workqueue: make workqueue_lock irq-safe
[deliverable/linux.git] / kernel / workqueue.c
... / ...
CommitLineData
1/*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26#include <linux/export.h>
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
37#include <linux/hardirq.h>
38#include <linux/mempolicy.h>
39#include <linux/freezer.h>
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
42#include <linux/lockdep.h>
43#include <linux/idr.h>
44#include <linux/hashtable.h>
45
46#include "workqueue_internal.h"
47
48enum {
49 /*
50 * worker_pool flags
51 *
52 * A bound pool is either associated or disassociated with its CPU.
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 * be executing on any CPU. The pool behaves as an unbound one.
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
64 */
65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
68 POOL_FREEZING = 1 << 3, /* freeze in progress */
69
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
74 WORKER_PREP = 1 << 3, /* preparing to run works */
75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
77
78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
79 WORKER_CPU_INTENSIVE,
80
81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
82
83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
84
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
99 HIGHPRI_NICE_LEVEL = -20,
100};
101
102/*
103 * Structure fields follow one of the following exclusion rules.
104 *
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
107 *
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
111 * L: pool->lock protected. Access with pool->lock held.
112 *
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
117 *
118 * F: wq->flush_mutex protected.
119 *
120 * W: workqueue_lock protected.
121 */
122
123/* struct worker is defined in workqueue_internal.h */
124
125struct worker_pool {
126 spinlock_t lock; /* the pool lock */
127 unsigned int cpu; /* I: the associated cpu */
128 int id; /* I: pool ID */
129 unsigned int flags; /* X: flags */
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
133
134 /* nr_idle includes the ones off idle_list for rebinding */
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
146 struct ida worker_ida; /* L: for worker IDs */
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
154} ____cacheline_aligned_in_smp;
155
156/*
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
161 */
162struct pool_workqueue {
163 struct worker_pool *pool; /* I: the associated pool */
164 struct workqueue_struct *wq; /* I: the owning workqueue */
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
169 int nr_active; /* L: nr of active works */
170 int max_active; /* L: max active works */
171 struct list_head delayed_works; /* L: delayed works */
172};
173
174/*
175 * Structure used to wait for workqueue flush.
176 */
177struct wq_flusher {
178 struct list_head list; /* F: list of flushers */
179 int flush_color; /* F: flush color waiting for */
180 struct completion done; /* flush completion */
181};
182
183/*
184 * All cpumasks are assumed to be always set on UP and thus can't be
185 * used to determine whether there's something to be done.
186 */
187#ifdef CONFIG_SMP
188typedef cpumask_var_t mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) \
190 cpumask_test_and_set_cpu((cpu), (mask))
191#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
192#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
193#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
194#define free_mayday_mask(mask) free_cpumask_var((mask))
195#else
196typedef unsigned long mayday_mask_t;
197#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
198#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
199#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
200#define alloc_mayday_mask(maskp, gfp) true
201#define free_mayday_mask(mask) do { } while (0)
202#endif
203
204/*
205 * The externally visible workqueue abstraction is an array of
206 * per-CPU workqueues:
207 */
208struct workqueue_struct {
209 unsigned int flags; /* W: WQ_* flags */
210 union {
211 struct pool_workqueue __percpu *pcpu;
212 struct pool_workqueue *single;
213 unsigned long v;
214 } pool_wq; /* I: pwq's */
