virtio: make add_buf return capacity remaining
[deliverable/linux.git] / kernel / sched_fair.c
... / ...
CommitLineData
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23#include <linux/latencytop.h>
24
25/*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37unsigned int sysctl_sched_latency = 5000000ULL;
38
39/*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45/*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48static unsigned int sched_nr_latency = 5;
49
50/*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56/*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62unsigned int __read_mostly sysctl_sched_compat_yield;
63
64/*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76static const struct sched_class fair_sched_class;
77
78/**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82#ifdef CONFIG_FAIR_GROUP_SCHED
83
84/* cpu runqueue to which this cfs_rq is attached */
85static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86{
87 return cfs_rq->rq;
88}
89
90/* An entity is a task if it doesn't "own" a runqueue */
91#define entity_is_task(se) (!se->my_q)
92
93static inline struct task_struct *task_of(struct sched_entity *se)
94{
95#ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97#endif
98 return container_of(se, struct task_struct, se);
99}
100
101/* Walk up scheduling entities hierarchy */
102#define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106{
107 return p->se.cfs_rq;
108}
109
110/* runqueue on which this entity is (to be) queued */
111static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112{
113 return se->cfs_rq;
114}
115
116/* runqueue "owned" by this group */
117static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118{
119 return grp->my_q;
120}
121
122/* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126{
127 return cfs_rq->tg->cfs_rq[this_cpu];
128}
129
130/* Iterate thr' all leaf cfs_rq's on a runqueue */
131#define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134/* Do the two (enqueued) entities belong to the same group ? */
135static inline int
136is_same_group(struct sched_entity *se, struct sched_entity *pse)
137{
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142}
143
144static inline struct sched_entity *parent_entity(struct sched_entity *se)
145{
146 return se->parent;
147}
148
149/* return depth at which a sched entity is present in the hierarchy */
150static inline int depth_se(struct sched_entity *se)
151{
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158}
159
160static void
161find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162{
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190}
191
192#else /* !CONFIG_FAIR_GROUP_SCHED */
193
194static inline struct task_struct *task_of(struct sched_entity *se)
195{
196 return container_of(se, struct task_struct, se);
197}
198
199static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200{
201 return container_of(cfs_rq, struct rq, cfs);
202}
203
204#define entity_is_task(se) 1
205
206#define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210{
211 return &task_rq(p)->cfs;
212}
213
214static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215{
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220}
221
222/* runqueue "owned" by this group */
223static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224{
225 return NULL;
226}
227
228static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229{
230 return &cpu_rq(this_cpu)->cfs;
231}
232
233#define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236static inline int
237is_same_group(struct sched_entity *se, struct sched_entity *pse)
238{
239 return 1;
240}
241
242static inline struct sched_entity *parent_entity(struct sched_entity *se)
243{
244 return NULL;
245}
246
247static inline void
248find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249{
250}
251
252#endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255/**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260{
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266}
267
268static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269{
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275}
276
277static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279{
280 return (s64)(a->vruntime - b->vruntime) < 0;
281}
282
283static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284{
285 return se->vruntime - cfs_rq->min_vruntime;
286}
287
288static void update_min_vruntime(struct cfs_rq *cfs_rq)
289{
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307}
308
309/*
310 * Enqueue an entity into the rb-tree:
311 */
312static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313{
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347}
348
349static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350{
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359}
360
361static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362{
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369}
370
371static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372{
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379}
380
381/**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385#ifdef CONFIG_SCHED_DEBUG
386int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389{
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399}
400#endif
401
402/*
403 * delta /= w
404 */
405static inline unsigned long
406calc_delta_fair(unsigned long delta, struct sched_entity *se)
407{
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412}
413
414/*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422static u64 __sched_period(unsigned long nr_running)
423{
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433}
434
435/*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442{
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461}
462
463/*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469{
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471}
472
473/*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477static inline void
478__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480{
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490}
491
492static void update_curr(struct cfs_rq *cfs_rq)
493{
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517 cpuacct_charge(curtask, delta_exec);
518 account_group_exec_runtime(curtask, delta_exec);
519 }
520}
521
522static inline void
523update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524{
525 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526}
527
528/*
529 * Task is being enqueued - update stats:
530 */
531static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532{
533 /*
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
536 */
537 if (se != cfs_rq->curr)
538 update_stats_wait_start(cfs_rq, se);
539}
540
541static void
542update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543{
544 schedstat_set(se->wait_max, max(se->wait_max,
545 rq_of(cfs_rq)->clock - se->wait_start));
546 schedstat_set(se->wait_count, se->wait_count + 1);
547 schedstat_set(se->wait_sum, se->wait_sum +
548 rq_of(cfs_rq)->clock - se->wait_start);
549#ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 trace_sched_stat_wait(task_of(se),
552 rq_of(cfs_rq)->clock - se->wait_start);
553 }
554#endif
555 schedstat_set(se->wait_start, 0);
556}
557
558static inline void
559update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560{
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
567}
568
569/*
570 * We are picking a new current task - update its stats:
571 */
572static inline void
573update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574{
575 /*
576 * We are starting a new run period:
577 */
578 se->exec_start = rq_of(cfs_rq)->clock;
579}
580
581/**************************************************
582 * Scheduling class queueing methods:
583 */
584
585#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586static void
587add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588{
589 cfs_rq->task_weight += weight;
590}
591#else
592static inline void
593add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594{
595}
596#endif
597
598static void
599account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600{
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610}
611
612static void
613account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614{
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
621 }
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624}
625
626static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627{
628#ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
649 }
650 }
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
662
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
668 }
669
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
681 }
682 }
683#endif
684}
685
686static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687{
688#ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696#endif
697}
698
699static void
700place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701{
702 u64 vruntime = cfs_rq->min_vruntime;
703
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
712
713 if (!initial) {
714 /* sleeps upto a single latency don't count. */
715 if (sched_feat(FAIR_SLEEPERS)) {
716 unsigned long thresh = sysctl_sched_latency;
717
718 /*
719 * Convert the sleeper threshold into virtual time.
