446 int new_effective_prio, policy = attr->sched_policy;
3447 unsigned long flags;
3448 const struct sched_class *prev_class;
3449 struct rq *rq;
3450 int reset_on_fork;
3451
3452 /* may grab non-irq protected spin_locks */
3453 BUG_ON(in_interrupt());
3454recheck:
3455 /* double check policy once rq lock held */
3456 if (policy < 0) {
3457 reset_on_fork = p->sched_reset_on_fork;
3458 policy = oldpolicy = p->policy;
3459 } else {
3460 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
3461
3462 if (policy != SCHED_DEADLINE &&
3463 policy != SCHED_FIFO && policy != SCHED_RR &&
3464 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3465 policy != SCHED_IDLE)
3466 return -EINVAL;
3467 }
3468
3469 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3470 return -EINVAL;
3471
3472 /*
3473 * Valid priorities for SCHED_FIFO and SCHED_RR are
3474 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3475 * SCHED_BATCH and SCHED_IDLE is 0.
3476 */
3477 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
3478 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
3479 return -EINVAL;
3480 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3481 (rt_policy(policy) != (attr->sched_priority != 0)))
3482 return -EINVAL;
3483
3484 /*
3485 * Allow unprivileged RT tasks to decrease priority:
3486 */
3487 if (user && !capable(CAP_SYS_NICE)) {
3488 if (fair_policy(policy)) {
3489 if (attr->sched_nice < task_nice(p) &&
3490 !can_nice(p, attr->sched_nice))
3491 return -EPERM;
3492 }
3493
3494 if (rt_policy(policy)) {
3495 unsigned long rlim_rtprio =
3496 task_rlimit(p, RLIMIT_RTPRIO);
3497
3498 /* can't set/change the rt policy */
3499 if (policy != p->policy && !rlim_rtprio)
3500 return -EPERM;
3501
3502 /* can't increase priority */
3503 if (attr->sched_priority > p->rt_priority &&
3504 attr->sched_priority > rlim_rtprio)
3505 return -EPERM;
3506 }
3507
3508 /*
3509 * Can't set/change SCHED_DEADLINE policy at all for now
3510 * (safest behavior); in the future we would like to allow
3511 * unprivileged DL tasks to increase their relative deadline
3512 * or reduce their runtime (both ways reducing utilization)
3513 */
3514 if (dl_policy(policy))
3515 return -EPERM;
3516
3517 /*
3518 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3519 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
3520 */
3521 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
3522 if (!can_nice(p, task_nice(p)))
3523 return -EPERM;
3524 }
3525
3526 /* can't change other user's priorities */
3527 if (!check_same_owner(p))
3528 return -EPERM;
3529
3530 /* Normal users shall not reset the sched_reset_on_fork flag */
3531 if (p->sched_reset_on_fork && !reset_on_fork)
3532 return -EPERM;
3533 }
3534
3535 if (user) {
3536 retval = security_task_setscheduler(p);
3537 if (retval)
3538 return retval;
3539 }
3540
3541 /*
3542 * make sure no PI-waiters arrive (or leave) while we are
3543 * changing the priority of the task:
3544 *
3545 * To be able to change p->policy safely, the appropriate
3546 * runqueue lock must be held.
3547 */
3548 rq = task_rq_lock(p, &flags);
3549
3550 /*
3551 * Changing the policy of the stop threads its a very bad idea
3552 */
3553 if (p == rq->stop) {
3554 task_rq_unlock(rq, p, &flags);
3555 return -EINVAL;
3556 }
3557
3558 /*
3559 * If not changing anything there's no need to proceed further,
3560 * but store a possible modification of reset_on_fork.
3561 */
3562 if (unlikely(policy == p->policy)) {
3563 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
3564 goto change;
3565 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3566 goto change;
3567 if (dl_policy(policy) && dl_param_changed(p, attr))
3568 goto change;
3569
3570 p->sched_reset_on_fork = reset_on_fork;
3571 task_rq_unlock(rq, p, &flags);
3572 return 0;
3573 }
3574change:
3575
3576 if (user) {
3577#ifdef CONFIG_RT_GROUP_SCHED
3578 /*
3579 * Do not allow realtime tasks into groups that have no runtime
3580 * assigned.
3581 */
3582 if (rt_bandwidth_enabled() && rt_policy(policy) &&
3583 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3584 !task_group_is_autogroup(task_group(p))) {
3585 task_rq_unlock(rq, p, &flags);
3586 return -EPERM;
3587 }
3588#endif
3589#ifdef CONFIG_SMP
3590 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3591 cpumask_t *span = rq->rd->span;
3592
3593 /*
3594 * Don't allow tasks with an affinity mask smaller than
3595 * the entire root_domain to become SCHED_DEADLINE. We
3596 * will also fail if there's no bandwidth available.
3597 */
3598 if (!cpumask_subset(span, &p->cpus_allowed) ||
3599 rq->rd->dl_bw.bw == 0) {
3600 task_rq_unlock(rq, p, &flags);
3601 return -EPERM;
3602 }
3603 }
3604#endif
3605 }
3606
3607 /* recheck policy now with rq lock held */
3608 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3609 policy = oldpolicy = -1;
3610 task_rq_unlock(rq, p, &flags);
3611 goto recheck;
3612 }
3613
3614 /*
3615 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3616 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3617 * is available.
3618 */
3619 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
3620 task_rq_unlock(rq, p, &flags);
3621 return -EBUSY;
3622 }
3623
3624 p->sched_reset_on_fork = reset_on_fork;
3625 oldprio = p->prio;
3626
3627 /*
3628 * Take priority boosted tasks into account. If the new
3629 * effective priority is unchanged, we just store the new
3630 * normal parameters and do not touch the scheduler class and
3631 * the runqueue. This will be done when the task deboost
3632 * itself.
3633 */
3634 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3635 if (new_effective_prio == oldprio) {
3636 __setscheduler_params(p, attr);
3637 task_rq_unlock(rq, p, &flags);
3638 return 0;
3639 }
3640
3641 queued = task_on_rq_queued(p);
3642 running = task_current(rq, p);
3643 if (queued)
3644 dequeue_task(rq, p, 0);
3645 if (running)
3646 put_prev_task(rq, p);
3647
3648 prev_class = p->sched_class;
3649 __setscheduler(rq, p, attr, true);
3650
3651 if (running)
3652 p->sched_class->set_curr_task(rq);
3653 if (queued) {
3654 /*
3655 * We enqueue to tail when the priority of a task is
3656 * increased (user space view).
3657 */
3658 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3659 }
3660
3661 check_class_changed(rq, p, prev_class, oldprio);
3662 task_rq_unlock(rq, p, &flags);
3663
3664 rt_mutex_adjust_pi(p);
3665
3666 return 0;
3667}
3668
3669static int _sched_setscheduler(struct task_struct *p, int policy,
3670 const struct sched_param *param, bool check)
3671{
3672 struct sched_attr attr = {
3673 .sched_policy = policy,
3674 .sched_priority = param->sched_priority,
3675 .sched_nice = PRIO_TO_NICE(p->static_prio),
3676 };
3677
3678 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3679 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
3680 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3681 policy &= ~SCHED_RESET_ON_FORK;
3682 attr.sched_policy = policy;
3683 }
3684
3685 return __sched_setscheduler(p, &attr, check);
3686}
3687/**
3688 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3689 * @p: the task in question.
3690 * @policy: new policy.
3691 * @param: structure containing the new RT priority.
3692 *
3693 * Return: 0 on success. An error code otherwise.
3694 *
3695 * NOTE that the task may be already dead.
3696 */
3697int sched_setscheduler(struct task_struct *p, int policy,
3698 const struct sched_param *param)
3699{
3700 return _sched_setscheduler(p, policy, param, true);
3701}
3702EXPORT_SYMBOL_GPL(sched_setscheduler);
3703
3704int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3705{
3706 return __sched_setscheduler(p, attr, true);
3707}
3708EXPORT_SYMBOL_GPL(sched_setattr);
3709
3710/**
3711 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3712 * @p: the task in question.
3713 * @policy: new policy.
3714 * @param: structure containing the new RT priority.
3715 *
3716 * Just like sched_setscheduler, only don't bother checking if the
3717 * current context has permission. For example, this is needed in
3718 * stop_machine(): we create temporary high priority worker threads,
3719 * but our caller might not have that capability.
3720 *
3721 * Return: 0 on success. An error code otherwise.
3722 */
3723int sched_setscheduler_nocheck(struct task_struct *p, int policy,
3724 const struct sched_param *param)
3725{
3726 return _sched_setscheduler(p, policy, param, false);
3727}
3728
3729static int
3730do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3731{
3732 struct sched_param lparam;
3733 struct task_struct *p;
3734 int retval;
3735
3736 if (!param || pid < 0)
3737 return -EINVAL;
3738 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3739 return -EFAULT;
3740
3741 rcu_read_lock();
3742 retval = -ESRCH;
3743 p = find_process_by_pid(pid);
3744 if (p != NULL)
3745 retval = sched_setscheduler(p, policy, &lparam);
3746 rcu_read_unlock();
3747
3748 return retval;
3749}
3750
3751/*
3752 * Mimics kernel/events/core.c perf_copy_attr().
3753 */
3754static int sched_copy_attr(struct sched_attr __user *uattr,
3755 struct sched_attr *attr)
3756{
3757 u32 size;
3758 int ret;
3759
3760 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3761 return -EFAULT;
3762
3763 /*
3764 * zero the full structure, so that a short copy will be nice.
3765 */
3766 memset(attr, 0, sizeof(*attr));
3767
3768 ret = get_user(size, &uattr->size);
3769 if (ret)
3770 return ret;
3771
3772 if (size > PAGE_SIZE) /* silly large */
3773 goto err_size;
3774
3775 if (!size) /* abi compat */
3776 size = SCHED_ATTR_SIZE_VER0;
3777
3778 if (size < SCHED_ATTR_SIZE_VER0)
3779 goto err_size;
3780
3781 /*
3782 * If we're handed a bigger struct than we know of,
3783 * ensure all the unknown bits are 0 - i.e. new
3784 * user-space does not rely on any kernel feature
3785 * extensions we dont know about yet.
3786 */
3787 if (size > sizeof(*attr)) {
3788 unsigned char __user *addr;
3789 unsigned char __user *end;
3790 unsigned char val;
3791
3792 addr = (void __user *)uattr + sizeof(*attr);
3793 end = (void __user *)uattr + size;
3794
3795 for (; addr < end; addr++) {
3796 ret = get_user(val, addr);
3797 if (ret)
3798 return ret;
3799 if (val)
3800 goto err_size;
3801 }
3802 size = sizeof(*attr);
3803 }
3804
3805 ret = copy_from_user(attr, uattr, size);
3806 if (ret)
3807 return -EFAULT;
3808
3809 /*
3810 * XXX: do we want to be lenient like existing syscalls; or do we want
3811 * to be strict and return an error on out-of-bounds values?
3812 */
3813 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
3814
3815 return 0;
3816
3817err_size:
3818 put_user(sizeof(*attr), &uattr->size);
3819 return -E2BIG;
3820}
3821
3822/**
3823 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3824 * @pid: the pid in question.
3825 * @policy: new policy.
3826 * @param: structure containing the new RT priority.
3827 *
3828 * Return: 0 on success. An error code otherwise.
3829 */
3830SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3831 struct sched_param __user *, param)
3832{
3833 /* negative values for policy are not valid */
3834 if (policy < 0)
3835 return -EINVAL;
3836
3837 return do_sched_setscheduler(pid, policy, param);
3838}
3839
3840/**
3841 * sys_sched_setparam - set/change the RT priority of a thread
3842 * @pid: the pid in question.
3843 * @param: structure containing the new RT priority.
3844 *
3845 * Return: 0 on success. An error code otherwise.
3846 */
3847SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
3848{
3849 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
3850}
3851
3852/**
3853 * sys_sched_setattr - same as above, but with extended sched_attr
3854 * @pid: the pid in question.
3855 * @uattr: structure containing the extended parameters.
3856 * @flags: for future extension.
3857 */
3858SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3859 unsigned int, flags)
3860{
3861 struct sched_attr attr;
3862 struct task_struct *p;
3863 int retval;
3864
3865 if (!uattr || pid < 0 || flags)
3866 return -EINVAL;
3867
3868 retval = sched_copy_attr(uattr, &attr);
3869 if (retval)
3870 return retval;
3871
3872 if ((int)attr.sched_policy < 0)
3873 return -EINVAL;
3874
3875 rcu_read_lock();
3876 retval = -ESRCH;
3877 p = find_process_by_pid(pid);
3878 if (p != NULL)
3879 retval = sched_setattr(p, &attr);
3880 rcu_read_unlock();
3881
3882 return retval;
3883}
3884
3885/**
3886 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3887 * @pid: the pid in question.
3888 *
3889 * Return: On success, the policy of the thread. Otherwise, a negative error
3890 * code.
3891 */
3892SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
3893{
3894 struct task_struct *p;
3895 int retval;
3896
3897 if (pid < 0)
3898 return -EINVAL;
3899
3900 retval = -ESRCH;
3901 rcu_read_lock();
3902 p = find_process_by_pid(pid);
3903 if (p) {
3904 retval = security_task_getscheduler(p);
3905 if (!retval)
3906 retval = p->policy
3907 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
3908 }
3909 rcu_read_unlock();
3910 return retval;
3911}
3912
3913/**
3914 * sys_sched_getparam - get the RT priority of a thread
3915 * @pid: the pid in question.
3916 * @param: structure containing the RT priority.
3917 *
3918 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3919 * code.
3920 */
3921SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
3922{
3923 struct sched_param lp = { .sched_priority = 0 };
3924 struct task_struct *p;
3925 int retval;
3926
3927 if (!param || pid < 0)
3928 return -EINVAL;
3929
3930 rcu_read_lock();
3931 p = find_process_by_pid(pid);
3932 retval = -ESRCH;
3933 if (!p)
3934 goto out_unlock;
3935
3936 retval = security_task_getscheduler(p);
3937 if (retval)
3938 goto out_unlock;
3939
3940 if (task_has_rt_policy(p))
3941 lp.sched_priority = p->rt_priority;
3942 rcu_read_unlock();
3943
3944 /*
3945 * This one might sleep, we cannot do it with a spinlock held ...
3946 */
3947 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3948
3949 return retval;
3950
3951out_unlock:
3952 rcu_read_unlock();
3953 return retval;
3954}
3955
3956static int sched_read_attr(struct sched_attr __user *uattr,
3957 struct sched_attr *attr,
3958 unsigned int usize)
3959{
3960 int ret;
3961
3962 if (!access_ok(VERIFY_WRITE, uattr, usize))
3963 return -EFAULT;
3964
3965 /*
3966 * If we're handed a smaller struct than we know of,
3967 * ensure all the unknown bits are 0 - i.e. old
3968 * user-space does not get uncomplete information.
3969 */
3970 if (usize < sizeof(*attr)) {
3971 unsigned char *addr;
3972 unsigned char *end;
3973
3974 addr = (void *)attr + usize;
3975 end = (void *)attr + sizeof(*attr);
3976
3977 for (; addr < end; addr++) {
3978 if (*addr)
3979 return -EFBIG;
3980 }
3981
3982 attr->size = usize;
3983 }
3984
3985 ret = copy_to_user(uattr, attr, attr->size);
3986 if (ret)
3987 return -EFAULT;
3988
3989 return 0;
3990}
3991
3992/**
3993 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
3994 * @pid: the pid in question.
3995 * @uattr: structure containing the extended parameters.
3996 * @size: sizeof(attr) for fwd/bwd comp.
3997 * @flags: for future extension.
3998 */
3999SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4000 unsigned int, size, unsigned int, flags)
4001{
4002 struct sched_attr attr = {
4003 .size = sizeof(struct sched_attr),
4004 };
4005 struct task_struct *p;
4006 int retval;
4007
4008 if (!uattr || pid < 0 || size > PAGE_SIZE ||
4009 size < SCHED_ATTR_SIZE_VER0 || flags)
4010 return -EINVAL;
4011
4012 rcu_read_lock();
4013 p = find_process_by_pid(pid);
4014 retval = -ESRCH;
4015 if (!p)
4016 goto out_unlock;
4017
4018 retval = security_task_getscheduler(p);
4019 if (retval)
4020 goto out_unlock;
4021
4022 attr.sched_policy = p->policy;
4023 if (p->sched_reset_on_fork)
4024 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4025 if (task_has_dl_policy(p))
4026 __getparam_dl(p, &attr);
4027 else if (task_has_rt_policy(p))
4028 attr.sched_priority = p->rt_priority;
4029 else
4030 attr.sched_nice = task_nice(p);
4031
4032 rcu_read_unlock();
4033
4034 retval = sched_read_attr(uattr, &attr, size);
4035 return retval;
4036
4037out_unlock:
4038 rcu_read_unlock();
4039 return retval;
4040}
4041
4042long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4043{
4044 cpumask_var_t cpus_allowed, new_mask;
4045 struct task_struct *p;
4046 int retval;
4047
4048 rcu_read_lock();
4049
4050 p = find_process_by_pid(pid);
4051 if (!p) {
4052 rcu_read_unlock();
4053 return -ESRCH;
4054 }
4055
4056 /* Prevent p going away */
4057 get_task_struct(p);
4058 rcu_read_unlock();
4059
4060 if (p->flags & PF_NO_SETAFFINITY) {
4061 retval = -EINVAL;
4062 goto out_put_task;
4063 }
4064 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4065 retval = -ENOMEM;
4066 goto out_put_task;
4067 }
4068 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4069 retval = -ENOMEM;
4070 goto out_free_cpus_allowed;
4071 }
4072 retval = -EPERM;
4073 if (!check_same_owner(p)) {
4074 rcu_read_lock();
4075 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4076 rcu_read_unlock();
4077 goto out_free_new_mask;
4078 }
4079 rcu_read_unlock();
4080 }
4081
4082 retval = security_task_setscheduler(p);
4083 if (retval)
4084 goto out_free_new_mask;
4085
4086
4087 cpuset_cpus_allowed(p, cpus_allowed);
4088 cpumask_and(new_mask, in_mask, cpus_allowed);
4089
4090 /*
4091 * Since bandwidth control happens on root_domain basis,
4092 * if admission test is enabled, we only admit -deadline
4093 * tasks allowed to run on all the CPUs in the task's
4094 * root_domain.