215 struct list_head list; /* W: list of all workqueues */
216
217 struct mutex flush_mutex; /* protects wq flushing */
218 int work_color; /* F: current work color */
219 int flush_color; /* F: current flush color */
220 atomic_t nr_pwqs_to_flush; /* flush in progress */
221 struct wq_flusher *first_flusher; /* F: first flusher */
222 struct list_head flusher_queue; /* F: flush waiters */
223 struct list_head flusher_overflow; /* F: flush overflow list */
224
225 mayday_mask_t mayday_mask; /* cpus requesting rescue */
226 struct worker *rescuer; /* I: rescue worker */
227
228 int nr_drainers; /* W: drain in progress */
229 int saved_max_active; /* W: saved pwq max_active */
230#ifdef CONFIG_LOCKDEP
231 struct lockdep_map lockdep_map;
232#endif
233 char name[]; /* I: workqueue name */
234};
235
236struct workqueue_struct *system_wq __read_mostly;
237EXPORT_SYMBOL_GPL(system_wq);
238struct workqueue_struct *system_highpri_wq __read_mostly;
239EXPORT_SYMBOL_GPL(system_highpri_wq);
240struct workqueue_struct *system_long_wq __read_mostly;
241EXPORT_SYMBOL_GPL(system_long_wq);
242struct workqueue_struct *system_unbound_wq __read_mostly;
243EXPORT_SYMBOL_GPL(system_unbound_wq);
244struct workqueue_struct *system_freezable_wq __read_mostly;
245EXPORT_SYMBOL_GPL(system_freezable_wq);
246
247#define CREATE_TRACE_POINTS
248#include <trace/events/workqueue.h>
249
250#define for_each_std_worker_pool(pool, cpu) \
251 for ((pool) = &std_worker_pools(cpu)[0]; \
252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253
254#define for_each_busy_worker(worker, i, pool) \
255 hash_for_each(pool->busy_hash, i, worker, hentry)
256
257static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 unsigned int sw)
259{
260 if (cpu < nr_cpu_ids) {
261 if (sw & 1) {
262 cpu = cpumask_next(cpu, mask);
263 if (cpu < nr_cpu_ids)
264 return cpu;
265 }
266 if (sw & 2)
267 return WORK_CPU_UNBOUND;
268 }
269 return WORK_CPU_END;
270}
271
272static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273 struct workqueue_struct *wq)
274{
275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276}
277
278/*
279 * CPU iterators
280 *
281 * An extra cpu number is defined using an invalid cpu number
282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283 * specific CPU. The following iterators are similar to for_each_*_cpu()
284 * iterators but also considers the unbound CPU.
285 *
286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
288 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
289 * WORK_CPU_UNBOUND for unbound workqueues
290 */
291#define for_each_wq_cpu(cpu) \
292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
293 (cpu) < WORK_CPU_END; \
294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295
296#define for_each_online_wq_cpu(cpu) \
297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
298 (cpu) < WORK_CPU_END; \
299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300
301#define for_each_pwq_cpu(cpu, wq) \
302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
303 (cpu) < WORK_CPU_END; \
304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305
306#ifdef CONFIG_DEBUG_OBJECTS_WORK
307
308static struct debug_obj_descr work_debug_descr;
309
310static void *work_debug_hint(void *addr)
311{
312 return ((struct work_struct *) addr)->func;
313}
314
315/*
316 * fixup_init is called when:
317 * - an active object is initialized
318 */
319static int work_fixup_init(void *addr, enum debug_obj_state state)
320{
321 struct work_struct *work = addr;
322
323 switch (state) {
324 case ODEBUG_STATE_ACTIVE:
325 cancel_work_sync(work);
326 debug_object_init(work, &work_debug_descr);
327 return 1;
328 default:
329 return 0;
330 }
331}
332
333/*
334 * fixup_activate is called when:
335 * - an active object is activated
336 * - an unknown object is activated (might be a statically initialized object)
337 */
338static int work_fixup_activate(void *addr, enum debug_obj_state state)
339{
340 struct work_struct *work = addr;
341
342 switch (state) {
343
344 case ODEBUG_STATE_NOTAVAILABLE:
345 /*
346 * This is not really a fixup. The work struct was
347 * statically initialized. We just make sure that it
348 * is tracked in the object tracker.