720 * SCHED_IDLE is a special sub-class. We care about
721 * fairness only relative to other SCHED_IDLE tasks,
722 * all of which have the same weight.
723 */
724 if (sched_feat(NORMALIZED_SLEEPER) &&
725 (!entity_is_task(se) ||
726 task_of(se)->policy != SCHED_IDLE))
727 thresh = calc_delta_fair(thresh, se);
728
729 /*
730 * Halve their sleep time's effect, to allow
731 * for a gentler effect of sleepers:
732 */
733 if (sched_feat(GENTLE_FAIR_SLEEPERS))
734 thresh >>= 1;
735
736 vruntime -= thresh;
737 }
738 }
739
740 /* ensure we never gain time by being placed backwards. */
741 vruntime = max_vruntime(se->vruntime, vruntime);
742
743 se->vruntime = vruntime;
744}
745
746static void
747enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
748{
749 /*
750 * Update run-time statistics of the 'current'.
751 */
752 update_curr(cfs_rq);
753 account_entity_enqueue(cfs_rq, se);
754
755 if (wakeup) {
756 place_entity(cfs_rq, se, 0);
757 enqueue_sleeper(cfs_rq, se);
758 }
759
760 update_stats_enqueue(cfs_rq, se);
761 check_spread(cfs_rq, se);
762 if (se != cfs_rq->curr)
763 __enqueue_entity(cfs_rq, se);
764}
765
766static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
767{
768 if (!se || cfs_rq->last == se)
769 cfs_rq->last = NULL;
770
771 if (!se || cfs_rq->next == se)
772 cfs_rq->next = NULL;
773}
774
775static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
776{
777 for_each_sched_entity(se)
778 __clear_buddies(cfs_rq_of(se), se);
779}
780
781static void
782dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
783{
784 /*
785 * Update run-time statistics of the 'current'.
786 */
787 update_curr(cfs_rq);
788
789 update_stats_dequeue(cfs_rq, se);
790 if (sleep) {
791#ifdef CONFIG_SCHEDSTATS
792 if (entity_is_task(se)) {
793 struct task_struct *tsk = task_of(se);
794
795 if (tsk->state & TASK_INTERRUPTIBLE)
796 se->sleep_start = rq_of(cfs_rq)->clock;
797 if (tsk->state & TASK_UNINTERRUPTIBLE)
798 se->block_start = rq_of(cfs_rq)->clock;
799 }
800#endif
801 }
802
803 clear_buddies(cfs_rq, se);
804
805 if (se != cfs_rq->curr)
806 __dequeue_entity(cfs_rq, se);
807 account_entity_dequeue(cfs_rq, se);
808 update_min_vruntime(cfs_rq);
809}
810
811/*
812 * Preempt the current task with a newly woken task if needed:
813 */
814static void
815check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
816{
817 unsigned long ideal_runtime, delta_exec;
818
819 ideal_runtime = sched_slice(cfs_rq, curr);
820 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
821 if (delta_exec > ideal_runtime) {
822 resched_task(rq_of(cfs_rq)->curr);
823 /*
824 * The current task ran long enough, ensure it doesn't get
825 * re-elected due to buddy favours.
826 */
827 clear_buddies(cfs_rq, curr);
828 }
829}
830
831static void
832set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
833{
834 /* 'current' is not kept within the tree. */
835 if (se->on_rq) {
836 /*
837 * Any task has to be enqueued before it get to execute on
838 * a CPU. So account for the time it spent waiting on the
839 * runqueue.
840 */
841 update_stats_wait_end(cfs_rq, se);
842 __dequeue_entity(cfs_rq, se);
843 }
844
845 update_stats_curr_start(cfs_rq, se);
846 cfs_rq->curr = se;
847#ifdef CONFIG_SCHEDSTATS
848 /*
849 * Track our maximum slice length, if the CPU's load is at
850 * least twice that of our own weight (i.e. dont track it
851 * when there are only lesser-weight tasks around):
852 */
853 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
854 se->slice_max = max(se->slice_max,
855 se->sum_exec_runtime - se->prev_sum_exec_runtime);
856 }
857#endif
858 se->prev_sum_exec_runtime = se->sum_exec_runtime;
859}
860
861static int
862wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
863
864static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
865{
866 struct sched_entity *se = __pick_next_entity(cfs_rq);
867
868 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
869 return cfs_rq->next;
870
871 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
872 return cfs_rq->last;
873
874 return se;
875}
876
877static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
878{
879 /*
880 * If still on the runqueue then deactivate_task()
881 * was not called and update_curr() has to be done:
882 */
883 if (prev->on_rq)
884 update_curr(cfs_rq);
885
886 check_spread(cfs_rq, prev);
887 if (prev->on_rq) {
888 update_stats_wait_start(cfs_rq, prev);
889 /* Put 'current' back into the tree. */
890 __enqueue_entity(cfs_rq, prev);
891 }
892 cfs_rq->curr = NULL;
893}
894
895static void
896entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
897{
898 /*
899 * Update run-time statistics of the 'current'.