4095 */
4096#ifdef CONFIG_SMP
4097 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4098 rcu_read_lock();
4099 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
4100 retval = -EBUSY;
4101 rcu_read_unlock();
4102 goto out_free_new_mask;
4103 }
4104 rcu_read_unlock();
4105 }
4106#endif
4107again:
4108 retval = set_cpus_allowed_ptr(p, new_mask);
4109
4110 if (!retval) {
4111 cpuset_cpus_allowed(p, cpus_allowed);
4112 if (!cpumask_subset(new_mask, cpus_allowed)) {
4113 /*
4114 * We must have raced with a concurrent cpuset
4115 * update. Just reset the cpus_allowed to the
4116 * cpuset's cpus_allowed
4117 */
4118 cpumask_copy(new_mask, cpus_allowed);
4119 goto again;
4120 }
4121 }
4122out_free_new_mask:
4123 free_cpumask_var(new_mask);
4124out_free_cpus_allowed:
4125 free_cpumask_var(cpus_allowed);
4126out_put_task:
4127 put_task_struct(p);
4128 return retval;
4129}
4130
4131static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4132 struct cpumask *new_mask)
4133{
4134 if (len < cpumask_size())
4135 cpumask_clear(new_mask);
4136 else if (len > cpumask_size())
4137 len = cpumask_size();
4138
4139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4140}
4141
4142/**
4143 * sys_sched_setaffinity - set the cpu affinity of a process
4144 * @pid: pid of the process
4145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4146 * @user_mask_ptr: user-space pointer to the new cpu mask
4147 *
4148 * Return: 0 on success. An error code otherwise.
4149 */
4150SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4151 unsigned long __user *, user_mask_ptr)
4152{
4153 cpumask_var_t new_mask;
4154 int retval;
4155
4156 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4157 return -ENOMEM;
4158
4159 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4160 if (retval == 0)
4161 retval = sched_setaffinity(pid, new_mask);
4162 free_cpumask_var(new_mask);
4163 return retval;
4164}
4165
4166long sched_getaffinity(pid_t pid, struct cpumask *mask)
4167{
4168 struct task_struct *p;
4169 unsigned long flags;
4170 int retval;
4171
4172 rcu_read_lock();
4173
4174 retval = -ESRCH;
4175 p = find_process_by_pid(pid);
4176 if (!p)
4177 goto out_unlock;
4178
4179 retval = security_task_getscheduler(p);
4180 if (retval)
4181 goto out_unlock;
4182
4183 raw_spin_lock_irqsave(&p->pi_lock, flags);
4184 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
4185 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4186
4187out_unlock:
4188 rcu_read_unlock();
4189
4190 return retval;
4191}
4192
4193/**
4194 * sys_sched_getaffinity - get the cpu affinity of a process
4195 * @pid: pid of the process
4196 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4197 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4198 *
4199 * Return: 0 on success. An error code otherwise.
4200 */
4201SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4202 unsigned long __user *, user_mask_ptr)
4203{
4204 int ret;
4205 cpumask_var_t mask;
4206
4207 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4208 return -EINVAL;
4209 if (len & (sizeof(unsigned long)-1))
4210 return -EINVAL;
4211
4212 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4213 return -ENOMEM;
4214
4215 ret = sched_getaffinity(pid, mask);
4216 if (ret == 0) {
4217 size_t retlen = min_t(size_t, len, cpumask_size());
4218
4219 if (copy_to_user(user_mask_ptr, mask, retlen))
4220 ret = -EFAULT;
4221 else
4222 ret = retlen;
4223 }
4224 free_cpumask_var(mask);
4225
4226 return ret;
4227}
4228
4229/**
4230 * sys_sched_yield - yield the current processor to other threads.
4231 *
4232 * This function yields the current CPU to other tasks. If there are no
4233 * other threads running on this CPU then this function will return.
4234 *
4235 * Return: 0.
4236 */
4237SYSCALL_DEFINE0(sched_yield)
4238{
4239 struct rq *rq = this_rq_lock();
4240
4241 schedstat_inc(rq, yld_count);
4242 current->sched_class->yield_task(rq);
4243
4244 /*
4245 * Since we are going to call schedule() anyway, there's
4246 * no need to preempt or enable interrupts:
4247 */
4248 __release(rq->lock);
4249 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4250 do_raw_spin_unlock(&rq->lock);
4251 sched_preempt_enable_no_resched();
4252
4253 schedule();
4254
4255 return 0;
4256}
4257
4258int __sched _cond_resched(void)
4259{
4260 if (should_resched()) {
4261 preempt_schedule_common();
4262 return 1;
4263 }
4264 return 0;
4265}
4266EXPORT_SYMBOL(_cond_resched);
4267
4268/*
4269 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4270 * call schedule, and on return reacquire the lock.
4271 *
4272 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4273 * operations here to prevent schedule() from being called twice (once via
4274 * spin_unlock(), once by hand).
4275 */
4276int __cond_resched_lock(spinlock_t *lock)
4277{
4278 int resched = should_resched();
4279 int ret = 0;
4280
4281 lockdep_assert_held(lock);
4282
4283 if (spin_needbreak(lock) || resched) {
4284 spin_unlock(lock);
4285 if (resched)
4286 preempt_schedule_common();
4287 else
4288 cpu_relax();
4289 ret = 1;
4290 spin_lock(lock);
4291 }
4292 return ret;
4293}
4294EXPORT_SYMBOL(__cond_resched_lock);
4295
4296int __sched __cond_resched_softirq(void)
4297{
4298 BUG_ON(!in_softirq());
4299
4300 if (should_resched()) {
4301 local_bh_enable();
4302 preempt_schedule_common();
4303 local_bh_disable();
4304 return 1;
4305 }
4306 return 0;
4307}
4308EXPORT_SYMBOL(__cond_resched_softirq);
4309
4310/**
4311 * yield - yield the current processor to other threads.
4312 *
4313 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4314 *
4315 * The scheduler is at all times free to pick the calling task as the most
4316 * eligible task to run, if removing the yield() call from your code breaks
4317 * it, its already broken.
4318 *
4319 * Typical broken usage is:
4320 *
4321 * while (!event)
4322 * yield();
4323 *
4324 * where one assumes that yield() will let 'the other' process run that will
4325 * make event true. If the current task is a SCHED_FIFO task that will never
4326 * happen. Never use yield() as a progress guarantee!!
4327 *
4328 * If you want to use yield() to wait for something, use wait_event().
4329 * If you want to use yield() to be 'nice' for others, use cond_resched().
4330 * If you still want to use yield(), do not!
4331 */
4332void __sched yield(void)
4333{
4334 set_current_state(TASK_RUNNING);
4335 sys_sched_yield();
4336}
4337EXPORT_SYMBOL(yield);
4338
4339/**
4340 * yield_to - yield the current processor to another thread in
4341 * your thread group, or accelerate that thread toward the
4342 * processor it's on.
4343 * @p: target task
4344 * @preempt: whether task preemption is allowed or not
4345 *
4346 * It's the caller's job to ensure that the target task struct
4347 * can't go away on us before we can do any checks.
4348 *
4349 * Return:
4350 * true (>0) if we indeed boosted the target task.
4351 * false (0) if we failed to boost the target.
4352 * -ESRCH if there's no task to yield to.
4353 */
4354int __sched yield_to(struct task_struct *p, bool preempt)
4355{
4356 struct task_struct *curr = current;
4357 struct rq *rq, *p_rq;
4358 unsigned long flags;
4359 int yielded = 0;
4360
4361 local_irq_save(flags);
4362 rq = this_rq();
4363
4364again:
4365 p_rq = task_rq(p);
4366 /*
4367 * If we're the only runnable task on the rq and target rq also
4368 * has only one task, there's absolutely no point in yielding.
4369 */
4370 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4371 yielded = -ESRCH;
4372 goto out_irq;
4373 }
4374
4375 double_rq_lock(rq, p_rq);
4376 if (task_rq(p) != p_rq) {
4377 double_rq_unlock(rq, p_rq);
4378 goto again;
4379 }
4380
4381 if (!curr->sched_class->yield_to_task)
4382 goto out_unlock;
4383
4384 if (curr->sched_class != p->sched_class)
4385 goto out_unlock;
4386
4387 if (task_running(p_rq, p) || p->state)
4388 goto out_unlock;
4389
4390 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
4391 if (yielded) {
4392 schedstat_inc(rq, yld_count);
4393 /*
4394 * Make p's CPU reschedule; pick_next_entity takes care of
4395 * fairness.
4396 */
4397 if (preempt && rq != p_rq)
4398 resched_curr(p_rq);
4399 }
4400
4401out_unlock:
4402 double_rq_unlock(rq, p_rq);
4403out_irq:
4404 local_irq_restore(flags);
4405
4406 if (yielded > 0)
4407 schedule();
4408
4409 return yielded;
4410}
4411EXPORT_SYMBOL_GPL(yield_to);
4412
4413/*
4414 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4415 * that process accounting knows that this is a task in IO wait state.
4416 */
4417long __sched io_schedule_timeout(long timeout)
4418{
4419 int old_iowait = current->in_iowait;
4420 struct rq *rq;
4421 long ret;
4422
4423 current->in_iowait = 1;
4424 blk_schedule_flush_plug(current);
4425
4426 delayacct_blkio_start();
4427 rq = raw_rq();
4428 atomic_inc(&rq->nr_iowait);
4429 ret = schedule_timeout(timeout);
4430 current->in_iowait = old_iowait;
4431 atomic_dec(&rq->nr_iowait);
4432 delayacct_blkio_end();
4433
4434 return ret;
4435}
4436EXPORT_SYMBOL(io_schedule_timeout);
4437
4438/**
4439 * sys_sched_get_priority_max - return maximum RT priority.
4440 * @policy: scheduling class.
4441 *
4442 * Return: On success, this syscall returns the maximum
4443 * rt_priority that can be used by a given scheduling class.
4444 * On failure, a negative error code is returned.
4445 */
4446SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4447{
4448 int ret = -EINVAL;
4449
4450 switch (policy) {
4451 case SCHED_FIFO:
4452 case SCHED_RR:
4453 ret = MAX_USER_RT_PRIO-1;
4454 break;
4455 case SCHED_DEADLINE:
4456 case SCHED_NORMAL:
4457 case SCHED_BATCH:
4458 case SCHED_IDLE:
4459 ret = 0;
4460 break;
4461 }
4462 return ret;
4463}
4464
4465/**
4466 * sys_sched_get_priority_min - return minimum RT priority.
4467 * @policy: scheduling class.
4468 *
4469 * Return: On success, this syscall returns the minimum
4470 * rt_priority that can be used by a given scheduling class.
4471 * On failure, a negative error code is returned.
4472 */
4473SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
4474{
4475 int ret = -EINVAL;
4476
4477 switch (policy) {
4478 case SCHED_FIFO:
4479 case SCHED_RR:
4480 ret = 1;
4481 break;
4482 case SCHED_DEADLINE:
4483 case SCHED_NORMAL:
4484 case SCHED_BATCH:
4485 case SCHED_IDLE:
4486 ret = 0;
4487 }
4488 return ret;
4489}
4490
4491/**
4492 * sys_sched_rr_get_interval - return the default timeslice of a process.
4493 * @pid: pid of the process.
4494 * @interval: userspace pointer to the timeslice value.
4495 *
4496 * this syscall writes the default timeslice value of a given process
4497 * into the user-space timespec buffer. A value of '0' means infinity.
4498 *
4499 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4500 * an error code.
4501 */
4502SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
4503 struct timespec __user *, interval)
4504{
4505 struct task_struct *p;
4506 unsigned int time_slice;
4507 unsigned long flags;
4508 struct rq *rq;
4509 int retval;
4510 struct timespec t;
4511
4512 if (pid < 0)
4513 return -EINVAL;
4514
4515 retval = -ESRCH;
4516 rcu_read_lock();
4517 p = find_process_by_pid(pid);
4518 if (!p)
4519 goto out_unlock;
4520
4521 retval = security_task_getscheduler(p);
4522 if (retval)
4523 goto out_unlock;
4524
4525 rq = task_rq_lock(p, &flags);
4526 time_slice = 0;
4527 if (p->sched_class->get_rr_interval)
4528 time_slice = p->sched_class->get_rr_interval(rq, p);
4529 task_rq_unlock(rq, p, &flags);
4530
4531 rcu_read_unlock();
4532 jiffies_to_timespec(time_slice, &t);
4533 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4534 return retval;
4535
4536out_unlock:
4537 rcu_read_unlock();
4538 return retval;
4539}
4540
4541static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
4542
4543void sched_show_task(struct task_struct *p)
4544{
4545 unsigned long free = 0;
4546 int ppid;
4547 unsigned long state = p->state;
4548
4549 if (state)
4550 state = __ffs(state) + 1;
4551 printk(KERN_INFO "%-15.15s %c", p->comm,
4552 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4553#if BITS_PER_LONG == 32
4554 if (state == TASK_RUNNING)
4555 printk(KERN_CONT " running ");
4556 else
4557 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4558#else
4559 if (state == TASK_RUNNING)
4560 printk(KERN_CONT " running task ");
4561 else
4562 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4563#endif
4564#ifdef CONFIG_DEBUG_STACK_USAGE
4565 free = stack_not_used(p);
4566#endif
4567 ppid = 0;
4568 rcu_read_lock();
4569 if (pid_alive(p))
4570 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4571 rcu_read_unlock();
4572 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4573 task_pid_nr(p), ppid,
4574 (unsigned long)task_thread_info(p)->flags);
4575
4576 print_worker_info(KERN_INFO, p);
4577 show_stack(p, NULL);
4578}
4579
4580void show_state_filter(unsigned long state_filter)
4581{
4582 struct task_struct *g, *p;
4583
4584#if BITS_PER_LONG == 32
4585 printk(KERN_INFO
4586 " task PC stack pid father\n");
4587#else
4588 printk(KERN_INFO
4589 " task PC stack pid father\n");
4590#endif
4591 rcu_read_lock();
4592 for_each_process_thread(g, p) {
4593 /*
4594 * reset the NMI-timeout, listing all files on a slow
4595 * console might take a lot of time:
4596 */
4597 touch_nmi_watchdog();
4598 if (!state_filter || (p->state & state_filter))
4599 sched_show_task(p);
4600 }
4601
4602 touch_all_softlockup_watchdogs();
4603
4604#ifdef CONFIG_SCHED_DEBUG
4605 sysrq_sched_debug_show();
4606#endif
4607 rcu_read_unlock();
4608 /*
4609 * Only show locks if all tasks are dumped:
4610 */
4611 if (!state_filter)
4612 debug_show_all_locks();
4613}
4614
4615void init_idle_bootup_task(struct task_struct *idle)
4616{
4617 idle->sched_class = &idle_sched_class;
4618}
4619
4620/**
4621 * init_idle - set up an idle thread for a given CPU
4622 * @idle: task in question
4623 * @cpu: cpu the idle task belongs to
4624 *
4625 * NOTE: this function does not set the idle thread's NEED_RESCHED
4626 * flag, to make booting more robust.
4627 */
4628void init_idle(struct task_struct *idle, int cpu)
4629{
4630 struct rq *rq = cpu_rq(cpu);
4631 unsigned long flags;
4632
4633 raw_spin_lock_irqsave(&rq->lock, flags);
4634
4635 __sched_fork(0, idle);
4636 idle->state = TASK_RUNNING;
4637 idle->se.exec_start = sched_clock();
4638
4639 do_set_cpus_allowed(idle, cpumask_of(cpu));
4640 /*
4641 * We're having a chicken and egg problem, even though we are
4642 * holding rq->lock, the cpu isn't yet set to this cpu so the
4643 * lockdep check in task_group() will fail.
4644 *
4645 * Similar case to sched_fork(). / Alternatively we could
4646 * use task_rq_lock() here and obtain the other rq->lock.
4647 *
4648 * Silence PROVE_RCU
4649 */
4650 rcu_read_lock();
4651 __set_task_cpu(idle, cpu);
4652 rcu_read_unlock();
4653
4654 rq->curr = rq->idle = idle;
4655 idle->on_rq = TASK_ON_RQ_QUEUED;
4656#if defined(CONFIG_SMP)
4657 idle->on_cpu = 1;
4658#endif
4659 raw_spin_unlock_irqrestore(&rq->lock, flags);
4660
4661 /* Set the preempt count _outside_ the spinlocks! */
4662 init_idle_preempt_count(idle, cpu);
4663
4664 /*
4665 * The idle tasks have their own, simple scheduling class:
4666 */
4667 idle->sched_class = &idle_sched_class;
4668 ftrace_graph_init_idle_task(idle, cpu);
4669 vtime_init_idle(idle, cpu);
4670#if defined(CONFIG_SMP)
4671 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4672#endif
4673}
4674
4675int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4676 const struct cpumask *trial)
4677{
4678 int ret = 1, trial_cpus;
4679 struct dl_bw *cur_dl_b;
4680 unsigned long flags;
4681
4682 if (!cpumask_weight(cur))
4683 return ret;
4684
4685 rcu_read_lock_sched();
4686 cur_dl_b = dl_bw_of(cpumask_any(cur));
4687 trial_cpus = cpumask_weight(trial);
4688
4689 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4690 if (cur_dl_b->bw != -1 &&
4691 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4692 ret = 0;
4693 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
4694 rcu_read_unlock_sched();
4695
4696 return ret;
4697}
4698
4699int task_can_attach(struct task_struct *p,
4700 const struct cpumask *cs_cpus_allowed)
4701{
4702 int ret = 0;
4703
4704 /*
4705 * Kthreads which disallow setaffinity shouldn't be moved
4706 * to a new cpuset; we don't want to change their cpu
4707 * affinity and isolating such threads by their set of
4708 * allowed nodes is unnecessary. Thus, cpusets are not
4709 * applicable for such threads. This prevents checking for
4710 * success of set_cpus_allowed_ptr() on all attached tasks
4711 * before cpus_allowed may be changed.