349 */
350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 debug_object_init(work, &work_debug_descr);
352 debug_object_activate(work, &work_debug_descr);
353 return 0;
354 }
355 WARN_ON_ONCE(1);
356 return 0;
357
358 case ODEBUG_STATE_ACTIVE:
359 WARN_ON(1);
360
361 default:
362 return 0;
363 }
364}
365
366/*
367 * fixup_free is called when:
368 * - an active object is freed
369 */
370static int work_fixup_free(void *addr, enum debug_obj_state state)
371{
372 struct work_struct *work = addr;
373
374 switch (state) {
375 case ODEBUG_STATE_ACTIVE:
376 cancel_work_sync(work);
377 debug_object_free(work, &work_debug_descr);
378 return 1;
379 default:
380 return 0;
381 }
382}
383
384static struct debug_obj_descr work_debug_descr = {
385 .name = "work_struct",
386 .debug_hint = work_debug_hint,
387 .fixup_init = work_fixup_init,
388 .fixup_activate = work_fixup_activate,
389 .fixup_free = work_fixup_free,
390};
391
392static inline void debug_work_activate(struct work_struct *work)
393{
394 debug_object_activate(work, &work_debug_descr);
395}
396
397static inline void debug_work_deactivate(struct work_struct *work)
398{
399 debug_object_deactivate(work, &work_debug_descr);
400}
401
402void __init_work(struct work_struct *work, int onstack)
403{
404 if (onstack)
405 debug_object_init_on_stack(work, &work_debug_descr);
406 else
407 debug_object_init(work, &work_debug_descr);
408}
409EXPORT_SYMBOL_GPL(__init_work);
410
411void destroy_work_on_stack(struct work_struct *work)
412{
413 debug_object_free(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416
417#else
418static inline void debug_work_activate(struct work_struct *work) { }
419static inline void debug_work_deactivate(struct work_struct *work) { }
420#endif
421
422/* Serializes the accesses to the list of workqueues. */
423static DEFINE_SPINLOCK(workqueue_lock);
424static LIST_HEAD(workqueues);
425static bool workqueue_freezing; /* W: have wqs started freezing? */
426
427/*
428 * The CPU and unbound standard worker pools. The unbound ones have
429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430 */
431static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 cpu_std_worker_pools);
433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434
435/* idr of all pools */
436static DEFINE_MUTEX(worker_pool_idr_mutex);
437static DEFINE_IDR(worker_pool_idr);
438
439static int worker_thread(void *__worker);
440
441static struct worker_pool *std_worker_pools(int cpu)
442{
443 if (cpu != WORK_CPU_UNBOUND)
444 return per_cpu(cpu_std_worker_pools, cpu);
445 else
446 return unbound_std_worker_pools;
447}
448
449static int std_worker_pool_pri(struct worker_pool *pool)
450{
451 return pool - std_worker_pools(pool->cpu);
452}
453
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
459 mutex_lock(&worker_pool_idr_mutex);
460 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
461 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
462 mutex_unlock(&worker_pool_idr_mutex);
463
464 return ret;
465}
466
467/*
468 * Lookup worker_pool by id. The idr currently is built during boot and
469 * never modified. Don't worry about locking for now.
470 */
471static struct worker_pool *worker_pool_by_id(int pool_id)
472{
473 return idr_find(&worker_pool_idr, pool_id);
474}
475
476static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
477{
478 struct worker_pool *pools = std_worker_pools(cpu);
479
480 return &pools[highpri];
481}
482
483static struct pool_workqueue *get_pwq(unsigned int cpu,
484 struct workqueue_struct *wq)
485{
486 if (!(wq->flags & WQ_UNBOUND)) {
487 if (likely(cpu < nr_cpu_ids))
488 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
489 } else if (likely(cpu == WORK_CPU_UNBOUND))
490 return wq->pool_wq.single;
491 return NULL;
492}
493
494static unsigned int work_color_to_flags(int color)
495{
496 return color << WORK_STRUCT_COLOR_SHIFT;
497}
498
499static int get_work_color(struct work_struct *work)
500{
501 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
502 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
503}
504
505static int work_next_color(int color)
506{
507 return (color + 1) % WORK_NR_COLORS;
508}
509
510/*
511 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
512 * contain the pointer to the queued pwq. Once execution starts, the flag
513 * is cleared and the high bits contain OFFQ flags and pool ID.
514 *
515 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
516 * and clear_work_data() can be used to set the pwq, pool or clear
517 * work->data. These functions should only be called while the work is
518 * owned - ie. while the PENDING bit is set.