900 */
901 update_curr(cfs_rq);
902
903#ifdef CONFIG_SCHED_HRTICK
904 /*
905 * queued ticks are scheduled to match the slice, so don't bother
906 * validating it and just reschedule.
907 */
908 if (queued) {
909 resched_task(rq_of(cfs_rq)->curr);
910 return;
911 }
912 /*
913 * don't let the period tick interfere with the hrtick preemption
914 */
915 if (!sched_feat(DOUBLE_TICK) &&
916 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
917 return;
918#endif
919
920 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
921 check_preempt_tick(cfs_rq, curr);
922}
923
924/**************************************************
925 * CFS operations on tasks:
926 */
927
928#ifdef CONFIG_SCHED_HRTICK
929static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
930{
931 struct sched_entity *se = &p->se;
932 struct cfs_rq *cfs_rq = cfs_rq_of(se);
933
934 WARN_ON(task_rq(p) != rq);
935
936 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
937 u64 slice = sched_slice(cfs_rq, se);
938 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
939 s64 delta = slice - ran;
940
941 if (delta < 0) {
942 if (rq->curr == p)
943 resched_task(p);
944 return;
945 }
946
947 /*
948 * Don't schedule slices shorter than 10000ns, that just
949 * doesn't make sense. Rely on vruntime for fairness.
950 */
951 if (rq->curr != p)
952 delta = max_t(s64, 10000LL, delta);
953
954 hrtick_start(rq, delta);
955 }
956}
957
958/*
959 * called from enqueue/dequeue and updates the hrtick when the
960 * current task is from our class and nr_running is low enough
961 * to matter.
962 */
963static void hrtick_update(struct rq *rq)
964{
965 struct task_struct *curr = rq->curr;
966
967 if (curr->sched_class != &fair_sched_class)
968 return;
969
970 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
971 hrtick_start_fair(rq, curr);
972}
973#else /* !CONFIG_SCHED_HRTICK */
974static inline void
975hrtick_start_fair(struct rq *rq, struct task_struct *p)
976{
977}
978
979static inline void hrtick_update(struct rq *rq)
980{
981}
982#endif
983
984/*
985 * The enqueue_task method is called before nr_running is
986 * increased. Here we update the fair scheduling stats and
987 * then put the task into the rbtree:
988 */
989static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
990{
991 struct cfs_rq *cfs_rq;
992 struct sched_entity *se = &p->se;
993
994 for_each_sched_entity(se) {
995 if (se->on_rq)
996 break;
997 cfs_rq = cfs_rq_of(se);
998 enqueue_entity(cfs_rq, se, wakeup);
999 wakeup = 1;
1000 }
1001
1002 hrtick_update(rq);
1003}
1004
1005/*
1006 * The dequeue_task method is called before nr_running is
1007 * decreased. We remove the task from the rbtree and
1008 * update the fair scheduling stats:
1009 */
1010static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1011{
1012 struct cfs_rq *cfs_rq;
1013 struct sched_entity *se = &p->se;
1014
1015 for_each_sched_entity(se) {
1016 cfs_rq = cfs_rq_of(se);
1017 dequeue_entity(cfs_rq, se, sleep);
1018 /* Don't dequeue parent if it has other entities besides us */
1019 if (cfs_rq->load.weight)
1020 break;
1021 sleep = 1;
1022 }
1023
1024 hrtick_update(rq);
1025}
1026
1027/*
1028 * sched_yield() support is very simple - we dequeue and enqueue.
1029 *
1030 * If compat_yield is turned on then we requeue to the end of the tree.
1031 */
1032static void yield_task_fair(struct rq *rq)
1033{
1034 struct task_struct *curr = rq->curr;
1035 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1036 struct sched_entity *rightmost, *se = &curr->se;
1037
1038 /*
1039 * Are we the only task in the tree?
1040 */
1041 if (unlikely(cfs_rq->nr_running == 1))
1042 return;
1043
1044 clear_buddies(cfs_rq, se);
1045
1046 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1047 update_rq_clock(rq);
1048 /*
1049 * Update run-time statistics of the 'current'.
1050 */
1051 update_curr(cfs_rq);
1052
1053 return;
1054 }
1055 /*
1056 * Find the rightmost entry in the rbtree:
1057 */
1058 rightmost = __pick_last_entity(cfs_rq);
1059 /*
1060 * Already in the rightmost position?
1061 */
1062 if (unlikely(!rightmost || entity_before(rightmost, se)))
1063 return;
1064
1065 /*
1066 * Minimally necessary key value to be last in the tree:
1067 * Upon rescheduling, sched_class::put_prev_task() will place
1068 * 'current' within the tree based on its new key value.
1069 */
1070 se->vruntime = rightmost->vruntime + 1;
1071}
1072
1073#ifdef CONFIG_SMP
1074
1075#ifdef CONFIG_FAIR_GROUP_SCHED
1076/*
1077 * effective_load() calculates the load change as seen from the root_task_group
1078 *
1079 * Adding load to a group doesn't make a group heavier, but can cause movement
1080 * of group shares between cpus. Assuming the shares were perfectly aligned one
1081 * can calculate the shift in shares.