4712 */
4713 if (p->flags & PF_NO_SETAFFINITY) {
4714 ret = -EINVAL;
4715 goto out;
4716 }
4717
4718#ifdef CONFIG_SMP
4719 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4720 cs_cpus_allowed)) {
4721 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4722 cs_cpus_allowed);
4723 struct dl_bw *dl_b;
4724 bool overflow;
4725 int cpus;
4726 unsigned long flags;
4727
4728 rcu_read_lock_sched();
4729 dl_b = dl_bw_of(dest_cpu);
4730 raw_spin_lock_irqsave(&dl_b->lock, flags);
4731 cpus = dl_bw_cpus(dest_cpu);
4732 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4733 if (overflow)
4734 ret = -EBUSY;
4735 else {
4736 /*
4737 * We reserve space for this task in the destination
4738 * root_domain, as we can't fail after this point.
4739 * We will free resources in the source root_domain
4740 * later on (see set_cpus_allowed_dl()).
4741 */
4742 __dl_add(dl_b, p->dl.dl_bw);
4743 }
4744 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
4745 rcu_read_unlock_sched();
4746
4747 }
4748#endif
4749out:
4750 return ret;
4751}
4752
4753#ifdef CONFIG_SMP
4754/*
4755 * move_queued_task - move a queued task to new rq.
4756 *
4757 * Returns (locked) new rq. Old rq's lock is released.
4758 */
4759static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4760{
4761 struct rq *rq = task_rq(p);
4762
4763 lockdep_assert_held(&rq->lock);
4764
4765 dequeue_task(rq, p, 0);
4766 p->on_rq = TASK_ON_RQ_MIGRATING;
4767 set_task_cpu(p, new_cpu);
4768 raw_spin_unlock(&rq->lock);
4769
4770 rq = cpu_rq(new_cpu);
4771
4772 raw_spin_lock(&rq->lock);
4773 BUG_ON(task_cpu(p) != new_cpu);
4774 p->on_rq = TASK_ON_RQ_QUEUED;
4775 enqueue_task(rq, p, 0);
4776 check_preempt_curr(rq, p, 0);
4777
4778 return rq;
4779}
4780
4781void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4782{
4783 if (p->sched_class->set_cpus_allowed)
4784 p->sched_class->set_cpus_allowed(p, new_mask);
4785
4786 cpumask_copy(&p->cpus_allowed, new_mask);
4787 p->nr_cpus_allowed = cpumask_weight(new_mask);
4788}
4789
4790/*
4791 * This is how migration works:
4792 *
4793 * 1) we invoke migration_cpu_stop() on the target CPU using
4794 * stop_one_cpu().
4795 * 2) stopper starts to run (implicitly forcing the migrated thread
4796 * off the CPU)
4797 * 3) it checks whether the migrated task is still in the wrong runqueue.
4798 * 4) if it's in the wrong runqueue then the migration thread removes
4799 * it and puts it into the right queue.
4800 * 5) stopper completes and stop_one_cpu() returns and the migration
4801 * is done.
4802 */
4803
4804/*
4805 * Change a given task's CPU affinity. Migrate the thread to a
4806 * proper CPU and schedule it away if the CPU it's executing on
4807 * is removed from the allowed bitmask.
4808 *
4809 * NOTE: the caller must have a valid reference to the task, the
4810 * task must not exit() & deallocate itself prematurely. The
4811 * call is not atomic; no spinlocks may be held.
4812 */
4813int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
4814{
4815 unsigned long flags;
4816 struct rq *rq;
4817 unsigned int dest_cpu;
4818 int ret = 0;
4819
4820 rq = task_rq_lock(p, &flags);
4821
4822 if (cpumask_equal(&p->cpus_allowed, new_mask))
4823 goto out;
4824
4825 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
4826 ret = -EINVAL;
4827 goto out;
4828 }
4829
4830 do_set_cpus_allowed(p, new_mask);
4831
4832 /* Can the task run on the task's current CPU? If so, we're done */
4833 if (cpumask_test_cpu(task_cpu(p), new_mask))
4834 goto out;
4835
4836 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
4837 if (task_running(rq, p) || p->state == TASK_WAKING) {
4838 struct migration_arg arg = { p, dest_cpu };
4839 /* Need help from migration thread: drop lock and wait. */
4840 task_rq_unlock(rq, p, &flags);
4841 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
4842 tlb_migrate_finish(p->mm);
4843 return 0;
4844 } else if (task_on_rq_queued(p))
4845 rq = move_queued_task(p, dest_cpu);
4846out:
4847 task_rq_unlock(rq, p, &flags);
4848
4849 return ret;
4850}
4851EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
4852
4853/*
4854 * Move (not current) task off this cpu, onto dest cpu. We're doing
4855 * this because either it can't run here any more (set_cpus_allowed()
4856 * away from this CPU, or CPU going down), or because we're
4857 * attempting to rebalance this task on exec (sched_exec).
4858 *
4859 * So we race with normal scheduler movements, but that's OK, as long
4860 * as the task is no longer on this CPU.
4861 *
4862 * Returns non-zero if task was successfully migrated.
4863 */
4864static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4865{
4866 struct rq *rq;
4867 int ret = 0;
4868
4869 if (unlikely(!cpu_active(dest_cpu)))
4870 return ret;
4871
4872 rq = cpu_rq(src_cpu);
4873
4874 raw_spin_lock(&p->pi_lock);
4875 raw_spin_lock(&rq->lock);
4876 /* Already moved. */
4877 if (task_cpu(p) != src_cpu)
4878 goto done;
4879
4880 /* Affinity changed (again). */
4881 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
4882 goto fail;
4883
4884 /*
4885 * If we're not on a rq, the next wake-up will ensure we're
4886 * placed properly.
4887 */
4888 if (task_on_rq_queued(p))
4889 rq = move_queued_task(p, dest_cpu);
4890done:
4891 ret = 1;
4892fail:
4893 raw_spin_unlock(&rq->lock);
4894 raw_spin_unlock(&p->pi_lock);
4895 return ret;
4896}
4897
4898#ifdef CONFIG_NUMA_BALANCING
4899/* Migrate current task p to target_cpu */
4900int migrate_task_to(struct task_struct *p, int target_cpu)
4901{
4902 struct migration_arg arg = { p, target_cpu };
4903 int curr_cpu = task_cpu(p);
4904
4905 if (curr_cpu == target_cpu)
4906 return 0;
4907
4908 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4909 return -EINVAL;
4910
4911 /* TODO: This is not properly updating schedstats */
4912
4913 trace_sched_move_numa(p, curr_cpu, target_cpu);
4914 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4915}
4916
4917/*
4918 * Requeue a task on a given node and accurately track the number of NUMA
4919 * tasks on the runqueues
4920 */
4921void sched_setnuma(struct task_struct *p, int nid)
4922{
4923 struct rq *rq;
4924 unsigned long flags;
4925 bool queued, running;
4926
4927 rq = task_rq_lock(p, &flags);
4928 queued = task_on_rq_queued(p);
4929 running = task_current(rq, p);
4930
4931 if (queued)
4932 dequeue_task(rq, p, 0);
4933 if (running)
4934 put_prev_task(rq, p);
4935
4936 p->numa_preferred_nid = nid;
4937
4938 if (running)
4939 p->sched_class->set_curr_task(rq);
4940 if (queued)
4941 enqueue_task(rq, p, 0);
4942 task_rq_unlock(rq, p, &flags);
4943}
4944#endif
4945
4946/*
4947 * migration_cpu_stop - this will be executed by a highprio stopper thread
4948 * and performs thread migration by bumping thread off CPU then
4949 * 'pushing' onto another runqueue.
4950 */
4951static int migration_cpu_stop(void *data)
4952{
4953 struct migration_arg *arg = data;
4954
4955 /*
4956 * The original target cpu might have gone down and we might
4957 * be on another cpu but it doesn't matter.
4958 */
4959 local_irq_disable();
4960 /*
4961 * We need to explicitly wake pending tasks before running
4962 * __migrate_task() such that we will not miss enforcing cpus_allowed
4963 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4964 */
4965 sched_ttwu_pending();
4966 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
4967 local_irq_enable();
4968 return 0;
4969}
4970
4971#ifdef CONFIG_HOTPLUG_CPU
4972
4973/*
4974 * Ensures that the idle task is using init_mm right before its cpu goes
4975 * offline.
4976 */
4977void idle_task_exit(void)
4978{
4979 struct mm_struct *mm = current->active_mm;
4980
4981 BUG_ON(cpu_online(smp_processor_id()));
4982
4983 if (mm != &init_mm) {
4984 switch_mm(mm, &init_mm, current);
4985 finish_arch_post_lock_switch();
4986 }
4987 mmdrop(mm);
4988}
4989
4990/*
4991 * Since this CPU is going 'away' for a while, fold any nr_active delta
4992 * we might have. Assumes we're called after migrate_tasks() so that the
4993 * nr_active count is stable.
4994 *
4995 * Also see the comment "Global load-average calculations".
4996 */
4997static void calc_load_migrate(struct rq *rq)
4998{
4999 long delta = calc_load_fold_active(rq);
5000 if (delta)
5001 atomic_long_add(delta, &calc_load_tasks);
5002}
5003
5004static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5005{
5006}
5007
5008static const struct sched_class fake_sched_class = {
5009 .put_prev_task = put_prev_task_fake,
5010};
5011
5012static struct task_struct fake_task = {
5013 /*
5014 * Avoid pull_{rt,dl}_task()
5015 */
5016 .prio = MAX_PRIO + 1,
5017 .sched_class = &fake_sched_class,
5018};
5019
5020/*
5021 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5022 * try_to_wake_up()->select_task_rq().
5023 *
5024 * Called with rq->lock held even though we'er in stop_machine() and
5025 * there's no concurrency possible, we hold the required locks anyway
5026 * because of lock validation efforts.
5027 */
5028static void migrate_tasks(unsigned int dead_cpu)
5029{
5030 struct rq *rq = cpu_rq(dead_cpu);
5031 struct task_struct *next, *stop = rq->stop;
5032 int dest_cpu;
5033
5034 /*
5035 * Fudge the rq selection such that the below task selection loop
5036 * doesn't get stuck on the currently eligible stop task.
5037 *
5038 * We're currently inside stop_machine() and the rq is either stuck
5039 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5040 * either way we should never end up calling schedule() until we're
5041 * done here.
5042 */
5043 rq->stop = NULL;
5044
5045 /*
5046 * put_prev_task() and pick_next_task() sched
5047 * class method both need to have an up-to-date
5048 * value of rq->clock[_task]
5049 */
5050 update_rq_clock(rq);
5051
5052 for ( ; ; ) {
5053 /*
5054 * There's this thread running, bail when that's the only
5055 * remaining thread.
5056 */
5057 if (rq->nr_running == 1)
5058 break;
5059
5060 next = pick_next_task(rq, &fake_task);
5061 BUG_ON(!next);
5062 next->sched_class->put_prev_task(rq, next);
5063
5064 /* Find suitable destination for @next, with force if needed. */
5065 dest_cpu = select_fallback_rq(dead_cpu, next);
5066 raw_spin_unlock(&rq->lock);
5067
5068 __migrate_task(next, dead_cpu, dest_cpu);
5069
5070 raw_spin_lock(&rq->lock);
5071 }
5072
5073 rq->stop = stop;
5074}
5075
5076#endif /* CONFIG_HOTPLUG_CPU */
5077
5078#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5079
5080static struct ctl_table sd_ctl_dir[] = {
5081 {
5082 .procname = "sched_domain",
5083 .mode = 0555,
5084 },
5085 {}
5086};
5087
5088static struct ctl_table sd_ctl_root[] = {
5089 {
5090 .procname = "kernel",
5091 .mode = 0555,
5092 .child = sd_ctl_dir,
5093 },
5094 {}
5095};
5096
5097static struct ctl_table *sd_alloc_ctl_entry(int n)
5098{
5099 struct ctl_table *entry =
5100 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5101
5102 return entry;
5103}
5104
5105static void sd_free_ctl_entry(struct ctl_table **tablep)
5106{
5107 struct ctl_table *entry;
5108
5109 /*
5110 * In the intermediate directories, both the child directory and
5111 * procname are dynamically allocated and could fail but the mode
5112 * will always be set. In the lowest directory the names are
5113 * static strings and all have proc handlers.
5114 */
5115 for (entry = *tablep; entry->mode; entry++) {
5116 if (entry->child)
5117 sd_free_ctl_entry(&entry->child);
5118 if (entry->proc_handler == NULL)
5119 kfree(entry->procname);
5120 }
5121
5122 kfree(*tablep);
5123 *tablep = NULL;
5124}
5125
5126static int min_load_idx = 0;
5127static int max_load_idx = CPU_LOAD_IDX_MAX-1;
5128
5129static void
5130set_table_entry(struct ctl_table *entry,
5131 const char *procname, void *data, int maxlen,
5132 umode_t mode, proc_handler *proc_handler,
5133 bool load_idx)
5134{
5135 entry->procname = procname;
5136 entry->data = data;
5137 entry->maxlen = maxlen;
5138 entry->mode = mode;
5139 entry->proc_handler = proc_handler;
5140
5141 if (load_idx) {
5142 entry->extra1 = &min_load_idx;
5143 entry->extra2 = &max_load_idx;
5144 }
5145}
5146
5147static struct ctl_table *
5148sd_alloc_ctl_domain_table(struct sched_domain *sd)
5149{
5150 struct ctl_table *table = sd_alloc_ctl_entry(14);
5151
5152 if (table == NULL)
5153 return NULL;
5154
5155 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5156 sizeof(long), 0644, proc_doulongvec_minmax, false);
5157 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5158 sizeof(long), 0644, proc_doulongvec_minmax, false);
5159 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5160 sizeof(int), 0644, proc_dointvec_minmax, true);
5161 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5162 sizeof(int), 0644, proc_dointvec_minmax, true);
5163 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5164 sizeof(int), 0644, proc_dointvec_minmax, true);
5165 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5166 sizeof(int), 0644, proc_dointvec_minmax, true);
5167 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5168 sizeof(int), 0644, proc_dointvec_minmax, true);
5169 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5170 sizeof(int), 0644, proc_dointvec_minmax, false);
5171 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5172 sizeof(int), 0644, proc_dointvec_minmax, false);
5173 set_table_entry(&table[9], "cache_nice_tries",
5174 &sd->cache_nice_tries,
5175 sizeof(int), 0644, proc_dointvec_minmax, false);
5176 set_table_entry(&table[10], "flags", &sd->flags,
5177 sizeof(int), 0644, proc_dointvec_minmax, false);
5178 set_table_entry(&table[11], "max_newidle_lb_cost",
5179 &sd->max_newidle_lb_cost,
5180 sizeof(long), 0644, proc_doulongvec_minmax, false);
5181 set_table_entry(&table[12], "name", sd->name,
5182 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
5183 /* &table[13] is terminator */
5184
5185 return table;
5186}
5187
5188static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5189{
5190 struct ctl_table *entry, *table;
5191 struct sched_domain *sd;
5192 int domain_num = 0, i;
5193 char buf[32];
5194
5195 for_each_domain(cpu, sd)
5196 domain_num++;
5197 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5198 if (table == NULL)
5199 return NULL;
5200
5201 i = 0;
5202 for_each_domain(cpu, sd) {
5203 snprintf(buf, 32, "domain%d", i);
5204 entry->procname = kstrdup(buf, GFP_KERNEL);
5205 entry->mode = 0555;
5206 entry->child = sd_alloc_ctl_domain_table(sd);
5207 entry++;
5208 i++;
5209 }
5210 return table;
5211}
5212
5213static struct ctl_table_header *sd_sysctl_header;
5214static void register_sched_domain_sysctl(void)
5215{
5216 int i, cpu_num = num_possible_cpus();
5217 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5218 char buf[32];
5219
5220 WARN_ON(sd_ctl_dir[0].child);
5221 sd_ctl_dir[0].child = entry;
5222
5223 if (entry == NULL)
5224 return;
5225
5226 for_each_possible_cpu(i) {
5227 snprintf(buf, 32, "cpu%d", i);
5228 entry->procname = kstrdup(buf, GFP_KERNEL);
5229 entry->mode = 0555;
5230 entry->child = sd_alloc_ctl_cpu_table(i);
5231 entry++;
5232 }
5233
5234 WARN_ON(sd_sysctl_header);
5235 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5236}
5237
5238/* may be called multiple times per register */
5239static void unregister_sched_domain_sysctl(void)
5240{
5241 if (sd_sysctl_header)
5242 unregister_sysctl_table(sd_sysctl_header);
5243 sd_sysctl_header = NULL;
5244 if (sd_ctl_dir[0].child)
5245 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5246}
5247#else
5248static void register_sched_domain_sysctl(void)
5249{
5250}
5251static void unregister_sched_domain_sysctl(void)
5252{
5253}
5254#endif
5255
5256static void set_rq_online(struct rq *rq)
5257{
5258 if (!rq->online) {
5259 const struct sched_class *class;
5260
5261 cpumask_set_cpu(rq->cpu, rq->rd->online);
5262 rq->online = 1;
5263
5264 for_each_class(class) {
5265 if (class->rq_online)
5266 class->rq_online(rq);
5267 }
5268 }
5269}
5270
5271static void set_rq_offline(struct rq *rq)
5272{
5273 if (rq->online) {
5274 const struct sched_class *class;
5275
5276 for_each_class(class) {
5277 if (class->rq_offline)
5278 class->rq_offline(rq);
5279 }
5280
5281 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5282 rq->online = 0;
5283 }
5284}
5285
5286/*
5287 * migration_call - callback that gets triggered when a CPU is added.
5288 * Here we can start up the necessary migration thread for the new CPU.