519 *
520 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
521 * corresponding to a work. Pool is available once the work has been
522 * queued anywhere after initialization until it is sync canceled. pwq is
523 * available only while the work item is queued.
524 *
525 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
526 * canceled. While being canceled, a work item may have its PENDING set
527 * but stay off timer and worklist for arbitrarily long and nobody should
528 * try to steal the PENDING bit.
529 */
530static inline void set_work_data(struct work_struct *work, unsigned long data,
531 unsigned long flags)
532{
533 WARN_ON_ONCE(!work_pending(work));
534 atomic_long_set(&work->data, data | flags | work_static(work));
535}
536
537static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
538 unsigned long extra_flags)
539{
540 set_work_data(work, (unsigned long)pwq,
541 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
542}
543
544static void set_work_pool_and_keep_pending(struct work_struct *work,
545 int pool_id)
546{
547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 WORK_STRUCT_PENDING);
549}
550
551static void set_work_pool_and_clear_pending(struct work_struct *work,
552 int pool_id)
553{
554 /*
555 * The following wmb is paired with the implied mb in
556 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 * here are visible to and precede any updates by the next PENDING
558 * owner.
559 */
560 smp_wmb();
561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562}
563
564static void clear_work_data(struct work_struct *work)
565{
566 smp_wmb(); /* see set_work_pool_and_clear_pending() */
567 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
568}
569
570static struct pool_workqueue *get_work_pwq(struct work_struct *work)
571{
572 unsigned long data = atomic_long_read(&work->data);
573
574 if (data & WORK_STRUCT_PWQ)
575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 else
577 return NULL;
578}
579
580/**
581 * get_work_pool - return the worker_pool a given work was associated with
582 * @work: the work item of interest
583 *
584 * Return the worker_pool @work was last associated with. %NULL if none.
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
587{
588 unsigned long data = atomic_long_read(&work->data);
589 struct worker_pool *pool;
590 int pool_id;
591
592 if (data & WORK_STRUCT_PWQ)
593 return ((struct pool_workqueue *)
594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
598 return NULL;
599
600 pool = worker_pool_by_id(pool_id);
601 WARN_ON_ONCE(!pool);
602 return pool;
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
614 unsigned long data = atomic_long_read(&work->data);
615
616 if (data & WORK_STRUCT_PWQ)
617 return ((struct pool_workqueue *)
618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619
620 return data >> WORK_OFFQ_POOL_SHIFT;
621}
622
623static void mark_work_canceling(struct work_struct *work)
624{
625 unsigned long pool_id = get_work_pool_id(work);
626
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636}
637
638/*
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
641 * they're being called with pool->lock held.
642 */
643
644static bool __need_more_worker(struct worker_pool *pool)
645{
646 return !atomic_read(&pool->nr_running);
647}
648
649/*
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
654 * function will always return %true for unbound pools as long as the
655 * worklist isn't empty.
656 */
657static bool need_more_worker(struct worker_pool *pool)
658{
659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
660}
661
662/* Can I start working? Called from busy but !running workers. */
663static bool may_start_working(struct worker_pool *pool)
664{
665 return pool->nr_idle;
666}
667
668/* Do I need to keep working? Called from currently running workers. */
669static bool keep_working(struct worker_pool *pool)
670{
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
673}
674
675/* Do we need a new worker? Called from manager. */
676static bool need_to_create_worker(struct worker_pool *pool)
677{
678 return need_more_worker(pool) && !may_start_working(pool);
679}
680
681/* Do I need to be the manager? */
682static bool need_to_manage_workers(struct worker_pool *pool)
683{
684 return need_to_create_worker(pool) ||
685 (pool->flags & POOL_MANAGE_WORKERS);
686}
687
688/* Do we have too many workers and should some go away? */
689static bool too_many_workers(struct worker_pool *pool)
690{
691 bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
694
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703}
704
705/*
706 * Wake up functions.