1082 *
1083 * The problem is that perfectly aligning the shares is rather expensive, hence
1084 * we try to avoid doing that too often - see update_shares(), which ratelimits
1085 * this change.
1086 *
1087 * We compensate this by not only taking the current delta into account, but
1088 * also considering the delta between when the shares were last adjusted and
1089 * now.
1090 *
1091 * We still saw a performance dip, some tracing learned us that between
1092 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1093 * significantly. Therefore try to bias the error in direction of failing
1094 * the affine wakeup.
1095 *
1096 */
1097static long effective_load(struct task_group *tg, int cpu,
1098 long wl, long wg)
1099{
1100 struct sched_entity *se = tg->se[cpu];
1101
1102 if (!tg->parent)
1103 return wl;
1104
1105 /*
1106 * By not taking the decrease of shares on the other cpu into
1107 * account our error leans towards reducing the affine wakeups.
1108 */
1109 if (!wl && sched_feat(ASYM_EFF_LOAD))
1110 return wl;
1111
1112 for_each_sched_entity(se) {
1113 long S, rw, s, a, b;
1114 long more_w;
1115
1116 /*
1117 * Instead of using this increment, also add the difference
1118 * between when the shares were last updated and now.
1119 */
1120 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1121 wl += more_w;
1122 wg += more_w;
1123
1124 S = se->my_q->tg->shares;
1125 s = se->my_q->shares;
1126 rw = se->my_q->rq_weight;
1127
1128 a = S*(rw + wl);
1129 b = S*rw + s*wg;
1130
1131 wl = s*(a-b);
1132
1133 if (likely(b))
1134 wl /= b;
1135
1136 /*
1137 * Assume the group is already running and will
1138 * thus already be accounted for in the weight.
1139 *
1140 * That is, moving shares between CPUs, does not
1141 * alter the group weight.
1142 */
1143 wg = 0;
1144 }
1145
1146 return wl;
1147}
1148
1149#else
1150
1151static inline unsigned long effective_load(struct task_group *tg, int cpu,
1152 unsigned long wl, unsigned long wg)
1153{
1154 return wl;
1155}
1156
1157#endif
1158
1159static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1160{
1161 struct task_struct *curr = current;
1162 unsigned long this_load, load;
1163 int idx, this_cpu, prev_cpu;
1164 unsigned long tl_per_task;
1165 unsigned int imbalance;
1166 struct task_group *tg;
1167 unsigned long weight;
1168 int balanced;
1169
1170 idx = sd->wake_idx;
1171 this_cpu = smp_processor_id();
1172 prev_cpu = task_cpu(p);
1173 load = source_load(prev_cpu, idx);
1174 this_load = target_load(this_cpu, idx);
1175
1176 if (sync) {
1177 if (sched_feat(SYNC_LESS) &&
1178 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1179 p->se.avg_overlap > sysctl_sched_migration_cost))
1180 sync = 0;
1181 } else {
1182 if (sched_feat(SYNC_MORE) &&
1183 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1184 p->se.avg_overlap < sysctl_sched_migration_cost))
1185 sync = 1;
1186 }
1187
1188 /*
1189 * If sync wakeup then subtract the (maximum possible)
1190 * effect of the currently running task from the load
1191 * of the current CPU:
1192 */
1193 if (sync) {
1194 tg = task_group(current);
1195 weight = current->se.load.weight;
1196
1197 this_load += effective_load(tg, this_cpu, -weight, -weight);
1198 load += effective_load(tg, prev_cpu, 0, -weight);
1199 }
1200
1201 tg = task_group(p);
1202 weight = p->se.load.weight;
1203
1204 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1205
1206 /*
1207 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1208 * due to the sync cause above having dropped this_load to 0, we'll
1209 * always have an imbalance, but there's really nothing you can do
1210 * about that, so that's good too.
1211 *
1212 * Otherwise check if either cpus are near enough in load to allow this
1213 * task to be woken on this_cpu.
1214 */
1215 balanced = !this_load ||
1216 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1217 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1218
1219 /*
1220 * If the currently running task will sleep within
1221 * a reasonable amount of time then attract this newly
1222 * woken task:
1223 */
1224 if (sync && balanced)
1225 return 1;
1226
1227 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1228 tl_per_task = cpu_avg_load_per_task(this_cpu);
1229
1230 if (balanced ||
1231 (this_load <= load &&
1232 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1233 /*
1234 * This domain has SD_WAKE_AFFINE and
1235 * p is cache cold in this domain, and
1236 * there is no bad imbalance.
1237 */
1238 schedstat_inc(sd, ttwu_move_affine);
1239 schedstat_inc(p, se.nr_wakeups_affine);
1240
1241 return 1;
1242 }
1243 return 0;
1244}
1245
1246/*
1247 * find_idlest_group finds and returns the least busy CPU group within the
1248 * domain.