5289 */
5290static int
5291migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5292{
5293 int cpu = (long)hcpu;
5294 unsigned long flags;
5295 struct rq *rq = cpu_rq(cpu);
5296
5297 switch (action & ~CPU_TASKS_FROZEN) {
5298
5299 case CPU_UP_PREPARE:
5300 rq->calc_load_update = calc_load_update;
5301 break;
5302
5303 case CPU_ONLINE:
5304 /* Update our root-domain */
5305 raw_spin_lock_irqsave(&rq->lock, flags);
5306 if (rq->rd) {
5307 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5308
5309 set_rq_online(rq);
5310 }
5311 raw_spin_unlock_irqrestore(&rq->lock, flags);
5312 break;
5313
5314#ifdef CONFIG_HOTPLUG_CPU
5315 case CPU_DYING:
5316 sched_ttwu_pending();
5317 /* Update our root-domain */
5318 raw_spin_lock_irqsave(&rq->lock, flags);
5319 if (rq->rd) {
5320 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5321 set_rq_offline(rq);
5322 }
5323 migrate_tasks(cpu);
5324 BUG_ON(rq->nr_running != 1); /* the migration thread */
5325 raw_spin_unlock_irqrestore(&rq->lock, flags);
5326 break;
5327
5328 case CPU_DEAD:
5329 calc_load_migrate(rq);
5330 break;
5331#endif
5332 }
5333
5334 update_max_interval();
5335
5336 return NOTIFY_OK;
5337}
5338
5339/*
5340 * Register at high priority so that task migration (migrate_all_tasks)
5341 * happens before everything else. This has to be lower priority than
5342 * the notifier in the perf_event subsystem, though.
5343 */
5344static struct notifier_block migration_notifier = {
5345 .notifier_call = migration_call,
5346 .priority = CPU_PRI_MIGRATION,
5347};
5348
5349static void set_cpu_rq_start_time(void)
5350{
5351 int cpu = smp_processor_id();
5352 struct rq *rq = cpu_rq(cpu);
5353 rq->age_stamp = sched_clock_cpu(cpu);
5354}
5355
5356static int sched_cpu_active(struct notifier_block *nfb,
5357 unsigned long action, void *hcpu)
5358{
5359 switch (action & ~CPU_TASKS_FROZEN) {
5360 case CPU_STARTING:
5361 set_cpu_rq_start_time();
5362 return NOTIFY_OK;
5363 case CPU_DOWN_FAILED:
5364 set_cpu_active((long)hcpu, true);
5365 return NOTIFY_OK;
5366 default:
5367 return NOTIFY_DONE;
5368 }
5369}
5370
5371static int sched_cpu_inactive(struct notifier_block *nfb,
5372 unsigned long action, void *hcpu)
5373{
5374 switch (action & ~CPU_TASKS_FROZEN) {
5375 case CPU_DOWN_PREPARE:
5376 set_cpu_active((long)hcpu, false);
5377 return NOTIFY_OK;
5378 default:
5379 return NOTIFY_DONE;
5380 }
5381}
5382
5383static int __init migration_init(void)
5384{
5385 void *cpu = (void *)(long)smp_processor_id();
5386 int err;
5387
5388 /* Initialize migration for the boot CPU */
5389 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5390 BUG_ON(err == NOTIFY_BAD);
5391 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5392 register_cpu_notifier(&migration_notifier);
5393
5394 /* Register cpu active notifiers */
5395 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5396 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5397
5398 return 0;
5399}
5400early_initcall(migration_init);
5401#endif
5402
5403#ifdef CONFIG_SMP
5404
5405static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5406
5407#ifdef CONFIG_SCHED_DEBUG
5408
5409static __read_mostly int sched_debug_enabled;
5410
5411static int __init sched_debug_setup(char *str)
5412{
5413 sched_debug_enabled = 1;
5414
5415 return 0;
5416}
5417early_param("sched_debug", sched_debug_setup);
5418
5419static inline bool sched_debug(void)
5420{
5421 return sched_debug_enabled;
5422}
5423
5424static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5425 struct cpumask *groupmask)
5426{
5427 struct sched_group *group = sd->groups;
5428
5429 cpumask_clear(groupmask);
5430
5431 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5432
5433 if (!(sd->flags & SD_LOAD_BALANCE)) {
5434 printk("does not load-balance\n");
5435 if (sd->parent)
5436 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5437 " has parent");
5438 return -1;
5439 }
5440
5441 printk(KERN_CONT "span %*pbl level %s\n",
5442 cpumask_pr_args(sched_domain_span(sd)), sd->name);
5443
5444 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5445 printk(KERN_ERR "ERROR: domain->span does not contain "
5446 "CPU%d\n", cpu);
5447 }
5448 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5449 printk(KERN_ERR "ERROR: domain->groups does not contain"
5450 " CPU%d\n", cpu);
5451 }
5452
5453 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5454 do {
5455 if (!group) {
5456 printk("\n");
5457 printk(KERN_ERR "ERROR: group is NULL\n");
5458 break;
5459 }
5460
5461 if (!cpumask_weight(sched_group_cpus(group))) {
5462 printk(KERN_CONT "\n");
5463 printk(KERN_ERR "ERROR: empty group\n");
5464 break;
5465 }
5466
5467 if (!(sd->flags & SD_OVERLAP) &&
5468 cpumask_intersects(groupmask, sched_group_cpus(group))) {
5469 printk(KERN_CONT "\n");
5470 printk(KERN_ERR "ERROR: repeated CPUs\n");
5471 break;
5472 }
5473
5474 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5475
5476 printk(KERN_CONT " %*pbl",
5477 cpumask_pr_args(sched_group_cpus(group)));
5478 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
5479 printk(KERN_CONT " (cpu_capacity = %d)",
5480 group->sgc->capacity);
5481 }
5482
5483 group = group->next;
5484 } while (group != sd->groups);
5485 printk(KERN_CONT "\n");
5486
5487 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5488 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5489
5490 if (sd->parent &&
5491 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5492 printk(KERN_ERR "ERROR: parent span is not a superset "
5493 "of domain->span\n");
5494 return 0;
5495}
5496
5497static void sched_domain_debug(struct sched_domain *sd, int cpu)
5498{
5499 int level = 0;
5500
5501 if (!sched_debug_enabled)
5502 return;
5503
5504 if (!sd) {
5505 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5506 return;
5507 }
5508
5509 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5510
5511 for (;;) {
5512 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
5513 break;
5514 level++;
5515 sd = sd->parent;
5516 if (!sd)
5517 break;
5518 }
5519}
5520#else /* !CONFIG_SCHED_DEBUG */
5521# define sched_domain_debug(sd, cpu) do { } while (0)
5522static inline bool sched_debug(void)
5523{
5524 return false;
5525}
5526#endif /* CONFIG_SCHED_DEBUG */
5527
5528static int sd_degenerate(struct sched_domain *sd)
5529{
5530 if (cpumask_weight(sched_domain_span(sd)) == 1)
5531 return 1;
5532
5533 /* Following flags need at least 2 groups */
5534 if (sd->flags & (SD_LOAD_BALANCE |
5535 SD_BALANCE_NEWIDLE |
5536 SD_BALANCE_FORK |
5537 SD_BALANCE_EXEC |
5538 SD_SHARE_CPUCAPACITY |
5539 SD_SHARE_PKG_RESOURCES |
5540 SD_SHARE_POWERDOMAIN)) {
5541 if (sd->groups != sd->groups->next)
5542 return 0;
5543 }
5544
5545 /* Following flags don't use groups */
5546 if (sd->flags & (SD_WAKE_AFFINE))
5547 return 0;
5548
5549 return 1;
5550}
5551
5552static int
5553sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5554{
5555 unsigned long cflags = sd->flags, pflags = parent->flags;
5556
5557 if (sd_degenerate(parent))
5558 return 1;
5559
5560 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5561 return 0;
5562
5563 /* Flags needing groups don't count if only 1 group in parent */
5564 if (parent->groups == parent->groups->next) {
5565 pflags &= ~(SD_LOAD_BALANCE |
5566 SD_BALANCE_NEWIDLE |
5567 SD_BALANCE_FORK |
5568 SD_BALANCE_EXEC |
5569 SD_SHARE_CPUCAPACITY |
5570 SD_SHARE_PKG_RESOURCES |
5571 SD_PREFER_SIBLING |
5572 SD_SHARE_POWERDOMAIN);
5573 if (nr_node_ids == 1)
5574 pflags &= ~SD_SERIALIZE;
5575 }
5576 if (~cflags & pflags)
5577 return 0;
5578
5579 return 1;
5580}
5581
5582static void free_rootdomain(struct rcu_head *rcu)
5583{
5584 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
5585
5586 cpupri_cleanup(&rd->cpupri);
5587 cpudl_cleanup(&rd->cpudl);
5588 free_cpumask_var(rd->dlo_mask);
5589 free_cpumask_var(rd->rto_mask);
5590 free_cpumask_var(rd->online);
5591 free_cpumask_var(rd->span);
5592 kfree(rd);
5593}
5594
5595static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5596{
5597 struct root_domain *old_rd = NULL;
5598 unsigned long flags;
5599
5600 raw_spin_lock_irqsave(&rq->lock, flags);
5601
5602 if (rq->rd) {
5603 old_rd = rq->rd;
5604
5605 if (cpumask_test_cpu(rq->cpu, old_rd->online))
5606 set_rq_offline(rq);
5607
5608 cpumask_clear_cpu(rq->cpu, old_rd->span);
5609
5610 /*
5611 * If we dont want to free the old_rd yet then
5612 * set old_rd to NULL to skip the freeing later
5613 * in this function:
5614 */
5615 if (!atomic_dec_and_test(&old_rd->refcount))
5616 old_rd = NULL;
5617 }
5618
5619 atomic_inc(&rd->refcount);
5620 rq->rd = rd;
5621
5622 cpumask_set_cpu(rq->cpu, rd->span);
5623 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
5624 set_rq_online(rq);
5625
5626 raw_spin_unlock_irqrestore(&rq->lock, flags);
5627
5628 if (old_rd)
5629 call_rcu_sched(&old_rd->rcu, free_rootdomain);
5630}
5631
5632static int init_rootdomain(struct root_domain *rd)
5633{
5634 memset(rd, 0, sizeof(*rd));
5635
5636 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
5637 goto out;
5638 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
5639 goto free_span;
5640 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
5641 goto free_online;
5642 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5643 goto free_dlo_mask;
5644
5645 init_dl_bw(&rd->dl_bw);
5646 if (cpudl_init(&rd->cpudl) != 0)
5647 goto free_dlo_mask;
5648
5649 if (cpupri_init(&rd->cpupri) != 0)
5650 goto free_rto_mask;
5651 return 0;
5652
5653free_rto_mask:
5654 free_cpumask_var(rd->rto_mask);
5655free_dlo_mask:
5656 free_cpumask_var(rd->dlo_mask);
5657free_online:
5658 free_cpumask_var(rd->online);
5659free_span:
5660 free_cpumask_var(rd->span);
5661out:
5662 return -ENOMEM;
5663}
5664
5665/*
5666 * By default the system creates a single root-domain with all cpus as
5667 * members (mimicking the global state we have today).
5668 */
5669struct root_domain def_root_domain;
5670
5671static void init_defrootdomain(void)
5672{
5673 init_rootdomain(&def_root_domain);
5674
5675 atomic_set(&def_root_domain.refcount, 1);
5676}
5677
5678static struct root_domain *alloc_rootdomain(void)
5679{
5680 struct root_domain *rd;
5681
5682 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5683 if (!rd)
5684 return NULL;
5685
5686 if (init_rootdomain(rd) != 0) {
5687 kfree(rd);
5688 return NULL;
5689 }
5690
5691 return rd;
5692}
5693
5694static void free_sched_groups(struct sched_group *sg, int free_sgc)
5695{
5696 struct sched_group *tmp, *first;
5697
5698 if (!sg)
5699 return;
5700
5701 first = sg;
5702 do {
5703 tmp = sg->next;
5704
5705 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5706 kfree(sg->sgc);
5707
5708 kfree(sg);
5709 sg = tmp;
5710 } while (sg != first);
5711}
5712
5713static void free_sched_domain(struct rcu_head *rcu)
5714{
5715 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
5716
5717 /*
5718 * If its an overlapping domain it has private groups, iterate and
5719 * nuke them all.
5720 */
5721 if (sd->flags & SD_OVERLAP) {
5722 free_sched_groups(sd->groups, 1);
5723 } else if (atomic_dec_and_test(&sd->groups->ref)) {
5724 kfree(sd->groups->sgc);
5725 kfree(sd->groups);
5726 }
5727 kfree(sd);
5728}
5729
5730static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5731{
5732 call_rcu(&sd->rcu, free_sched_domain);
5733}
5734
5735static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5736{
5737 for (; sd; sd = sd->parent)
5738 destroy_sched_domain(sd, cpu);
5739}
5740
5741/*
5742 * Keep a special pointer to the highest sched_domain that has
5743 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5744 * allows us to avoid some pointer chasing select_idle_sibling().
5745 *
5746 * Also keep a unique ID per domain (we use the first cpu number in
5747 * the cpumask of the domain), this allows us to quickly tell if
5748 * two cpus are in the same cache domain, see cpus_share_cache().
5749 */
5750DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5751DEFINE_PER_CPU(int, sd_llc_size);
5752DEFINE_PER_CPU(int, sd_llc_id);
5753DEFINE_PER_CPU(struct sched_domain *, sd_numa);
5754DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5755DEFINE_PER_CPU(struct sched_domain *, sd_asym);
5756
5757static void update_top_cache_domain(int cpu)
5758{
5759 struct sched_domain *sd;
5760 struct sched_domain *busy_sd = NULL;
5761 int id = cpu;
5762 int size = 1;
5763
5764 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5765 if (sd) {
5766 id = cpumask_first(sched_domain_span(sd));
5767 size = cpumask_weight(sched_domain_span(sd));
5768 busy_sd = sd->parent; /* sd_busy */
5769 }
5770 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
5771
5772 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5773 per_cpu(sd_llc_size, cpu) = size;
5774 per_cpu(sd_llc_id, cpu) = id;
5775
5776 sd = lowest_flag_domain(cpu, SD_NUMA);
5777 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
5778
5779 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5780 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
5781}
5782
5783/*
5784 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5785 * hold the hotplug lock.
5786 */
5787static void
5788cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
5789{
5790 struct rq *rq = cpu_rq(cpu);
5791 struct sched_domain *tmp;
5792
5793 /* Remove the sched domains which do not contribute to scheduling. */
5794 for (tmp = sd; tmp; ) {
5795 struct sched_domain *parent = tmp->parent;
5796 if (!parent)
5797 break;
5798
5799 if (sd_parent_degenerate(tmp, parent)) {
5800 tmp->parent = parent->parent;
5801 if (parent->parent)
5802 parent->parent->child = tmp;
5803 /*
5804 * Transfer SD_PREFER_SIBLING down in case of a
5805 * degenerate parent; the spans match for this
5806 * so the property transfers.
5807 */
5808 if (parent->flags & SD_PREFER_SIBLING)
5809 tmp->flags |= SD_PREFER_SIBLING;
5810 destroy_sched_domain(parent, cpu);
5811 } else
5812 tmp = tmp->parent;
5813 }
5814
5815 if (sd && sd_degenerate(sd)) {
5816 tmp = sd;
5817 sd = sd->parent;
5818 destroy_sched_domain(tmp, cpu);
5819 if (sd)
5820 sd->child = NULL;
5821 }
5822
5823 sched_domain_debug(sd, cpu);
5824
5825 rq_attach_root(rq, rd);
5826 tmp = rq->sd;
5827 rcu_assign_pointer(rq->sd, sd);
5828 destroy_sched_domains(tmp, cpu);
5829
5830 update_top_cache_domain(cpu);
5831}
5832
5833/* Setup the mask of cpus configured for isolated domains */
5834static int __init isolated_cpu_setup(char *str)
5835{
5836 alloc_bootmem_cpumask_var(&cpu_isolated_map);
5837 cpulist_parse(str, cpu_isolated_map);
5838 return 1;
5839}
5840
5841__setup("isolcpus=", isolated_cpu_setup);
5842
5843struct s_data {
5844 struct sched_domain ** __percpu sd;
5845 struct root_domain *rd;
5846};
5847
5848enum s_alloc {
5849 sa_rootdomain,
5850 sa_sd,
5851 sa_sd_storage,
5852 sa_none,
5853};
5854
5855/*
5856 * Build an iteration mask that can exclude certain CPUs from the upwards
5857 * domain traversal.
5858 *
5859 * Asymmetric node setups can result in situations where the domain tree is of
5860 * unequal depth, make sure to skip domains that already cover the entire
5861 * range.
5862 *
5863 * In that case build_sched_domains() will have terminated the iteration early
5864 * and our sibling sd spans will be empty. Domains should always include the
5865 * cpu they're built on, so check that.
5866 *
5867 */
5868static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5869{
5870 const struct cpumask *span = sched_domain_span(sd);
5871 struct sd_data *sdd = sd->private;
5872 struct sched_domain *sibling;
5873 int i;
5874
5875 for_each_cpu(i, span) {
5876 sibling = *per_cpu_ptr(sdd->sd, i);
5877 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5878 continue;
5879
5880 cpumask_set_cpu(i, sched_group_mask(sg));
5881 }
5882}
5883
5884/*
5885 * Return the canonical balance cpu for this group, this is the first cpu
5886 * of this group that's also in the iteration mask.
5887 */
5888int group_balance_cpu(struct sched_group *sg)
5889{
5890 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5891}
5892
5893static int
5894build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5895{
5896 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5897 const struct cpumask *span = sched_domain_span(sd);
5898 struct cpumask *covered = sched_domains_tmpmask;
5899 struct sd_data *sdd = sd->private;
5900 struct sched_domain *sibling;
5901 int i;
5902
5903 cpumask_clear(covered);
5904
5905 for_each_cpu(i, span) {
5906 struct cpumask *sg_span;
5907
5908 if (cpumask_test_cpu(i, covered))
5909 continue;
5910
5911 sibling = *per_cpu_ptr(sdd->sd, i);
5912
5913 /* See the comment near build_group_mask(). */
5914 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5915 continue;
5916
5917 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
5918 GFP_KERNEL, cpu_to_node(cpu));
5919
5920 if (!sg)
5921 goto fail;
5922
5923 sg_span = sched_group_cpus(sg);
5924 if (sibling->child)
5925 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5926 else
5927 cpumask_set_cpu(i, sg_span);
5928
5929 cpumask_or(covered, covered, sg_span);
5930
5931 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5932 if (atomic_inc_return(&sg->sgc->ref) == 1)
5933 build_group_mask(sd, sg);
5934
5935 /*
5936 * Initialize sgc->capacity such that even if we mess up the
5937 * domains and no possible iteration will get us here, we won't
5938 * die on a /0 trap.
5939 */
5940 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
5941
5942 /*
5943 * Make sure the first group of this domain contains the
5944 * canonical balance cpu. Otherwise the sched_domain iteration
5945 * breaks. See update_sg_lb_stats().