707 */
708
709/* Return the first worker. Safe with preemption disabled */
710static struct worker *first_worker(struct worker_pool *pool)
711{
712 if (unlikely(list_empty(&pool->idle_list)))
713 return NULL;
714
715 return list_first_entry(&pool->idle_list, struct worker, entry);
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
720 * @pool: worker pool to wake worker from
721 *
722 * Wake up the first idle worker of @pool.
723 *
724 * CONTEXT:
725 * spin_lock_irq(pool->lock).
726 */
727static void wake_up_worker(struct worker_pool *pool)
728{
729 struct worker *worker = first_worker(pool);
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
735/**
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
746void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747{
748 struct worker *worker = kthread_data(task);
749
750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
751 WARN_ON_ONCE(worker->pool->cpu != cpu);
752 atomic_inc(&worker->pool->nr_running);
753 }
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
771struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 unsigned int cpu)
773{
774 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775 struct worker_pool *pool;
776
777 /*
778 * Rescuers, which may not have all the fields set up like normal
779 * workers, also reach here, let's not access anything before
780 * checking NOT_RUNNING.
781 */
782 if (worker->flags & WORKER_NOT_RUNNING)
783 return NULL;
784
785 pool = worker->pool;
786
787 /* this can only happen on the local cpu */
788 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
789 return NULL;
790
791 /*
792 * The counterpart of the following dec_and_test, implied mb,
793 * worklist not empty test sequence is in insert_work().
794 * Please read comment there.
795 *
796 * NOT_RUNNING is clear. This means that we're bound to and
797 * running on the local cpu w/ rq lock held and preemption
798 * disabled, which in turn means that none else could be
799 * manipulating idle_list, so dereferencing idle_list without pool
800 * lock is safe.
801 */
802 if (atomic_dec_and_test(&pool->nr_running) &&
803 !list_empty(&pool->worklist))
804 to_wakeup = first_worker(pool);
805 return to_wakeup ? to_wakeup->task : NULL;
806}
807
808/**
809 * worker_set_flags - set worker flags and adjust nr_running accordingly
810 * @worker: self
811 * @flags: flags to set
812 * @wakeup: wakeup an idle worker if necessary
813 *
814 * Set @flags in @worker->flags and adjust nr_running accordingly. If
815 * nr_running becomes zero and @wakeup is %true, an idle worker is
816 * woken up.
817 *
818 * CONTEXT:
819 * spin_lock_irq(pool->lock)
820 */
821static inline void worker_set_flags(struct worker *worker, unsigned int flags,
822 bool wakeup)
823{
824 struct worker_pool *pool = worker->pool;
825
826 WARN_ON_ONCE(worker->task != current);
827
828 /*
829 * If transitioning into NOT_RUNNING, adjust nr_running and
830 * wake up an idle worker as necessary if requested by
831 * @wakeup.
832 */
833 if ((flags & WORKER_NOT_RUNNING) &&
834 !(worker->flags & WORKER_NOT_RUNNING)) {
835 if (wakeup) {
836 if (atomic_dec_and_test(&pool->nr_running) &&
837 !list_empty(&pool->worklist))
838 wake_up_worker(pool);
839 } else
840 atomic_dec(&pool->nr_running);
841 }
842
843 worker->flags |= flags;
844}
845
846/**
847 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
848 * @worker: self
849 * @flags: flags to clear
850 *
851 * Clear @flags in @worker->flags and adjust nr_running accordingly.
852 *
853 * CONTEXT:
854 * spin_lock_irq(pool->lock)
855 */
856static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
857{
858 struct worker_pool *pool = worker->pool;
859 unsigned int oflags = worker->flags;
860
861 WARN_ON_ONCE(worker->task != current);
862
863 worker->flags &= ~flags;
864
865 /*
866 * If transitioning out of NOT_RUNNING, increment nr_running. Note
867 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
868 * of multiple flags, not a single flag.
869 */
870 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
871 if (!(worker->flags & WORKER_NOT_RUNNING))
872 atomic_inc(&pool->nr_running);
873}
874
875/**
876 * find_worker_executing_work - find worker which is executing a work
877 * @pool: pool of interest
878 * @work: work to find worker for
879 *
880 * Find a worker which is executing @work on @pool by searching
881 * @pool->busy_hash which is keyed by the address of @work. For a worker
882 * to match, its current execution should match the address of @work and
883 * its work function. This is to avoid unwanted dependency between
884 * unrelated work executions through a work item being recycled while still
885 * being executed.