1249 */
1250static struct sched_group *
1251find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1252 int this_cpu, int load_idx)
1253{
1254 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1255 unsigned long min_load = ULONG_MAX, this_load = 0;
1256 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1257
1258 do {
1259 unsigned long load, avg_load;
1260 int local_group;
1261 int i;
1262
1263 /* Skip over this group if it has no CPUs allowed */
1264 if (!cpumask_intersects(sched_group_cpus(group),
1265 &p->cpus_allowed))
1266 continue;
1267
1268 local_group = cpumask_test_cpu(this_cpu,
1269 sched_group_cpus(group));
1270
1271 /* Tally up the load of all CPUs in the group */
1272 avg_load = 0;
1273
1274 for_each_cpu(i, sched_group_cpus(group)) {
1275 /* Bias balancing toward cpus of our domain */
1276 if (local_group)
1277 load = source_load(i, load_idx);
1278 else
1279 load = target_load(i, load_idx);
1280
1281 avg_load += load;
1282 }
1283
1284 /* Adjust by relative CPU power of the group */
1285 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1286
1287 if (local_group) {
1288 this_load = avg_load;
1289 this = group;
1290 } else if (avg_load < min_load) {
1291 min_load = avg_load;
1292 idlest = group;
1293 }
1294 } while (group = group->next, group != sd->groups);
1295
1296 if (!idlest || 100*this_load < imbalance*min_load)
1297 return NULL;
1298 return idlest;
1299}
1300
1301/*
1302 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1303 */
1304static int
1305find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1306{
1307 unsigned long load, min_load = ULONG_MAX;
1308 int idlest = -1;
1309 int i;
1310
1311 /* Traverse only the allowed CPUs */
1312 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1313 load = weighted_cpuload(i);
1314
1315 if (load < min_load || (load == min_load && i == this_cpu)) {
1316 min_load = load;
1317 idlest = i;
1318 }
1319 }
1320
1321 return idlest;
1322}
1323
1324/*
1325 * sched_balance_self: balance the current task (running on cpu) in domains
1326 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1327 * SD_BALANCE_EXEC.
1328 *
1329 * Balance, ie. select the least loaded group.
1330 *
1331 * Returns the target CPU number, or the same CPU if no balancing is needed.
1332 *
1333 * preempt must be disabled.
1334 */
1335static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1336{
1337 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1338 int cpu = smp_processor_id();
1339 int prev_cpu = task_cpu(p);
1340 int new_cpu = cpu;
1341 int want_affine = 0;
1342 int want_sd = 1;
1343 int sync = wake_flags & WF_SYNC;
1344
1345 if (sd_flag & SD_BALANCE_WAKE) {
1346 if (sched_feat(AFFINE_WAKEUPS))
1347 want_affine = 1;
1348 new_cpu = prev_cpu;
1349 }
1350
1351 rcu_read_lock();
1352 for_each_domain(cpu, tmp) {
1353 /*
1354 * If power savings logic is enabled for a domain, see if we
1355 * are not overloaded, if so, don't balance wider.
1356 */
1357 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1358 unsigned long power = 0;
1359 unsigned long nr_running = 0;
1360 unsigned long capacity;
1361 int i;
1362
1363 for_each_cpu(i, sched_domain_span(tmp)) {
1364 power += power_of(i);
1365 nr_running += cpu_rq(i)->cfs.nr_running;
1366 }
1367
1368 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1369
1370 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1371 nr_running /= 2;
1372
1373 if (nr_running < capacity)
1374 want_sd = 0;
1375 }
1376
1377 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1378 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1379
1380 affine_sd = tmp;
1381 want_affine = 0;
1382 }
1383
1384 if (!want_sd && !want_affine)
1385 break;
1386
1387 if (!(tmp->flags & sd_flag))
1388 continue;
1389
1390 if (want_sd)
1391 sd = tmp;
1392 }
1393
1394 if (sched_feat(LB_SHARES_UPDATE)) {
1395 /*
1396 * Pick the largest domain to update shares over
1397 */
1398 tmp = sd;
1399 if (affine_sd && (!tmp ||
1400 cpumask_weight(sched_domain_span(affine_sd)) >
1401 cpumask_weight(sched_domain_span(sd))))
1402 tmp = affine_sd;
1403
1404 if (tmp)
1405 update_shares(tmp);
1406 }
1407
1408 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1409 new_cpu = cpu;
1410 goto out;
1411 }
1412
1413 while (sd) {
1414 int load_idx = sd->forkexec_idx;
1415 struct sched_group *group;
1416 int weight;
1417
1418 if (!(sd->flags & sd_flag)) {
1419 sd = sd->child;
1420 continue;
1421 }
1422
1423 if (sd_flag & SD_BALANCE_WAKE)
1424 load_idx = sd->wake_idx;
1425
1426 group = find_idlest_group(sd, p, cpu, load_idx);
1427 if (!group) {
1428 sd = sd->child;
1429 continue;
1430 }
1431
1432 new_cpu = find_idlest_cpu(group, p, cpu);
1433 if (new_cpu == -1 || new_cpu == cpu) {
1434 /* Now try balancing at a lower domain level of cpu */
1435 sd = sd->child;
1436 continue;
1437 }
1438
1439 /* Now try balancing at a lower domain level of new_cpu */
1440 cpu = new_cpu;
1441 weight = cpumask_weight(sched_domain_span(sd));
1442 sd = NULL;
1443 for_each_domain(cpu, tmp) {
1444 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1445 break;
1446 if (tmp->flags & sd_flag)
1447 sd = tmp;
1448 }
1449 /* while loop will break here if sd == NULL */
1450 }
1451
1452out:
1453 rcu_read_unlock();
1454 return new_cpu;
1455}
1456#endif /* CONFIG_SMP */
1457
1458/*
1459 * Adaptive granularity
1460 *
1461 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1462 * with the limit of wakeup_gran -- when it never does a wakeup.