5946 */
5947 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
5948 group_balance_cpu(sg) == cpu)
5949 groups = sg;
5950
5951 if (!first)
5952 first = sg;
5953 if (last)
5954 last->next = sg;
5955 last = sg;
5956 last->next = first;
5957 }
5958 sd->groups = groups;
5959
5960 return 0;
5961
5962fail:
5963 free_sched_groups(first, 0);
5964
5965 return -ENOMEM;
5966}
5967
5968static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
5969{
5970 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5971 struct sched_domain *child = sd->child;
5972
5973 if (child)
5974 cpu = cpumask_first(sched_domain_span(child));
5975
5976 if (sg) {
5977 *sg = *per_cpu_ptr(sdd->sg, cpu);
5978 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5979 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
5980 }
5981
5982 return cpu;
5983}
5984
5985/*
5986 * build_sched_groups will build a circular linked list of the groups
5987 * covered by the given span, and will set each group's ->cpumask correctly,
5988 * and ->cpu_capacity to 0.
5989 *
5990 * Assumes the sched_domain tree is fully constructed
5991 */
5992static int
5993build_sched_groups(struct sched_domain *sd, int cpu)
5994{
5995 struct sched_group *first = NULL, *last = NULL;
5996 struct sd_data *sdd = sd->private;
5997 const struct cpumask *span = sched_domain_span(sd);
5998 struct cpumask *covered;
5999 int i;
6000
6001 get_group(cpu, sdd, &sd->groups);
6002 atomic_inc(&sd->groups->ref);
6003
6004 if (cpu != cpumask_first(span))
6005 return 0;
6006
6007 lockdep_assert_held(&sched_domains_mutex);
6008 covered = sched_domains_tmpmask;
6009
6010 cpumask_clear(covered);
6011
6012 for_each_cpu(i, span) {
6013 struct sched_group *sg;
6014 int group, j;
6015
6016 if (cpumask_test_cpu(i, covered))
6017 continue;
6018
6019 group = get_group(i, sdd, &sg);
6020 cpumask_setall(sched_group_mask(sg));
6021
6022 for_each_cpu(j, span) {
6023 if (get_group(j, sdd, NULL) != group)
6024 continue;
6025
6026 cpumask_set_cpu(j, covered);
6027 cpumask_set_cpu(j, sched_group_cpus(sg));
6028 }
6029
6030 if (!first)
6031 first = sg;
6032 if (last)
6033 last->next = sg;
6034 last = sg;
6035 }
6036 last->next = first;
6037
6038 return 0;
6039}
6040
6041/*
6042 * Initialize sched groups cpu_capacity.
6043 *
6044 * cpu_capacity indicates the capacity of sched group, which is used while
6045 * distributing the load between different sched groups in a sched domain.
6046 * Typically cpu_capacity for all the groups in a sched domain will be same
6047 * unless there are asymmetries in the topology. If there are asymmetries,
6048 * group having more cpu_capacity will pickup more load compared to the
6049 * group having less cpu_capacity.
6050 */
6051static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
6052{
6053 struct sched_group *sg = sd->groups;
6054
6055 WARN_ON(!sg);
6056
6057 do {
6058 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6059 sg = sg->next;
6060 } while (sg != sd->groups);
6061
6062 if (cpu != group_balance_cpu(sg))
6063 return;
6064
6065 update_group_capacity(sd, cpu);
6066 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
6067}
6068
6069/*
6070 * Initializers for schedule domains
6071 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6072 */
6073
6074static int default_relax_domain_level = -1;
6075int sched_domain_level_max;
6076
6077static int __init setup_relax_domain_level(char *str)
6078{
6079 if (kstrtoint(str, 0, &default_relax_domain_level))
6080 pr_warn("Unable to set relax_domain_level\n");
6081
6082 return 1;
6083}
6084__setup("relax_domain_level=", setup_relax_domain_level);
6085
6086static void set_domain_attribute(struct sched_domain *sd,
6087 struct sched_domain_attr *attr)
6088{
6089 int request;
6090
6091 if (!attr || attr->relax_domain_level < 0) {
6092 if (default_relax_domain_level < 0)
6093 return;
6094 else
6095 request = default_relax_domain_level;
6096 } else
6097 request = attr->relax_domain_level;
6098 if (request < sd->level) {
6099 /* turn off idle balance on this domain */
6100 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6101 } else {
6102 /* turn on idle balance on this domain */
6103 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6104 }
6105}
6106
6107static void __sdt_free(const struct cpumask *cpu_map);
6108static int __sdt_alloc(const struct cpumask *cpu_map);
6109
6110static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6111 const struct cpumask *cpu_map)
6112{
6113 switch (what) {
6114 case sa_rootdomain:
6115 if (!atomic_read(&d->rd->refcount))
6116 free_rootdomain(&d->rd->rcu); /* fall through */
6117 case sa_sd:
6118 free_percpu(d->sd); /* fall through */
6119 case sa_sd_storage:
6120 __sdt_free(cpu_map); /* fall through */
6121 case sa_none:
6122 break;
6123 }
6124}
6125
6126static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6127 const struct cpumask *cpu_map)
6128{
6129 memset(d, 0, sizeof(*d));
6130
6131 if (__sdt_alloc(cpu_map))
6132 return sa_sd_storage;
6133 d->sd = alloc_percpu(struct sched_domain *);
6134 if (!d->sd)
6135 return sa_sd_storage;
6136 d->rd = alloc_rootdomain();
6137 if (!d->rd)
6138 return sa_sd;
6139 return sa_rootdomain;
6140}
6141
6142/*
6143 * NULL the sd_data elements we've used to build the sched_domain and
6144 * sched_group structure so that the subsequent __free_domain_allocs()
6145 * will not free the data we're using.
6146 */
6147static void claim_allocations(int cpu, struct sched_domain *sd)
6148{
6149 struct sd_data *sdd = sd->private;
6150
6151 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6152 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6153
6154 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
6155 *per_cpu_ptr(sdd->sg, cpu) = NULL;
6156
6157 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6158 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
6159}
6160
6161#ifdef CONFIG_NUMA
6162static int sched_domains_numa_levels;
6163enum numa_topology_type sched_numa_topology_type;
6164static int *sched_domains_numa_distance;
6165int sched_max_numa_distance;
6166static struct cpumask ***sched_domains_numa_masks;
6167static int sched_domains_curr_level;
6168#endif
6169
6170/*
6171 * SD_flags allowed in topology descriptions.
6172 *
6173 * SD_SHARE_CPUCAPACITY - describes SMT topologies
6174 * SD_SHARE_PKG_RESOURCES - describes shared caches
6175 * SD_NUMA - describes NUMA topologies
6176 * SD_SHARE_POWERDOMAIN - describes shared power domain
6177 *
6178 * Odd one out:
6179 * SD_ASYM_PACKING - describes SMT quirks
6180 */
6181#define TOPOLOGY_SD_FLAGS \
6182 (SD_SHARE_CPUCAPACITY | \
6183 SD_SHARE_PKG_RESOURCES | \
6184 SD_NUMA | \
6185 SD_ASYM_PACKING | \
6186 SD_SHARE_POWERDOMAIN)
6187
6188static struct sched_domain *
6189sd_init(struct sched_domain_topology_level *tl, int cpu)
6190{
6191 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6192 int sd_weight, sd_flags = 0;
6193
6194#ifdef CONFIG_NUMA
6195 /*
6196 * Ugly hack to pass state to sd_numa_mask()...
6197 */
6198 sched_domains_curr_level = tl->numa_level;
6199#endif
6200
6201 sd_weight = cpumask_weight(tl->mask(cpu));
6202
6203 if (tl->sd_flags)
6204 sd_flags = (*tl->sd_flags)();
6205 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6206 "wrong sd_flags in topology description\n"))
6207 sd_flags &= ~TOPOLOGY_SD_FLAGS;
6208
6209 *sd = (struct sched_domain){
6210 .min_interval = sd_weight,
6211 .max_interval = 2*sd_weight,
6212 .busy_factor = 32,
6213 .imbalance_pct = 125,
6214
6215 .cache_nice_tries = 0,
6216 .busy_idx = 0,
6217 .idle_idx = 0,
6218 .newidle_idx = 0,
6219 .wake_idx = 0,
6220 .forkexec_idx = 0,
6221
6222 .flags = 1*SD_LOAD_BALANCE
6223 | 1*SD_BALANCE_NEWIDLE
6224 | 1*SD_BALANCE_EXEC
6225 | 1*SD_BALANCE_FORK
6226 | 0*SD_BALANCE_WAKE
6227 | 1*SD_WAKE_AFFINE
6228 | 0*SD_SHARE_CPUCAPACITY
6229 | 0*SD_SHARE_PKG_RESOURCES
6230 | 0*SD_SERIALIZE
6231 | 0*SD_PREFER_SIBLING
6232 | 0*SD_NUMA
6233 | sd_flags
6234 ,
6235
6236 .last_balance = jiffies,
6237 .balance_interval = sd_weight,
6238 .smt_gain = 0,
6239 .max_newidle_lb_cost = 0,
6240 .next_decay_max_lb_cost = jiffies,
6241#ifdef CONFIG_SCHED_DEBUG
6242 .name = tl->name,
6243#endif
6244 };
6245
6246 /*
6247 * Convert topological properties into behaviour.
6248 */
6249
6250 if (sd->flags & SD_SHARE_CPUCAPACITY) {
6251 sd->flags |= SD_PREFER_SIBLING;
6252 sd->imbalance_pct = 110;
6253 sd->smt_gain = 1178; /* ~15% */
6254
6255 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6256 sd->imbalance_pct = 117;
6257 sd->cache_nice_tries = 1;
6258 sd->busy_idx = 2;
6259
6260#ifdef CONFIG_NUMA
6261 } else if (sd->flags & SD_NUMA) {
6262 sd->cache_nice_tries = 2;
6263 sd->busy_idx = 3;
6264 sd->idle_idx = 2;
6265
6266 sd->flags |= SD_SERIALIZE;
6267 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6268 sd->flags &= ~(SD_BALANCE_EXEC |
6269 SD_BALANCE_FORK |
6270 SD_WAKE_AFFINE);
6271 }
6272
6273#endif
6274 } else {
6275 sd->flags |= SD_PREFER_SIBLING;
6276 sd->cache_nice_tries = 1;
6277 sd->busy_idx = 2;
6278 sd->idle_idx = 1;
6279 }
6280
6281 sd->private = &tl->data;
6282
6283 return sd;
6284}
6285
6286/*
6287 * Topology list, bottom-up.
6288 */
6289static struct sched_domain_topology_level default_topology[] = {
6290#ifdef CONFIG_SCHED_SMT
6291 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6292#endif
6293#ifdef CONFIG_SCHED_MC
6294 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
6295#endif
6296 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6297 { NULL, },
6298};
6299
6300struct sched_domain_topology_level *sched_domain_topology = default_topology;
6301
6302#define for_each_sd_topology(tl) \
6303 for (tl = sched_domain_topology; tl->mask; tl++)
6304
6305void set_sched_topology(struct sched_domain_topology_level *tl)
6306{
6307 sched_domain_topology = tl;
6308}
6309
6310#ifdef CONFIG_NUMA
6311
6312static const struct cpumask *sd_numa_mask(int cpu)
6313{
6314 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6315}
6316
6317static void sched_numa_warn(const char *str)
6318{
6319 static int done = false;
6320 int i,j;
6321
6322 if (done)
6323 return;
6324
6325 done = true;
6326
6327 printk(KERN_WARNING "ERROR: %s\n\n", str);
6328
6329 for (i = 0; i < nr_node_ids; i++) {
6330 printk(KERN_WARNING " ");
6331 for (j = 0; j < nr_node_ids; j++)
6332 printk(KERN_CONT "%02d ", node_distance(i,j));
6333 printk(KERN_CONT "\n");
6334 }
6335 printk(KERN_WARNING "\n");
6336}
6337
6338bool find_numa_distance(int distance)
6339{
6340 int i;
6341
6342 if (distance == node_distance(0, 0))
6343 return true;
6344
6345 for (i = 0; i < sched_domains_numa_levels; i++) {
6346 if (sched_domains_numa_distance[i] == distance)
6347 return true;
6348 }
6349
6350 return false;
6351}
6352
6353/*
6354 * A system can have three types of NUMA topology:
6355 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6356 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6357 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6358 *
6359 * The difference between a glueless mesh topology and a backplane
6360 * topology lies in whether communication between not directly
6361 * connected nodes goes through intermediary nodes (where programs
6362 * could run), or through backplane controllers. This affects
6363 * placement of programs.
6364 *
6365 * The type of topology can be discerned with the following tests:
6366 * - If the maximum distance between any nodes is 1 hop, the system
6367 * is directly connected.
6368 * - If for two nodes A and B, located N > 1 hops away from each other,
6369 * there is an intermediary node C, which is < N hops away from both
6370 * nodes A and B, the system is a glueless mesh.
6371 */
6372static void init_numa_topology_type(void)
6373{
6374 int a, b, c, n;
6375
6376 n = sched_max_numa_distance;
6377
6378 if (n <= 1)
6379 sched_numa_topology_type = NUMA_DIRECT;
6380
6381 for_each_online_node(a) {
6382 for_each_online_node(b) {
6383 /* Find two nodes furthest removed from each other. */
6384 if (node_distance(a, b) < n)
6385 continue;
6386
6387 /* Is there an intermediary node between a and b? */
6388 for_each_online_node(c) {
6389 if (node_distance(a, c) < n &&
6390 node_distance(b, c) < n) {
6391 sched_numa_topology_type =
6392 NUMA_GLUELESS_MESH;
6393 return;
6394 }
6395 }
6396
6397 sched_numa_topology_type = NUMA_BACKPLANE;
6398 return;
6399 }
6400 }
6401}
6402
6403static void sched_init_numa(void)
6404{
6405 int next_distance, curr_distance = node_distance(0, 0);
6406 struct sched_domain_topology_level *tl;
6407 int level = 0;
6408 int i, j, k;
6409
6410 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6411 if (!sched_domains_numa_distance)
6412 return;
6413
6414 /*
6415 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6416 * unique distances in the node_distance() table.
6417 *
6418 * Assumes node_distance(0,j) includes all distances in
6419 * node_distance(i,j) in order to avoid cubic time.
6420 */
6421 next_distance = curr_distance;
6422 for (i = 0; i < nr_node_ids; i++) {
6423 for (j = 0; j < nr_node_ids; j++) {
6424 for (k = 0; k < nr_node_ids; k++) {
6425 int distance = node_distance(i, k);
6426
6427 if (distance > curr_distance &&
6428 (distance < next_distance ||
6429 next_distance == curr_distance))
6430 next_distance = distance;
6431
6432 /*
6433 * While not a strong assumption it would be nice to know
6434 * about cases where if node A is connected to B, B is not
6435 * equally connected to A.
6436 */
6437 if (sched_debug() && node_distance(k, i) != distance)
6438 sched_numa_warn("Node-distance not symmetric");
6439
6440 if (sched_debug() && i && !find_numa_distance(distance))
6441 sched_numa_warn("Node-0 not representative");
6442 }
6443 if (next_distance != curr_distance) {
6444 sched_domains_numa_distance[level++] = next_distance;
6445 sched_domains_numa_levels = level;
6446 curr_distance = next_distance;
6447 } else break;
6448 }
6449
6450 /*
6451 * In case of sched_debug() we verify the above assumption.
6452 */
6453 if (!sched_debug())
6454 break;
6455 }
6456
6457 if (!level)
6458 return;
6459
6460 /*
6461 * 'level' contains the number of unique distances, excluding the
6462 * identity distance node_distance(i,i).
6463 *
6464 * The sched_domains_numa_distance[] array includes the actual distance
6465 * numbers.
6466 */
6467
6468 /*
6469 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6470 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6471 * the array will contain less then 'level' members. This could be
6472 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6473 * in other functions.
6474 *
6475 * We reset it to 'level' at the end of this function.
6476 */
6477 sched_domains_numa_levels = 0;
6478
6479 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6480 if (!sched_domains_numa_masks)
6481 return;
6482
6483 /*
6484 * Now for each level, construct a mask per node which contains all
6485 * cpus of nodes that are that many hops away from us.
6486 */
6487 for (i = 0; i < level; i++) {
6488 sched_domains_numa_masks[i] =
6489 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6490 if (!sched_domains_numa_masks[i])
6491 return;
6492
6493 for (j = 0; j < nr_node_ids; j++) {
6494 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
6495 if (!mask)
6496 return;
6497
6498 sched_domains_numa_masks[i][j] = mask;
6499
6500 for (k = 0; k < nr_node_ids; k++) {
6501 if (node_distance(j, k) > sched_domains_numa_distance[i])
6502 continue;
6503
6504 cpumask_or(mask, mask, cpumask_of_node(k));
6505 }
6506 }
6507 }
6508
6509 /* Compute default topology size */
6510 for (i = 0; sched_domain_topology[i].mask; i++);
6511
6512 tl = kzalloc((i + level + 1) *
6513 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6514 if (!tl)
6515 return;
6516
6517 /*
6518 * Copy the default topology bits..
6519 */
6520 for (i = 0; sched_domain_topology[i].mask; i++)
6521 tl[i] = sched_domain_topology[i];
6522
6523 /*
6524 * .. and append 'j' levels of NUMA goodness.
6525 */
6526 for (j = 0; j < level; i++, j++) {
6527 tl[i] = (struct sched_domain_topology_level){
6528 .mask = sd_numa_mask,
6529 .sd_flags = cpu_numa_flags,
6530 .flags = SDTL_OVERLAP,
6531 .numa_level = j,
6532 SD_INIT_NAME(NUMA)
6533 };
6534 }
6535
6536 sched_domain_topology = tl;
6537
6538 sched_domains_numa_levels = level;
6539 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
6540
6541 init_numa_topology_type();
6542}
6543
6544static void sched_domains_numa_masks_set(int cpu)
6545{
6546 int i, j;
6547 int node = cpu_to_node(cpu);
6548
6549 for (i = 0; i < sched_domains_numa_levels; i++) {
6550 for (j = 0; j < nr_node_ids; j++) {
6551 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6552 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6553 }
6554 }
6555}
6556
6557static void sched_domains_numa_masks_clear(int cpu)
6558{
6559 int i, j;
6560 for (i = 0; i < sched_domains_numa_levels; i++) {
6561 for (j = 0; j < nr_node_ids; j++)
6562 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6563 }
6564}
6565
6566/*
6567 * Update sched_domains_numa_masks[level][node] array when new cpus
6568 * are onlined.
6569 */
6570static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6571 unsigned long action,
6572 void *hcpu)
6573{
6574 int cpu = (long)hcpu;
6575
6576 switch (action & ~CPU_TASKS_FROZEN) {
6577 case CPU_ONLINE:
6578 sched_domains_numa_masks_set(cpu);
6579 break;
6580
6581 case CPU_DEAD:
6582 sched_domains_numa_masks_clear(cpu);
6583 break;
6584
6585 default:
6586 return NOTIFY_DONE;
6587 }
6588
6589 return NOTIFY_OK;
6590}
6591#else
6592static inline void sched_init_numa(void)
6593{
6594}
6595
6596static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6597 unsigned long action,
6598 void *hcpu)
6599{
6600 return 0;
6601}
6602#endif /* CONFIG_NUMA */
6603
6604static int __sdt_alloc(const struct cpumask *cpu_map)
6605{
6606 struct sched_domain_topology_level *tl;
6607 int j;
6608
6609 for_each_sd_topology(tl) {
6610 struct sd_data *sdd = &tl->data;
6611
6612 sdd->sd = alloc_percpu(struct sched_domain *);
6613 if (!sdd->sd)
6614 return -ENOMEM;
6615
6616 sdd->sg = alloc_percpu(struct sched_group *);
6617 if (!sdd->sg)
6618 return -ENOMEM;
6619
6620 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6621 if (!sdd->sgc)
6622 return -ENOMEM;
6623
6624 for_each_cpu(j, cpu_map) {
6625 struct sched_domain *sd;
6626 struct sched_group *sg;
6627 struct sched_group_capacity *sgc;
6628
6629 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6630 GFP_KERNEL, cpu_to_node(j));
6631 if (!sd)
6632 return -ENOMEM;
6633
6634 *per_cpu_ptr(sdd->sd, j) = sd;
6635
6636 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6637 GFP_KERNEL, cpu_to_node(j));
6638 if (!sg)
6639 return -ENOMEM;
6640
6641 sg->next = sg;
6642
6643 *per_cpu_ptr(sdd->sg, j) = sg;
6644
6645 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
6646 GFP_KERNEL, cpu_to_node(j));
6647 if (!sgc)
6648 return -ENOMEM;
6649
6650 *per_cpu_ptr(sdd->sgc, j) = sgc;
6651 }
6652 }
6653
6654 return 0;
6655}
6656
6657static void __sdt_free(const struct cpumask *cpu_map)
6658{
6659 struct sched_domain_topology_level *tl;
6660 int j;
6661
6662 for_each_sd_topology(tl) {
6663 struct sd_data *sdd = &tl->data;
6664
6665 for_each_cpu(j, cpu_map) {
6666 struct sched_domain *sd;
6667
6668 if (sdd->sd) {
6669 sd = *per_cpu_ptr(sdd->sd, j);
6670 if (sd && (sd->flags & SD_OVERLAP))
6671 free_sched_groups(sd->groups, 0);
6672 kfree(*per_cpu_ptr(sdd->sd, j));
6673 }
6674
6675 if (sdd->sg)
6676 kfree(*per_cpu_ptr(sdd->sg, j));
6677 if (sdd->sgc)
6678 kfree(*per_cpu_ptr(sdd->sgc, j));
6679 }
6680 free_percpu(sdd->sd);
6681 sdd->sd = NULL;
6682 free_percpu(sdd->sg);
6683 sdd->sg = NULL;
6684 free_percpu(sdd->sgc);
6685 sdd->sgc = NULL;
6686 }
6687}
6688
6689struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6690 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6691 struct sched_domain *child, int cpu)
6692{
6693 struct sched_domain *sd = sd_init(tl, cpu);
6694 if (!sd)
6695 return child;
6696
6697 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
6698 if (child) {
6699 sd->level = child->level + 1;
6700 sched_domain_level_max = max(sched_domain_level_max, sd->level);
6701 child->parent = sd;
6702 sd->child = child;
6703
6704 if (!cpumask_subset(sched_domain_span(child),
6705 sched_domain_span(sd))) {
6706 pr_err("BUG: arch topology borken\n");
6707#ifdef CONFIG_SCHED_DEBUG
6708 pr_err(" the %s domain not a subset of the %s domain\n",
6709 child->name, sd->name);
6710#endif
6711 /* Fixup, ensure @sd has at least @child cpus. */
6712 cpumask_or(sched_domain_span(sd),
6713 sched_domain_span(sd),
6714 sched_domain_span(child));
6715 }
6716
6717 }
6718 set_domain_attribute(sd, attr);
6719
6720 return sd;
6721}
6722
6723/*
6724 * Build sched domains for a given set of cpus and attach the sched domains
6725 * to the individual cpus
6726 */
6727static int build_sched_domains(const struct cpumask *cpu_map,
6728 struct sched_domain_attr *attr)
6729{
6730 enum s_alloc alloc_state;
6731 struct sched_domain *sd;
6732 struct s_data d;
6733 int i, ret = -ENOMEM;
6734
6735 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6736 if (alloc_state != sa_rootdomain)
6737 goto error;
6738
6739 /* Set up domains for cpus specified by the cpu_map. */
6740 for_each_cpu(i, cpu_map) {
6741 struct sched_domain_topology_level *tl;
6742
6743 sd = NULL;
6744 for_each_sd_topology(tl) {
6745 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
6746 if (tl == sched_domain_topology)
6747 *per_cpu_ptr(d.sd, i) = sd;
6748 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6749 sd->flags |= SD_OVERLAP;
6750 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6751 break;
6752 }
6753 }
6754
6755 /* Build the groups for the domains */
6756 for_each_cpu(i, cpu_map) {
6757 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6758 sd->span_weight = cpumask_weight(sched_domain_span(sd));
6759 if (sd->flags & SD_OVERLAP) {
6760 if (build_overlap_sched_groups(sd, i))
6761 goto error;
6762 } else {
6763 if (build_sched_groups(sd, i))
6764 goto error;
6765 }
6766 }
6767 }
6768
6769 /* Calculate CPU capacity for physical packages and nodes */
6770 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6771 if (!cpumask_test_cpu(i, cpu_map))
6772 continue;
6773
6774 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6775 claim_allocations(i, sd);
6776 init_sched_groups_capacity(i, sd);
6777 }
6778 }
6779
6780 /* Attach the domains */
6781 rcu_read_lock();
6782 for_each_cpu(i, cpu_map) {
6783 sd = *per_cpu_ptr(d.sd, i);
6784 cpu_attach_domain(sd, d.rd, i);
6785 }
6786 rcu_read_unlock();
6787
6788 ret = 0;
6789error:
6790 __free_domain_allocs(&d, alloc_state, cpu_map);
6791 return ret;
6792}
6793
6794static cpumask_var_t *doms_cur; /* current sched domains */
6795static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6796static struct sched_domain_attr *dattr_cur;
6797 /* attribues of custom domains in 'doms_cur' */
6798
6799/*
6800 * Special case: If a kmalloc of a doms_cur partition (array of
6801 * cpumask) fails, then fallback to a single sched domain,
6802 * as determined by the single cpumask fallback_doms.
6803 */
6804static cpumask_var_t fallback_doms;
6805
6806/*
6807 * arch_update_cpu_topology lets virtualized architectures update the
6808 * cpu core maps. It is supposed to return 1 if the topology changed
6809 * or 0 if it stayed the same.
6810 */
6811int __weak arch_update_cpu_topology(void)
6812{
6813 return 0;
6814}
6815
6816cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6817{
6818 int i;
6819 cpumask_var_t *doms;
6820
6821 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6822 if (!doms)
6823 return NULL;
6824 for (i = 0; i < ndoms; i++) {
6825 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6826 free_sched_domains(doms, i);
6827 return NULL;
6828 }
6829 }
6830 return doms;
6831}
6832
6833void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6834{
6835 unsigned int i;
6836 for (i = 0; i < ndoms; i++)
6837 free_cpumask_var(doms[i]);
6838 kfree(doms);
6839}
6840
6841/*
6842 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6843 * For now this just excludes isolated cpus, but could be used to
6844 * exclude other special cases in the future.
6845 */
6846static int init_sched_domains(const struct cpumask *cpu_map)
6847{
6848 int err;
6849
6850 arch_update_cpu_topology();
6851 ndoms_cur = 1;
6852 doms_cur = alloc_sched_domains(ndoms_cur);
6853 if (!doms_cur)
6854 doms_cur = &fallback_doms;
6855 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
6856 err = build_sched_domains(doms_cur[0], NULL);
6857 register_sched_domain_sysctl();
6858
6859 return err;
6860}
6861
6862/*
6863 * Detach sched domains from a group of cpus specified in cpu_map
6864 * These cpus will now be attached to the NULL domain
6865 */
6866static void detach_destroy_domains(const struct cpumask *cpu_map)
6867{
6868 int i;
6869
6870 rcu_read_lock();
6871 for_each_cpu(i, cpu_map)
6872 cpu_attach_domain(NULL, &def_root_domain, i);
6873 rcu_read_unlock();
6874}
6875
6876/* handle null as "default" */
6877static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6878 struct sched_domain_attr *new, int idx_new)
6879{
6880 struct sched_domain_attr tmp;
6881
6882 /* fast path */
6883 if (!new && !cur)
6884 return 1;
6885
6886 tmp = SD_ATTR_INIT;
6887 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6888 new ? (new + idx_new) : &tmp,
6889 sizeof(struct sched_domain_attr));
6890}
6891
6892/*
6893 * Partition sched domains as specified by the 'ndoms_new'
6894 * cpumasks in the array doms_new[] of cpumasks. This compares
6895 * doms_new[] to the current sched domain partitioning, doms_cur[].
6896 * It destroys each deleted domain and builds each new domain.
6897 *
6898 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
6899 * The masks don't intersect (don't overlap.) We should setup one
6900 * sched domain for each mask. CPUs not in any of the cpumasks will
6901 * not be load balanced. If the same cpumask appears both in the
6902 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6903 * it as it is.
6904 *
6905 * The passed in 'doms_new' should be allocated using
6906 * alloc_sched_domains. This routine takes ownership of it and will
6907 * free_sched_domains it when done with it. If the caller failed the
6908 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6909 * and partition_sched_domains() will fallback to the single partition
6910 * 'fallback_doms', it also forces the domains to be rebuilt.
6911 *
6912 * If doms_new == NULL it will be replaced with cpu_online_mask.
6913 * ndoms_new == 0 is a special case for destroying existing domains,
6914 * and it will not create the default domain.
6915 *
6916 * Call with hotplug lock held
6917 */
6918void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
6919 struct sched_domain_attr *dattr_new)
6920{
6921 int i, j, n;
6922 int new_topology;
6923
6924 mutex_lock(&sched_domains_mutex);
6925
6926 /* always unregister in case we don't destroy any domains */
6927 unregister_sched_domain_sysctl();
6928
6929 /* Let architecture update cpu core mappings. */
6930 new_topology = arch_update_cpu_topology();
6931
6932 n = doms_new ? ndoms_new : 0;
6933
6934 /* Destroy deleted domains */
6935 for (i = 0; i < ndoms_cur; i++) {
6936 for (j = 0; j < n && !new_topology; j++) {
6937 if (cpumask_equal(doms_cur[i], doms_new[j])
6938 && dattrs_equal(dattr_cur, i, dattr_new, j))
6939 goto match1;
6940 }
6941 /* no match - a current sched domain not in new doms_new[] */
6942 detach_destroy_domains(doms_cur[i]);
6943match1:
6944 ;
6945 }
6946
6947 n = ndoms_cur;
6948 if (doms_new == NULL) {
6949 n = 0;
6950 doms_new = &fallback_doms;
6951 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
6952 WARN_ON_ONCE(dattr_new);
6953 }
6954
6955 /* Build new domains */
6956 for (i = 0; i < ndoms_new; i++) {
6957 for (j = 0; j < n && !new_topology; j++) {
6958 if (cpumask_equal(doms_new[i], doms_cur[j])
6959 && dattrs_equal(dattr_new, i, dattr_cur, j))
6960 goto match2;
6961 }
6962 /* no match - add a new doms_new */
6963 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
6964match2:
6965 ;
6966 }
6967
6968 /* Remember the new sched domains */
6969 if (doms_cur != &fallback_doms)
6970 free_sched_domains(doms_cur, ndoms_cur);
6971 kfree(dattr_cur); /* kfree(NULL) is safe */
6972 doms_cur = doms_new;
6973 dattr_cur = dattr_new;
6974 ndoms_cur = ndoms_new;
6975
6976 register_sched_domain_sysctl();
6977
6978 mutex_unlock(&sched_domains_mutex);
6979}
6980
6981static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6982
6983/*
6984 * Update cpusets according to cpu_active mask. If cpusets are
6985 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6986 * around partition_sched_domains().
6987 *
6988 * If we come here as part of a suspend/resume, don't touch cpusets because we
6989 * want to restore it back to its original state upon resume anyway.
6990 */
6991static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6992 void *hcpu)
6993{
6994 switch (action) {
6995 case CPU_ONLINE_FROZEN:
6996 case CPU_DOWN_FAILED_FROZEN:
6997
6998 /*
6999 * num_cpus_frozen tracks how many CPUs are involved in suspend
7000 * resume sequence. As long as this is not the last online
7001 * operation in the resume sequence, just build a single sched
7002 * domain, ignoring cpusets.
7003 */
7004 num_cpus_frozen--;
7005 if (likely(num_cpus_frozen)) {
7006 partition_sched_domains(1, NULL, NULL);
7007 break;
7008 }
7009
7010 /*
7011 * This is the last CPU online operation. So fall through and
7012 * restore the original sched domains by considering the
7013 * cpuset configurations.
7014 */
7015
7016 case CPU_ONLINE:
7017 cpuset_update_active_cpus(true);
7018 break;
7019 default:
7020 return NOTIFY_DONE;
7021 }
7022 return NOTIFY_OK;
7023}
7024
7025static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7026 void *hcpu)
7027{
7028 unsigned long flags;
7029 long cpu = (long)hcpu;
7030 struct dl_bw *dl_b;
7031 bool overflow;
7032 int cpus;
7033
7034 switch (action) {
7035 case CPU_DOWN_PREPARE:
7036 rcu_read_lock_sched();
7037 dl_b = dl_bw_of(cpu);
7038
7039 raw_spin_lock_irqsave(&dl_b->lock, flags);
7040 cpus = dl_bw_cpus(cpu);
7041 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7042 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7043
7044 rcu_read_unlock_sched();
7045
7046 if (overflow)
7047 return notifier_from_errno(-EBUSY);
7048 cpuset_update_active_cpus(false);
7049 break;
7050 case CPU_DOWN_PREPARE_FROZEN:
7051 num_cpus_frozen++;
7052 partition_sched_domains(1, NULL, NULL);
7053 break;
7054 default:
7055 return NOTIFY_DONE;
7056 }
7057 return NOTIFY_OK;
7058}
7059
7060void __init sched_init_smp(void)
7061{
7062 cpumask_var_t non_isolated_cpus;
7063
7064 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7065 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7066
7067 sched_init_numa();
7068
7069 /*
7070 * There's no userspace yet to cause hotplug operations; hence all the
7071 * cpu masks are stable and all blatant races in the below code cannot
7072 * happen.
7073 */
7074 mutex_lock(&sched_domains_mutex);
7075 init_sched_domains(cpu_active_mask);
7076 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7077 if (cpumask_empty(non_isolated_cpus))
7078 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7079 mutex_unlock(&sched_domains_mutex);
7080
7081 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
7082 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7083 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7084
7085 init_hrtick();
7086
7087 /* Move init over to a non-isolated CPU */
7088 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7089 BUG();
7090 sched_init_granularity();
7091 free_cpumask_var(non_isolated_cpus);
7092
7093 init_sched_rt_class();
7094 init_sched_dl_class();
7095}
7096#else
7097void __init sched_init_smp(void)
7098{
7099 sched_init_granularity();
7100}
7101#endif /* CONFIG_SMP */
7102
7103const_debug unsigned int sysctl_timer_migration = 1;
7104
7105int in_sched_functions(unsigned long addr)
7106{
7107 return in_lock_functions(addr) ||
7108 (addr >= (unsigned long)__sched_text_start
7109 && addr < (unsigned long)__sched_text_end);
7110}
7111
7112#ifdef CONFIG_CGROUP_SCHED
7113/*
7114 * Default task group.
7115 * Every task in system belongs to this group at bootup.
7116 */
7117struct task_group root_task_group;
7118LIST_HEAD(task_groups);
7119#endif
7120
7121DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7122
7123void __init sched_init(void)
7124{
7125 int i, j;
7126 unsigned long alloc_size = 0, ptr;
7127
7128#ifdef CONFIG_FAIR_GROUP_SCHED
7129 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7130#endif
7131#ifdef CONFIG_RT_GROUP_SCHED
7132 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7133#endif
7134 if (alloc_size) {
7135 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7136
7137#ifdef CONFIG_FAIR_GROUP_SCHED
7138 root_task_group.se = (struct sched_entity **)ptr;
7139 ptr += nr_cpu_ids * sizeof(void **);
7140
7141 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7142 ptr += nr_cpu_ids * sizeof(void **);
7143
7144#endif /* CONFIG_FAIR_GROUP_SCHED */
7145#ifdef CONFIG_RT_GROUP_SCHED
7146 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7147 ptr += nr_cpu_ids * sizeof(void **);
7148
7149 root_task_group.rt_rq = (struct rt_rq **)ptr;
7150 ptr += nr_cpu_ids * sizeof(void **);
7151
7152#endif /* CONFIG_RT_GROUP_SCHED */
7153 }
7154#ifdef CONFIG_CPUMASK_OFFSTACK
7155 for_each_possible_cpu(i) {
7156 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7157 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7158 }
7159#endif /* CONFIG_CPUMASK_OFFSTACK */
7160
7161 init_rt_bandwidth(&def_rt_bandwidth,
7162 global_rt_period(), global_rt_runtime());
7163 init_dl_bandwidth(&def_dl_bandwidth,
7164 global_rt_period(), global_rt_runtime());
7165
7166#ifdef CONFIG_SMP
7167 init_defrootdomain();
7168#endif
7169
7170#ifdef CONFIG_RT_GROUP_SCHED
7171 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7172 global_rt_period(), global_rt_runtime());
7173#endif /* CONFIG_RT_GROUP_SCHED */
7174
7175#ifdef CONFIG_CGROUP_SCHED
7176 list_add(&root_task_group.list, &task_groups);
7177 INIT_LIST_HEAD(&root_task_group.children);
7178 INIT_LIST_HEAD(&root_task_group.siblings);
7179 autogroup_init(&init_task);
7180
7181#endif /* CONFIG_CGROUP_SCHED */
7182
7183 for_each_possible_cpu(i) {
7184 struct rq *rq;
7185
7186 rq = cpu_rq(i);
7187 raw_spin_lock_init(&rq->lock);
7188 rq->nr_running = 0;
7189 rq->calc_load_active = 0;
7190 rq->calc_load_update = jiffies + LOAD_FREQ;
7191 init_cfs_rq(&rq->cfs);
7192 init_rt_rq(&rq->rt);
7193 init_dl_rq(&rq->dl);
7194#ifdef CONFIG_FAIR_GROUP_SCHED
7195 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7196 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7197 /*
7198 * How much cpu bandwidth does root_task_group get?