1463 *
1464 * So the smaller avg_wakeup is the faster we want this task to preempt,
1465 * but we don't want to treat the preemptee unfairly and therefore allow it
1466 * to run for at least the amount of time we'd like to run.
1467 *
1468 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1469 *
1470 * NOTE: we use *nr_running to scale with load, this nicely matches the
1471 * degrading latency on load.
1472 */
1473static unsigned long
1474adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1475{
1476 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1477 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1478 u64 gran = 0;
1479
1480 if (this_run < expected_wakeup)
1481 gran = expected_wakeup - this_run;
1482
1483 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1484}
1485
1486static unsigned long
1487wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1488{
1489 unsigned long gran = sysctl_sched_wakeup_granularity;
1490
1491 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1492 gran = adaptive_gran(curr, se);
1493
1494 /*
1495 * Since its curr running now, convert the gran from real-time
1496 * to virtual-time in his units.
1497 */
1498 if (sched_feat(ASYM_GRAN)) {
1499 /*
1500 * By using 'se' instead of 'curr' we penalize light tasks, so
1501 * they get preempted easier. That is, if 'se' < 'curr' then
1502 * the resulting gran will be larger, therefore penalizing the
1503 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1504 * be smaller, again penalizing the lighter task.
1505 *
1506 * This is especially important for buddies when the leftmost
1507 * task is higher priority than the buddy.
1508 */
1509 if (unlikely(se->load.weight != NICE_0_LOAD))
1510 gran = calc_delta_fair(gran, se);
1511 } else {
1512 if (unlikely(curr->load.weight != NICE_0_LOAD))
1513 gran = calc_delta_fair(gran, curr);
1514 }
1515
1516 return gran;
1517}
1518
1519/*
1520 * Should 'se' preempt 'curr'.
1521 *
1522 * |s1
1523 * |s2
1524 * |s3
1525 * g
1526 * |<--->|c
1527 *
1528 * w(c, s1) = -1
1529 * w(c, s2) = 0
1530 * w(c, s3) = 1
1531 *
1532 */
1533static int
1534wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1535{
1536 s64 gran, vdiff = curr->vruntime - se->vruntime;
1537
1538 if (vdiff <= 0)
1539 return -1;
1540
1541 gran = wakeup_gran(curr, se);
1542 if (vdiff > gran)
1543 return 1;
1544
1545 return 0;
1546}
1547
1548static void set_last_buddy(struct sched_entity *se)
1549{
1550 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1551 for_each_sched_entity(se)
1552 cfs_rq_of(se)->last = se;
1553 }
1554}
1555
1556static void set_next_buddy(struct sched_entity *se)
1557{
1558 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1559 for_each_sched_entity(se)
1560 cfs_rq_of(se)->next = se;
1561 }
1562}
1563
1564/*
1565 * Preempt the current task with a newly woken task if needed:
1566 */
1567static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1568{
1569 struct task_struct *curr = rq->curr;
1570 struct sched_entity *se = &curr->se, *pse = &p->se;
1571 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1572 int sync = wake_flags & WF_SYNC;
1573
1574 update_curr(cfs_rq);
1575
1576 if (unlikely(rt_prio(p->prio))) {
1577 resched_task(curr);
1578 return;
1579 }
1580
1581 if (unlikely(p->sched_class != &fair_sched_class))
1582 return;
1583
1584 if (unlikely(se == pse))
1585 return;
1586
1587 /*
1588 * Only set the backward buddy when the current task is still on the
1589 * rq. This can happen when a wakeup gets interleaved with schedule on
1590 * the ->pre_schedule() or idle_balance() point, either of which can
1591 * drop the rq lock.
1592 *
1593 * Also, during early boot the idle thread is in the fair class, for
1594 * obvious reasons its a bad idea to schedule back to the idle thread.
1595 */
1596 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1597 set_last_buddy(se);
1598 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
1599 set_next_buddy(pse);
1600
1601 /*
1602 * We can come here with TIF_NEED_RESCHED already set from new task
1603 * wake up path.
1604 */
1605 if (test_tsk_need_resched(curr))
1606 return;
1607
1608 /*
1609 * Batch and idle tasks do not preempt (their preemption is driven by
1610 * the tick):
1611 */
1612 if (unlikely(p->policy != SCHED_NORMAL))
1613 return;
1614
1615 /* Idle tasks are by definition preempted by everybody. */
1616 if (unlikely(curr->policy == SCHED_IDLE)) {
1617 resched_task(curr);
1618 return;
1619 }
1620
1621 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1622 (sched_feat(WAKEUP_OVERLAP) &&
1623 (se->avg_overlap < sysctl_sched_migration_cost &&
1624 pse->avg_overlap < sysctl_sched_migration_cost))) {
1625 resched_task(curr);
1626 return;
1627 }
1628
1629 if (sched_feat(WAKEUP_RUNNING)) {
1630 if (pse->avg_running < se->avg_running) {
1631 set_next_buddy(pse);
1632 resched_task(curr);
1633 return;
1634 }
1635 }
1636
1637 if (!sched_feat(WAKEUP_PREEMPT))
1638 return;
1639
1640 find_matching_se(&se, &pse);
1641
1642 BUG_ON(!pse);
1643
1644 if (wakeup_preempt_entity(se, pse) == 1)
1645 resched_task(curr);
1646}
1647
1648static struct task_struct *pick_next_task_fair(struct rq *rq)
1649{
1650 struct task_struct *p;
1651 struct cfs_rq *cfs_rq = &rq->cfs;
1652 struct sched_entity *se;
1653
1654 if (unlikely(!cfs_rq->nr_running))
1655 return NULL;
1656
1657 do {
1658 se = pick_next_entity(cfs_rq);
1659 /*
1660 * If se was a buddy, clear it so that it will have to earn
1661 * the favour again.