7199 *
7200 * In case of task-groups formed thr' the cgroup filesystem, it
7201 * gets 100% of the cpu resources in the system. This overall
7202 * system cpu resource is divided among the tasks of
7203 * root_task_group and its child task-groups in a fair manner,
7204 * based on each entity's (task or task-group's) weight
7205 * (se->load.weight).
7206 *
7207 * In other words, if root_task_group has 10 tasks of weight
7208 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7209 * then A0's share of the cpu resource is:
7210 *
7211 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7212 *
7213 * We achieve this by letting root_task_group's tasks sit
7214 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7215 */
7216 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7217 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7218#endif /* CONFIG_FAIR_GROUP_SCHED */
7219
7220 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7221#ifdef CONFIG_RT_GROUP_SCHED
7222 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7223#endif
7224
7225 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7226 rq->cpu_load[j] = 0;
7227
7228 rq->last_load_update_tick = jiffies;
7229
7230#ifdef CONFIG_SMP
7231 rq->sd = NULL;
7232 rq->rd = NULL;
7233 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7234 rq->balance_callback = NULL;
7235 rq->active_balance = 0;
7236 rq->next_balance = jiffies;
7237 rq->push_cpu = 0;
7238 rq->cpu = i;
7239 rq->online = 0;
7240 rq->idle_stamp = 0;
7241 rq->avg_idle = 2*sysctl_sched_migration_cost;
7242 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7243
7244 INIT_LIST_HEAD(&rq->cfs_tasks);
7245
7246 rq_attach_root(rq, &def_root_domain);
7247#ifdef CONFIG_NO_HZ_COMMON
7248 rq->nohz_flags = 0;
7249#endif
7250#ifdef CONFIG_NO_HZ_FULL
7251 rq->last_sched_tick = 0;
7252#endif
7253#endif
7254 init_rq_hrtick(rq);
7255 atomic_set(&rq->nr_iowait, 0);
7256 }
7257
7258 set_load_weight(&init_task);
7259
7260#ifdef CONFIG_PREEMPT_NOTIFIERS
7261 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7262#endif
7263
7264 /*
7265 * The boot idle thread does lazy MMU switching as well:
7266 */
7267 atomic_inc(&init_mm.mm_count);
7268 enter_lazy_tlb(&init_mm, current);
7269
7270 /*
7271 * During early bootup we pretend to be a normal task:
7272 */
7273 current->sched_class = &fair_sched_class;
7274
7275 /*
7276 * Make us the idle thread. Technically, schedule() should not be
7277 * called from this thread, however somewhere below it might be,
7278 * but because we are the idle thread, we just pick up running again
7279 * when this runqueue becomes "idle".
7280 */
7281 init_idle(current, smp_processor_id());
7282
7283 calc_load_update = jiffies + LOAD_FREQ;
7284
7285#ifdef CONFIG_SMP
7286 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
7287 /* May be allocated at isolcpus cmdline parse time */
7288 if (cpu_isolated_map == NULL)
7289 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7290 idle_thread_set_boot_cpu();
7291 set_cpu_rq_start_time();
7292#endif
7293 init_sched_fair_class();
7294
7295 scheduler_running = 1;
7296}
7297
7298#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
7299static inline int preempt_count_equals(int preempt_offset)
7300{
7301 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7302
7303 return (nested == preempt_offset);
7304}
7305
7306void __might_sleep(const char *file, int line, int preempt_offset)
7307{
7308 /*
7309 * Blocking primitives will set (and therefore destroy) current->state,
7310 * since we will exit with TASK_RUNNING make sure we enter with it,
7311 * otherwise we will destroy state.
7312 */
7313 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7314 "do not call blocking ops when !TASK_RUNNING; "
7315 "state=%lx set at [<%p>] %pS\n",
7316 current->state,
7317 (void *)current->task_state_change,
7318 (void *)current->task_state_change);
7319
7320 ___might_sleep(file, line, preempt_offset);
7321}
7322EXPORT_SYMBOL(__might_sleep);
7323
7324void ___might_sleep(const char *file, int line, int preempt_offset)
7325{
7326 static unsigned long prev_jiffy; /* ratelimiting */
7327
7328 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
7329 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7330 !is_idle_task(current)) ||
7331 system_state != SYSTEM_RUNNING || oops_in_progress)
7332 return;
7333 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7334 return;
7335 prev_jiffy = jiffies;
7336
7337 printk(KERN_ERR
7338 "BUG: sleeping function called from invalid context at %s:%d\n",
7339 file, line);
7340 printk(KERN_ERR
7341 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7342 in_atomic(), irqs_disabled(),
7343 current->pid, current->comm);
7344
7345 if (task_stack_end_corrupted(current))
7346 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7347
7348 debug_show_held_locks(current);
7349 if (irqs_disabled())
7350 print_irqtrace_events(current);
7351#ifdef CONFIG_DEBUG_PREEMPT
7352 if (!preempt_count_equals(preempt_offset)) {
7353 pr_err("Preemption disabled at:");
7354 print_ip_sym(current->preempt_disable_ip);
7355 pr_cont("\n");
7356 }
7357#endif
7358 dump_stack();
7359}
7360EXPORT_SYMBOL(___might_sleep);
7361#endif
7362
7363#ifdef CONFIG_MAGIC_SYSRQ
7364static void normalize_task(struct rq *rq, struct task_struct *p)
7365{
7366 const struct sched_class *prev_class = p->sched_class;
7367 struct sched_attr attr = {
7368 .sched_policy = SCHED_NORMAL,
7369 };
7370 int old_prio = p->prio;
7371 int queued;
7372
7373 queued = task_on_rq_queued(p);
7374 if (queued)
7375 dequeue_task(rq, p, 0);
7376 __setscheduler(rq, p, &attr, false);
7377 if (queued) {
7378 enqueue_task(rq, p, 0);
7379 resched_curr(rq);
7380 }
7381
7382 check_class_changed(rq, p, prev_class, old_prio);
7383}
7384
7385void normalize_rt_tasks(void)
7386{
7387 struct task_struct *g, *p;
7388 unsigned long flags;
7389 struct rq *rq;
7390
7391 read_lock(&tasklist_lock);
7392 for_each_process_thread(g, p) {
7393 /*
7394 * Only normalize user tasks:
7395 */
7396 if (p->flags & PF_KTHREAD)
7397 continue;
7398
7399 p->se.exec_start = 0;
7400#ifdef CONFIG_SCHEDSTATS
7401 p->se.statistics.wait_start = 0;
7402 p->se.statistics.sleep_start = 0;
7403 p->se.statistics.block_start = 0;
7404#endif
7405
7406 if (!dl_task(p) && !rt_task(p)) {
7407 /*
7408 * Renice negative nice level userspace
7409 * tasks back to 0:
7410 */
7411 if (task_nice(p) < 0)
7412 set_user_nice(p, 0);
7413 continue;
7414 }
7415
7416 rq = task_rq_lock(p, &flags);
7417 normalize_task(rq, p);
7418 task_rq_unlock(rq, p, &flags);
7419 }
7420 read_unlock(&tasklist_lock);
7421}
7422
7423#endif /* CONFIG_MAGIC_SYSRQ */
7424
7425#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7426/*
7427 * These functions are only useful for the IA64 MCA handling, or kdb.
7428 *
7429 * They can only be called when the whole system has been
7430 * stopped - every CPU needs to be quiescent, and no scheduling
7431 * activity can take place. Using them for anything else would
7432 * be a serious bug, and as a result, they aren't even visible
7433 * under any other configuration.
7434 */
7435
7436/**
7437 * curr_task - return the current task for a given cpu.
7438 * @cpu: the processor in question.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 *
7442 * Return: The current task for @cpu.
7443 */
7444struct task_struct *curr_task(int cpu)
7445{
7446 return cpu_curr(cpu);
7447}
7448
7449#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7450
7451#ifdef CONFIG_IA64
7452/**
7453 * set_curr_task - set the current task for a given cpu.
7454 * @cpu: the processor in question.
7455 * @p: the task pointer to set.
7456 *
7457 * Description: This function must only be used when non-maskable interrupts
7458 * are serviced on a separate stack. It allows the architecture to switch the
7459 * notion of the current task on a cpu in a non-blocking manner. This function
7460 * must be called with all CPU's synchronized, and interrupts disabled, the
7461 * and caller must save the original value of the current task (see
7462 * curr_task() above) and restore that value before reenabling interrupts and
7463 * re-starting the system.
7464 *
7465 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7466 */
7467void set_curr_task(int cpu, struct task_struct *p)
7468{
7469 cpu_curr(cpu) = p;
7470}
7471
7472#endif
7473
7474#ifdef CONFIG_CGROUP_SCHED
7475/* task_group_lock serializes the addition/removal of task groups */
7476static DEFINE_SPINLOCK(task_group_lock);
7477
7478static void free_sched_group(struct task_group *tg)
7479{
7480 free_fair_sched_group(tg);
7481 free_rt_sched_group(tg);
7482 autogroup_free(tg);
7483 kfree(tg);
7484}
7485
7486/* allocate runqueue etc for a new task group */
7487struct task_group *sched_create_group(struct task_group *parent)
7488{
7489 struct task_group *tg;
7490
7491 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7492 if (!tg)
7493 return ERR_PTR(-ENOMEM);
7494
7495 if (!alloc_fair_sched_group(tg, parent))
7496 goto err;
7497
7498 if (!alloc_rt_sched_group(tg, parent))
7499 goto err;
7500
7501 return tg;
7502
7503err:
7504 free_sched_group(tg);
7505 return ERR_PTR(-ENOMEM);
7506}
7507
7508void sched_online_group(struct task_group *tg, struct task_group *parent)
7509{
7510 unsigned long flags;
7511
7512 spin_lock_irqsave(&task_group_lock, flags);
7513 list_add_rcu(&tg->list, &task_groups);
7514
7515 WARN_ON(!parent); /* root should already exist */
7516
7517 tg->parent = parent;
7518 INIT_LIST_HEAD(&tg->children);
7519 list_add_rcu(&tg->siblings, &parent->children);
7520 spin_unlock_irqrestore(&task_group_lock, flags);
7521}
7522
7523/* rcu callback to free various structures associated with a task group */
7524static void free_sched_group_rcu(struct rcu_head *rhp)
7525{
7526 /* now it should be safe to free those cfs_rqs */
7527 free_sched_group(container_of(rhp, struct task_group, rcu));
7528}
7529
7530/* Destroy runqueue etc associated with a task group */
7531void sched_destroy_group(struct task_group *tg)
7532{
7533 /* wait for possible concurrent references to cfs_rqs complete */
7534 call_rcu(&tg->rcu, free_sched_group_rcu);
7535}
7536
7537void sched_offline_group(struct task_group *tg)
7538{
7539 unsigned long flags;
7540 int i;
7541
7542 /* end participation in shares distribution */
7543 for_each_possible_cpu(i)
7544 unregister_fair_sched_group(tg, i);
7545
7546 spin_lock_irqsave(&task_group_lock, flags);
7547 list_del_rcu(&tg->list);
7548 list_del_rcu(&tg->siblings);
7549 spin_unlock_irqrestore(&task_group_lock, flags);
7550}
7551
7552/* change task's runqueue when it moves between groups.
7553 * The caller of this function should have put the task in its new group
7554 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7555 * reflect its new group.
7556 */
7557void sched_move_task(struct task_struct *tsk)
7558{
7559 struct task_group *tg;
7560 int queued, running;
7561 unsigned long flags;
7562 struct rq *rq;
7563
7564 rq = task_rq_lock(tsk, &flags);
7565
7566 running = task_current(rq, tsk);
7567 queued = task_on_rq_queued(tsk);
7568
7569 if (queued)
7570 dequeue_task(rq, tsk, 0);
7571 if (unlikely(running))
7572 put_prev_task(rq, tsk);
7573
7574 /*
7575 * All callers are synchronized by task_rq_lock(); we do not use RCU
7576 * which is pointless here. Thus, we pass "true" to task_css_check()
7577 * to prevent lockdep warnings.
7578 */
7579 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7580 struct task_group, css);
7581 tg = autogroup_task_group(tsk, tg);
7582 tsk->sched_task_group = tg;
7583
7584#ifdef CONFIG_FAIR_GROUP_SCHED
7585 if (tsk->sched_class->task_move_group)
7586 tsk->sched_class->task_move_group(tsk, queued);
7587 else
7588#endif
7589 set_task_rq(tsk, task_cpu(tsk));
7590
7591 if (unlikely(running))
7592 tsk->sched_class->set_curr_task(rq);
7593 if (queued)
7594 enqueue_task(rq, tsk, 0);
7595
7596 task_rq_unlock(rq, tsk, &flags);
7597}
7598#endif /* CONFIG_CGROUP_SCHED */
7599
7600#ifdef CONFIG_RT_GROUP_SCHED
7601/*
7602 * Ensure that the real time constraints are schedulable.
7603 */
7604static DEFINE_MUTEX(rt_constraints_mutex);
7605
7606/* Must be called with tasklist_lock held */
7607static inline int tg_has_rt_tasks(struct task_group *tg)
7608{
7609 struct task_struct *g, *p;
7610
7611 /*
7612 * Autogroups do not have RT tasks; see autogroup_create().
7613 */
7614 if (task_group_is_autogroup(tg))
7615 return 0;
7616
7617 for_each_process_thread(g, p) {
7618 if (rt_task(p) && task_group(p) == tg)
7619 return 1;
7620 }
7621
7622 return 0;
7623}
7624
7625struct rt_schedulable_data {
7626 struct task_group *tg;
7627 u64 rt_period;
7628 u64 rt_runtime;
7629};
7630
7631static int tg_rt_schedulable(struct task_group *tg, void *data)
7632{
7633 struct rt_schedulable_data *d = data;
7634 struct task_group *child;
7635 unsigned long total, sum = 0;
7636 u64 period, runtime;
7637
7638 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7639 runtime = tg->rt_bandwidth.rt_runtime;
7640
7641 if (tg == d->tg) {
7642 period = d->rt_period;
7643 runtime = d->rt_runtime;
7644 }
7645
7646 /*
7647 * Cannot have more runtime than the period.
7648 */
7649 if (runtime > period && runtime != RUNTIME_INF)
7650 return -EINVAL;
7651
7652 /*
7653 * Ensure we don't starve existing RT tasks.
7654 */
7655 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7656 return -EBUSY;
7657
7658 total = to_ratio(period, runtime);
7659
7660 /*
7661 * Nobody can have more than the global setting allows.
7662 */
7663 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7664 return -EINVAL;
7665
7666 /*
7667 * The sum of our children's runtime should not exceed our own.
7668 */
7669 list_for_each_entry_rcu(child, &tg->children, siblings) {
7670 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7671 runtime = child->rt_bandwidth.rt_runtime;
7672
7673 if (child == d->tg) {
7674 period = d->rt_period;
7675 runtime = d->rt_runtime;
7676 }
7677
7678 sum += to_ratio(period, runtime);
7679 }
7680
7681 if (sum > total)
7682 return -EINVAL;
7683
7684 return 0;
7685}
7686
7687static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7688{
7689 int ret;
7690
7691 struct rt_schedulable_data data = {
7692 .tg = tg,
7693 .rt_period = period,
7694 .rt_runtime = runtime,
7695 };
7696
7697 rcu_read_lock();
7698 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7699 rcu_read_unlock();
7700
7701 return ret;
7702}
7703
7704static int tg_set_rt_bandwidth(struct task_group *tg,
7705 u64 rt_period, u64 rt_runtime)
7706{
7707 int i, err = 0;
7708
7709 /*
7710 * Disallowing the root group RT runtime is BAD, it would disallow the
7711 * kernel creating (and or operating) RT threads.
7712 */
7713 if (tg == &root_task_group && rt_runtime == 0)
7714 return -EINVAL;
7715
7716 /* No period doesn't make any sense. */
7717 if (rt_period == 0)
7718 return -EINVAL;
7719
7720 mutex_lock(&rt_constraints_mutex);
7721 read_lock(&tasklist_lock);
7722 err = __rt_schedulable(tg, rt_period, rt_runtime);
7723 if (err)
7724 goto unlock;
7725
7726 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7727 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7728 tg->rt_bandwidth.rt_runtime = rt_runtime;
7729
7730 for_each_possible_cpu(i) {
7731 struct rt_rq *rt_rq = tg->rt_rq[i];
7732
7733 raw_spin_lock(&rt_rq->rt_runtime_lock);
7734 rt_rq->rt_runtime = rt_runtime;
7735 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7736 }
7737 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
7738unlock:
7739 read_unlock(&tasklist_lock);
7740 mutex_unlock(&rt_constraints_mutex);
7741
7742 return err;
7743}
7744
7745static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7746{
7747 u64 rt_runtime, rt_period;
7748
7749 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7750 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7751 if (rt_runtime_us < 0)
7752 rt_runtime = RUNTIME_INF;
7753
7754 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7755}
7756
7757static long sched_group_rt_runtime(struct task_group *tg)
7758{
7759 u64 rt_runtime_us;
7760
7761 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
7762 return -1;
7763
7764 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
7765 do_div(rt_runtime_us, NSEC_PER_USEC);
7766 return rt_runtime_us;
7767}
7768
7769static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
7770{
7771 u64 rt_runtime, rt_period;
7772
7773 rt_period = rt_period_us * NSEC_PER_USEC;
7774 rt_runtime = tg->rt_bandwidth.rt_runtime;
7775
7776 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
7777}
7778
7779static long sched_group_rt_period(struct task_group *tg)
7780{
7781 u64 rt_period_us;
7782
7783 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7784 do_div(rt_period_us, NSEC_PER_USEC);
7785 return rt_period_us;
7786}
7787#endif /* CONFIG_RT_GROUP_SCHED */
7788
7789#ifdef CONFIG_RT_GROUP_SCHED
7790static int sched_rt_global_constraints(void)
7791{
7792 int ret = 0;
7793
7794 mutex_lock(&rt_constraints_mutex);
7795 read_lock(&tasklist_lock);
7796 ret = __rt_schedulable(NULL, 0, 0);
7797 read_unlock(&tasklist_lock);
7798 mutex_unlock(&rt_constraints_mutex);
7799
7800 return ret;
7801}
7802
7803static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7804{
7805 /* Don't accept realtime tasks when there is no way for them to run */
7806 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7807 return 0;
7808
7809 return 1;
7810}
7811
7812#else /* !CONFIG_RT_GROUP_SCHED */
7813static int sched_rt_global_constraints(void)
7814{
7815 unsigned long flags;
7816 int i, ret = 0;
7817
7818 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
7819 for_each_possible_cpu(i) {
7820 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7821
7822 raw_spin_lock(&rt_rq->rt_runtime_lock);
7823 rt_rq->rt_runtime = global_rt_runtime();
7824 raw_spin_unlock(&rt_rq->rt_runtime_lock);
7825 }
7826 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
7827
7828 return ret;
7829}
7830#endif /* CONFIG_RT_GROUP_SCHED */
7831
7832static int sched_dl_global_validate(void)
7833{
7834 u64 runtime = global_rt_runtime();
7835 u64 period = global_rt_period();
7836 u64 new_bw = to_ratio(period, runtime);
7837 struct dl_bw *dl_b;
7838 int cpu, ret = 0;
7839 unsigned long flags;
7840
7841 /*
7842 * Here we want to check the bandwidth not being set to some
7843 * value smaller than the currently allocated bandwidth in
7844 * any of the root_domains.
7845 *
7846 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7847 * cycling on root_domains... Discussion on different/better
7848 * solutions is welcome!
7849 */
7850 for_each_possible_cpu(cpu) {
7851 rcu_read_lock_sched();
7852 dl_b = dl_bw_of(cpu);
7853
7854 raw_spin_lock_irqsave(&dl_b->lock, flags);
7855 if (new_bw < dl_b->total_bw)
7856 ret = -EBUSY;
7857 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7858
7859 rcu_read_unlock_sched();
7860
7861 if (ret)
7862 break;
7863 }
7864
7865 return ret;
7866}
7867
7868static void sched_dl_do_global(void)
7869{
7870 u64 new_bw = -1;
7871 struct dl_bw *dl_b;
7872 int cpu;
7873 unsigned long flags;
7874
7875 def_dl_bandwidth.dl_period = global_rt_period();
7876 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7877
7878 if (global_rt_runtime() != RUNTIME_INF)
7879 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7880
7881 /*
7882 * FIXME: As above...
7883 */
7884 for_each_possible_cpu(cpu) {
7885 rcu_read_lock_sched();
7886 dl_b = dl_bw_of(cpu);
7887
7888 raw_spin_lock_irqsave(&dl_b->lock, flags);
7889 dl_b->bw = new_bw;
7890 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7891
7892 rcu_read_unlock_sched();
7893 }
7894}
7895
7896static int sched_rt_global_validate(void)
7897{
7898 if (sysctl_sched_rt_period <= 0)
7899 return -EINVAL;
7900
7901 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7902 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
7903 return -EINVAL;
7904
7905 return 0;
7906}
7907
7908static void sched_rt_do_global(void)
7909{
7910 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7911 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
7912}
7913
7914int sched_rt_handler(struct ctl_table *table, int write,
7915 void __user *buffer, size_t *lenp,
7916 loff_t *ppos)
7917{
7918 int old_period, old_runtime;
7919 static DEFINE_MUTEX(mutex);
7920 int ret;
7921
7922 mutex_lock(&mutex);
7923 old_period = sysctl_sched_rt_period;
7924 old_runtime = sysctl_sched_rt_runtime;
7925
7926 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7927
7928 if (!ret && write) {
7929 ret = sched_rt_global_validate();
7930 if (ret)
7931 goto undo;
7932
7933 ret = sched_dl_global_validate();
7934 if (ret)
7935 goto undo;
7936
7937 ret = sched_rt_global_constraints();
7938 if (ret)
7939 goto undo;
7940
7941 sched_rt_do_global();
7942 sched_dl_do_global();
7943 }
7944 if (0) {
7945undo:
7946 sysctl_sched_rt_period = old_period;
7947 sysctl_sched_rt_runtime = old_runtime;
7948 }
7949 mutex_unlock(&mutex);
7950
7951 return ret;
7952}
7953
7954int sched_rr_handler(struct ctl_table *table, int write,
7955 void __user *buffer, size_t *lenp,
7956 loff_t *ppos)
7957{
7958 int ret;
7959 static DEFINE_MUTEX(mutex);
7960
7961 mutex_lock(&mutex);
7962 ret = proc_dointvec(table, write, buffer, lenp, ppos);
7963 /* make sure that internally we keep jiffies */
7964 /* also, writing zero resets timeslice to default */
7965 if (!ret && write) {
7966 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7967 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
7968 }
7969 mutex_unlock(&mutex);
7970 return ret;
7971}
7972
7973#ifdef CONFIG_CGROUP_SCHED
7974
7975static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7976{
7977 return css ? container_of(css, struct task_group, css) : NULL;
7978}
7979
7980static struct cgroup_subsys_state *
7981cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7982{
7983 struct task_group *parent = css_tg(parent_css);
7984 struct task_group *tg;
7985
7986 if (!parent) {
7987 /* This is early initialization for the top cgroup */
7988 return &root_task_group.css;
7989 }
7990
7991 tg = sched_create_group(parent);
7992 if (IS_ERR(tg))
7993 return ERR_PTR(-ENOMEM);
7994
7995 return &tg->css;
7996}
7997
7998static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7999{
8000 struct task_group *tg = css_tg(css);
8001 struct task_group *parent = css_tg(css->parent);
8002
8003 if (parent)
8004 sched_online_group(tg, parent);
8005 return 0;
8006}
8007
8008static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8009{
8010 struct task_group *tg = css_tg(css);
8011
8012 sched_destroy_group(tg);
8013}
8014
8015static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
8016{
8017 struct task_group *tg = css_tg(css);
8018
8019 sched_offline_group(tg);
8020}
8021
8022static void cpu_cgroup_fork(struct task_struct *task)
8023{
8024 sched_move_task(task);
8025}
8026
8027static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
8028 struct cgroup_taskset *tset)
8029{
8030 struct task_struct *task;
8031
8032 cgroup_taskset_for_each(task, tset) {
8033#ifdef CONFIG_RT_GROUP_SCHED
8034 if (!sched_rt_can_attach(css_tg(css), task))
8035 return -EINVAL;
8036#else
8037 /* We don't support RT-tasks being in separate groups */
8038 if (task->sched_class != &fair_sched_class)
8039 return -EINVAL;
8040#endif
8041 }
8042 return 0;
8043}
8044
8045static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
8046 struct cgroup_taskset *tset)
8047{
8048 struct task_struct *task;
8049
8050 cgroup_taskset_for_each(task, tset)
8051 sched_move_task(task);
8052}
8053
8054static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8055 struct cgroup_subsys_state *old_css,
8056 struct task_struct *task)
8057{
8058 /*
8059 * cgroup_exit() is called in the copy_process() failure path.
8060 * Ignore this case since the task hasn't ran yet, this avoids
8061 * trying to poke a half freed task state from generic code.
8062 */
8063 if (!(task->flags & PF_EXITING))
8064 return;
8065
8066 sched_move_task(task);
8067}
8068
8069#ifdef CONFIG_FAIR_GROUP_SCHED
8070static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8071 struct cftype *cftype, u64 shareval)
8072{
8073 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8074}
8075
8076static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8077 struct cftype *cft)
8078{
8079 struct task_group *tg = css_tg(css);
8080
8081 return (u64) scale_load_down(tg->shares);
8082}
8083
8084#ifdef CONFIG_CFS_BANDWIDTH
8085static DEFINE_MUTEX(cfs_constraints_mutex);
8086
8087const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8088const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8089
8090static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8091
8092static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8093{
8094 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8095 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8096
8097 if (tg == &root_task_group)
8098 return -EINVAL;
8099
8100 /*
8101 * Ensure we have at some amount of bandwidth every period. This is
8102 * to prevent reaching a state of large arrears when throttled via
8103 * entity_tick() resulting in prolonged exit starvation.
8104 */
8105 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8106 return -EINVAL;
8107
8108 /*
8109 * Likewise, bound things on the otherside by preventing insane quota
8110 * periods. This also allows us to normalize in computing quota
8111 * feasibility.
8112 */
8113 if (period > max_cfs_quota_period)
8114 return -EINVAL;
8115
8116 /*
8117 * Prevent race between setting of cfs_rq->runtime_enabled and
8118 * unthrottle_offline_cfs_rqs().
8119 */
8120 get_online_cpus();
8121 mutex_lock(&cfs_constraints_mutex);
8122 ret = __cfs_schedulable(tg, period, quota);
8123 if (ret)
8124 goto out_unlock;
8125
8126 runtime_enabled = quota != RUNTIME_INF;
8127 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8128 /*
8129 * If we need to toggle cfs_bandwidth_used, off->on must occur
8130 * before making related changes, and on->off must occur afterwards
8131 */
8132 if (runtime_enabled && !runtime_was_enabled)
8133 cfs_bandwidth_usage_inc();
8134 raw_spin_lock_irq(&cfs_b->lock);
8135 cfs_b->period = ns_to_ktime(period);
8136 cfs_b->quota = quota;
8137
8138 __refill_cfs_bandwidth_runtime(cfs_b);
8139 /* restart the period timer (if active) to handle new period expiry */
8140 if (runtime_enabled)
8141 start_cfs_bandwidth(cfs_b);
8142 raw_spin_unlock_irq(&cfs_b->lock);
8143
8144 for_each_online_cpu(i) {
8145 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8146 struct rq *rq = cfs_rq->rq;
8147
8148 raw_spin_lock_irq(&rq->lock);
8149 cfs_rq->runtime_enabled = runtime_enabled;
8150 cfs_rq->runtime_remaining = 0;
8151
8152 if (cfs_rq->throttled)
8153 unthrottle_cfs_rq(cfs_rq);
8154 raw_spin_unlock_irq(&rq->lock);
8155 }
8156 if (runtime_was_enabled && !runtime_enabled)
8157 cfs_bandwidth_usage_dec();
8158out_unlock:
8159 mutex_unlock(&cfs_constraints_mutex);
8160 put_online_cpus();
8161
8162 return ret;
8163}
8164
8165int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8166{
8167 u64 quota, period;
8168
8169 period = ktime_to_ns(tg->cfs_bandwidth.period);
8170 if (cfs_quota_us < 0)
8171 quota = RUNTIME_INF;
8172 else
8173 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8174
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_quota(struct task_group *tg)
8179{
8180 u64 quota_us;
8181
8182 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8183 return -1;
8184
8185 quota_us = tg->cfs_bandwidth.quota;
8186 do_div(quota_us, NSEC_PER_USEC);
8187
8188 return quota_us;
8189}
8190
8191int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8192{
8193 u64 quota, period;
8194
8195 period = (u64)cfs_period_us * NSEC_PER_USEC;
8196 quota = tg->cfs_bandwidth.quota;
8197
8198 return tg_set_cfs_bandwidth(tg, period, quota);
8199}
8200
8201long tg_get_cfs_period(struct task_group *tg)
8202{
8203 u64 cfs_period_us;
8204
8205 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8206 do_div(cfs_period_us, NSEC_PER_USEC);
8207
8208 return cfs_period_us;
8209}
8210
8211static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8212 struct cftype *cft)
8213{
8214 return tg_get_cfs_quota(css_tg(css));
8215}
8216
8217static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8218 struct cftype *cftype, s64 cfs_quota_us)
8219{
8220 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8221}
8222
8223static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8224 struct cftype *cft)
8225{
8226 return tg_get_cfs_period(css_tg(css));
8227}
8228
8229static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8230 struct cftype *cftype, u64 cfs_period_us)
8231{
8232 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8233}
8234
8235struct cfs_schedulable_data {
8236 struct task_group *tg;
8237 u64 period, quota;
8238};
8239
8240/*
8241 * normalize group quota/period to be quota/max_period
8242 * note: units are usecs
8243 */
8244static u64 normalize_cfs_quota(struct task_group *tg,
8245 struct cfs_schedulable_data *d)
8246{
8247 u64 quota, period;
8248
8249 if (tg == d->tg) {
8250 period = d->period;
8251 quota = d->quota;
8252 } else {
8253 period = tg_get_cfs_period(tg);
8254 quota = tg_get_cfs_quota(tg);
8255 }
8256
8257 /* note: these should typically be equivalent */
8258 if (quota == RUNTIME_INF || quota == -1)
8259 return RUNTIME_INF;
8260
8261 return to_ratio(period, quota);
8262}
8263
8264static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8265{
8266 struct cfs_schedulable_data *d = data;
8267 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8268 s64 quota = 0, parent_quota = -1;
8269
8270 if (!tg->parent) {
8271 quota = RUNTIME_INF;
8272 } else {
8273 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8274
8275 quota = normalize_cfs_quota(tg, d);
8276 parent_quota = parent_b->hierarchical_quota;
8277
8278 /*
8279 * ensure max(child_quota) <= parent_quota, inherit when no
8280 * limit is set
8281 */
8282 if (quota == RUNTIME_INF)
8283 quota = parent_quota;
8284 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8285 return -EINVAL;
8286 }
8287 cfs_b->hierarchical_quota = quota;
8288
8289 return 0;
8290}
8291
8292static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8293{
8294 int ret;
8295 struct cfs_schedulable_data data = {
8296 .tg = tg,
8297 .period = period,
8298 .quota = quota,
8299 };
8300
8301 if (quota != RUNTIME_INF) {
8302 do_div(data.period, NSEC_PER_USEC);
8303 do_div(data.quota, NSEC_PER_USEC);
8304 }
8305
8306 rcu_read_lock();
8307 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8308 rcu_read_unlock();
8309
8310 return ret;
8311}
8312
8313static int cpu_stats_show(struct seq_file *sf, void *v)
8314{
8315 struct task_group *tg = css_tg(seq_css(sf));
8316 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8317
8318 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8319 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8320 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8321
8322 return 0;
8323}
8324#endif /* CONFIG_CFS_BANDWIDTH */
8325#endif /* CONFIG_FAIR_GROUP_SCHED */
8326
8327#ifdef CONFIG_RT_GROUP_SCHED
8328static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8329 struct cftype *cft, s64 val)
8330{
8331 return sched_group_set_rt_runtime(css_tg(css), val);
8332}
8333
8334static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8335 struct cftype *cft)
8336{
8337 return sched_group_rt_runtime(css_tg(css));
8338}
8339
8340static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8341 struct cftype *cftype, u64 rt_period_us)
8342{
8343 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8344}
8345
8346static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8347 struct cftype *cft)
8348{
8349 return sched_group_rt_period(css_tg(css));
8350}
8351#endif /* CONFIG_RT_GROUP_SCHED */
8352
8353static struct cftype cpu_files[] = {
8354#ifdef CONFIG_FAIR_GROUP_SCHED
8355 {
8356 .name = "shares",
8357 .read_u64 = cpu_shares_read_u64,
8358 .write_u64 = cpu_shares_write_u64,
8359 },
8360#endif
8361#ifdef CONFIG_CFS_BANDWIDTH
8362 {
8363 .name = "cfs_quota_us",
8364 .read_s64 = cpu_cfs_quota_read_s64,
8365 .write_s64 = cpu_cfs_quota_write_s64,
8366 },
8367 {
8368 .name = "cfs_period_us",
8369 .read_u64 = cpu_cfs_period_read_u64,
8370 .write_u64 = cpu_cfs_period_write_u64,
8371 },
8372 {
8373 .name = "stat",
8374 .seq_show = cpu_stats_show,
8375 },
8376#endif
8377#ifdef CONFIG_RT_GROUP_SCHED
8378 {
8379 .name = "rt_runtime_us",
8380 .read_s64 = cpu_rt_runtime_read,
8381 .write_s64 = cpu_rt_runtime_write,
8382 },
8383 {
8384 .name = "rt_period_us",
8385 .read_u64 = cpu_rt_period_read_uint,
8386 .write_u64 = cpu_rt_period_write_uint,
8387 },
8388#endif
8389 { } /* terminate */
8390};
8391
8392struct cgroup_subsys cpu_cgrp_subsys = {
8393 .css_alloc = cpu_cgroup_css_alloc,
8394 .css_free = cpu_cgroup_css_free,
8395 .css_online = cpu_cgroup_css_online,
8396 .css_offline = cpu_cgroup_css_offline,
8397 .fork = cpu_cgroup_fork,
8398 .can_attach = cpu_cgroup_can_attach,
8399 .attach = cpu_cgroup_attach,
8400 .exit = cpu_cgroup_exit,
8401 .legacy_cftypes = cpu_files,
8402 .early_init = 1,
8403};
8404
8405#endif /* CONFIG_CGROUP_SCHED */
8406
8407void dump_cpu_task(int cpu)
8408{
8409 pr_info("Task dump for CPU %d:\n", cpu);
8410 sched_show_task(cpu_curr(cpu));
8411}
This page took 0.050329 seconds and 5 git commands to generate.