1662 *
1663 * If se was not a buddy, clear the buddies because neither
1664 * was elegible to run, let them earn it again.
1665 *
1666 * IOW. unconditionally clear buddies.
1667 */
1668 __clear_buddies(cfs_rq, NULL);
1669 set_next_entity(cfs_rq, se);
1670 cfs_rq = group_cfs_rq(se);
1671 } while (cfs_rq);
1672
1673 p = task_of(se);
1674 hrtick_start_fair(rq, p);
1675
1676 return p;
1677}
1678
1679/*
1680 * Account for a descheduled task:
1681 */
1682static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1683{
1684 struct sched_entity *se = &prev->se;
1685 struct cfs_rq *cfs_rq;
1686
1687 for_each_sched_entity(se) {
1688 cfs_rq = cfs_rq_of(se);
1689 put_prev_entity(cfs_rq, se);
1690 }
1691}
1692
1693#ifdef CONFIG_SMP
1694/**************************************************
1695 * Fair scheduling class load-balancing methods:
1696 */
1697
1698/*
1699 * Load-balancing iterator. Note: while the runqueue stays locked
1700 * during the whole iteration, the current task might be
1701 * dequeued so the iterator has to be dequeue-safe. Here we
1702 * achieve that by always pre-iterating before returning
1703 * the current task:
1704 */
1705static struct task_struct *
1706__load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1707{
1708 struct task_struct *p = NULL;
1709 struct sched_entity *se;
1710
1711 if (next == &cfs_rq->tasks)
1712 return NULL;
1713
1714 se = list_entry(next, struct sched_entity, group_node);
1715 p = task_of(se);
1716 cfs_rq->balance_iterator = next->next;
1717
1718 return p;
1719}
1720
1721static struct task_struct *load_balance_start_fair(void *arg)
1722{
1723 struct cfs_rq *cfs_rq = arg;
1724
1725 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1726}
1727
1728static struct task_struct *load_balance_next_fair(void *arg)
1729{
1730 struct cfs_rq *cfs_rq = arg;
1731
1732 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1733}
1734
1735static unsigned long
1736__load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1737 unsigned long max_load_move, struct sched_domain *sd,
1738 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1739 struct cfs_rq *cfs_rq)
1740{
1741 struct rq_iterator cfs_rq_iterator;
1742
1743 cfs_rq_iterator.start = load_balance_start_fair;
1744 cfs_rq_iterator.next = load_balance_next_fair;
1745 cfs_rq_iterator.arg = cfs_rq;
1746
1747 return balance_tasks(this_rq, this_cpu, busiest,
1748 max_load_move, sd, idle, all_pinned,
1749 this_best_prio, &cfs_rq_iterator);
1750}
1751
1752#ifdef CONFIG_FAIR_GROUP_SCHED
1753static unsigned long
1754load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1755 unsigned long max_load_move,
1756 struct sched_domain *sd, enum cpu_idle_type idle,
1757 int *all_pinned, int *this_best_prio)
1758{
1759 long rem_load_move = max_load_move;
1760 int busiest_cpu = cpu_of(busiest);
1761 struct task_group *tg;
1762
1763 rcu_read_lock();
1764 update_h_load(busiest_cpu);
1765
1766 list_for_each_entry_rcu(tg, &task_groups, list) {
1767 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1768 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1769 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1770 u64 rem_load, moved_load;
1771
1772 /*
1773 * empty group
1774 */
1775 if (!busiest_cfs_rq->task_weight)
1776 continue;
1777
1778 rem_load = (u64)rem_load_move * busiest_weight;
1779 rem_load = div_u64(rem_load, busiest_h_load + 1);
1780
1781 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1782 rem_load, sd, idle, all_pinned, this_best_prio,
1783 tg->cfs_rq[busiest_cpu]);
1784
1785 if (!moved_load)
1786 continue;
1787
1788 moved_load *= busiest_h_load;
1789 moved_load = div_u64(moved_load, busiest_weight + 1);
1790
1791 rem_load_move -= moved_load;
1792 if (rem_load_move < 0)
1793 break;
1794 }
1795 rcu_read_unlock();
1796
1797 return max_load_move - rem_load_move;
1798}
1799#else
1800static unsigned long
1801load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1802 unsigned long max_load_move,
1803 struct sched_domain *sd, enum cpu_idle_type idle,
1804 int *all_pinned, int *this_best_prio)
1805{
1806 return __load_balance_fair(this_rq, this_cpu, busiest,
1807 max_load_move, sd, idle, all_pinned,
1808 this_best_prio, &busiest->cfs);
1809}
1810#endif
1811
1812static int
1813move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1814 struct sched_domain *sd, enum cpu_idle_type idle)
1815{
1816 struct cfs_rq *busy_cfs_rq;
1817 struct rq_iterator cfs_rq_iterator;
1818
1819 cfs_rq_iterator.start = load_balance_start_fair;
1820 cfs_rq_iterator.next = load_balance_next_fair;
1821
1822 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1823 /*
1824 * pass busy_cfs_rq argument into
1825 * load_balance_[start|next]_fair iterators
1826 */
1827 cfs_rq_iterator.arg = busy_cfs_rq;
1828 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1829 &cfs_rq_iterator))
1830 return 1;
1831 }
1832
1833 return 0;
1834}
1835#endif /* CONFIG_SMP */
1836
1837/*
1838 * scheduler tick hitting a task of our scheduling class:
1839 */
1840static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1841{
1842 struct cfs_rq *cfs_rq;
1843 struct sched_entity *se = &curr->se;
1844
1845 for_each_sched_entity(se) {
1846 cfs_rq = cfs_rq_of(se);
1847 entity_tick(cfs_rq, se, queued);
1848 }
1849}
1850
1851/*
1852 * Share the fairness runtime between parent and child, thus the
1853 * total amount of pressure for CPU stays equal - new tasks
1854 * get a chance to run but frequent forkers are not allowed to
1855 * monopolize the CPU. Note: the parent runqueue is locked,
1856 * the child is not running yet.
1857 */
1858static void task_new_fair(struct rq *rq, struct task_struct *p)
1859{
1860 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1861 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1862 int this_cpu = smp_processor_id();
1863
1864 sched_info_queued(p);
1865
1866 update_curr(cfs_rq);
1867 if (curr)
1868 se->vruntime = curr->vruntime;
1869 place_entity(cfs_rq, se, 1);
1870
1871 /* 'curr' will be NULL if the child belongs to a different group */
1872 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1873 curr && entity_before(curr, se)) {
1874 /*
1875 * Upon rescheduling, sched_class::put_prev_task() will place
1876 * 'current' within the tree based on its new key value.
1877 */
1878 swap(curr->vruntime, se->vruntime);
1879 resched_task(rq->curr);
1880 }
1881
1882 enqueue_task_fair(rq, p, 0);
1883}
1884
1885/*
1886 * Priority of the task has changed. Check to see if we preempt
1887 * the current task.
1888 */
1889static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1890 int oldprio, int running)
1891{
1892 /*
1893 * Reschedule if we are currently running on this runqueue and
1894 * our priority decreased, or if we are not currently running on
1895 * this runqueue and our priority is higher than the current's
1896 */
1897 if (running) {
1898 if (p->prio > oldprio)
1899 resched_task(rq->curr);
1900 } else
1901 check_preempt_curr(rq, p, 0);
1902}
1903
1904/*
1905 * We switched to the sched_fair class.
1906 */
1907static void switched_to_fair(struct rq *rq, struct task_struct *p,
1908 int running)
1909{
1910 /*
1911 * We were most likely switched from sched_rt, so
1912 * kick off the schedule if running, otherwise just see
1913 * if we can still preempt the current task.
1914 */
1915 if (running)
1916 resched_task(rq->curr);
1917 else
1918 check_preempt_curr(rq, p, 0);
1919}
1920
1921/* Account for a task changing its policy or group.
1922 *
1923 * This routine is mostly called to set cfs_rq->curr field when a task
1924 * migrates between groups/classes.
1925 */
1926static void set_curr_task_fair(struct rq *rq)
1927{
1928 struct sched_entity *se = &rq->curr->se;
1929
1930 for_each_sched_entity(se)
1931 set_next_entity(cfs_rq_of(se), se);
1932}
1933
1934#ifdef CONFIG_FAIR_GROUP_SCHED
1935static void moved_group_fair(struct task_struct *p)
1936{
1937 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1938
1939 update_curr(cfs_rq);
1940 place_entity(cfs_rq, &p->se, 1);
1941}
1942#endif
1943
1944/*
1945 * All the scheduling class methods:
1946 */
1947static const struct sched_class fair_sched_class = {
1948 .next = &idle_sched_class,
1949 .enqueue_task = enqueue_task_fair,
1950 .dequeue_task = dequeue_task_fair,
1951 .yield_task = yield_task_fair,
1952
1953 .check_preempt_curr = check_preempt_wakeup,
1954
1955 .pick_next_task = pick_next_task_fair,
1956 .put_prev_task = put_prev_task_fair,
1957
1958#ifdef CONFIG_SMP
1959 .select_task_rq = select_task_rq_fair,
1960
1961 .load_balance = load_balance_fair,
1962 .move_one_task = move_one_task_fair,
1963#endif
1964
1965 .set_curr_task = set_curr_task_fair,
1966 .task_tick = task_tick_fair,
1967 .task_new = task_new_fair,
1968
1969 .prio_changed = prio_changed_fair,
1970 .switched_to = switched_to_fair,
1971
1972#ifdef CONFIG_FAIR_GROUP_SCHED
1973 .moved_group = moved_group_fair,
1974#endif
1975};
1976
1977#ifdef CONFIG_SCHED_DEBUG
1978static void print_cfs_stats(struct seq_file *m, int cpu)
1979{
1980 struct cfs_rq *cfs_rq;
1981
1982 rcu_read_lock();
1983 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1984 print_cfs_rq(m, cpu, cfs_rq);
1985 rcu_read_unlock();
1986}
1987#endif
This page took 0.030039 seconds and 5 git commands to generate.