886 *
887 * This is a bit tricky. A work item may be freed once its execution
888 * starts and nothing prevents the freed area from being recycled for
889 * another work item. If the same work item address ends up being reused
890 * before the original execution finishes, workqueue will identify the
891 * recycled work item as currently executing and make it wait until the
892 * current execution finishes, introducing an unwanted dependency.
893 *
894 * This function checks the work item address, work function and workqueue
895 * to avoid false positives. Note that this isn't complete as one may
896 * construct a work function which can introduce dependency onto itself
897 * through a recycled work item. Well, if somebody wants to shoot oneself
898 * in the foot that badly, there's only so much we can do, and if such
899 * deadlock actually occurs, it should be easy to locate the culprit work
900 * function.
901 *
902 * CONTEXT:
903 * spin_lock_irq(pool->lock).
904 *
905 * RETURNS:
906 * Pointer to worker which is executing @work if found, NULL
907 * otherwise.
908 */
909static struct worker *find_worker_executing_work(struct worker_pool *pool,
910 struct work_struct *work)
911{
912 struct worker *worker;
913
914 hash_for_each_possible(pool->busy_hash, worker, hentry,
915 (unsigned long)work)
916 if (worker->current_work == work &&
917 worker->current_func == work->func)
918 return worker;
919
920 return NULL;
921}
922
923/**
924 * move_linked_works - move linked works to a list
925 * @work: start of series of works to be scheduled
926 * @head: target list to append @work to
927 * @nextp: out paramter for nested worklist walking
928 *
929 * Schedule linked works starting from @work to @head. Work series to
930 * be scheduled starts at @work and includes any consecutive work with
931 * WORK_STRUCT_LINKED set in its predecessor.
932 *
933 * If @nextp is not NULL, it's updated to point to the next work of
934 * the last scheduled work. This allows move_linked_works() to be
935 * nested inside outer list_for_each_entry_safe().
936 *
937 * CONTEXT:
938 * spin_lock_irq(pool->lock).
939 */
940static void move_linked_works(struct work_struct *work, struct list_head *head,
941 struct work_struct **nextp)
942{
943 struct work_struct *n;
944
945 /*
946 * Linked worklist will always end before the end of the list,
947 * use NULL for list head.
948 */
949 list_for_each_entry_safe_from(work, n, NULL, entry) {
950 list_move_tail(&work->entry, head);
951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 break;
953 }
954
955 /*
956 * If we're already inside safe list traversal and have moved
957 * multiple works to the scheduled queue, the next position
958 * needs to be updated.
959 */
960 if (nextp)
961 *nextp = n;
962}
963
964static void pwq_activate_delayed_work(struct work_struct *work)
965{
966 struct pool_workqueue *pwq = get_work_pwq(work);
967
968 trace_workqueue_activate_work(work);
969 move_linked_works(work, &pwq->pool->worklist, NULL);
970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971 pwq->nr_active++;
972}
973
974static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975{
976 struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 struct work_struct, entry);
978
979 pwq_activate_delayed_work(work);
980}
981
982/**
983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984 * @pwq: pwq of interest
985 * @color: color of work which left the queue
986 *
987 * A work either has completed or is removed from pending queue,
988 * decrement nr_in_flight of its pwq and handle workqueue flushing.
989 *
990 * CONTEXT:
991 * spin_lock_irq(pool->lock).
992 */
993static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994{
995 /* ignore uncolored works */
996 if (color == WORK_NO_COLOR)
997 return;
998
999 pwq->nr_in_flight[color]--;
1000
1001 pwq->nr_active--;
1002 if (!list_empty(&pwq->delayed_works)) {
1003 /* one down, submit a delayed one */
1004 if (pwq->nr_active < pwq->max_active)
1005 pwq_activate_first_delayed(pwq);
1006 }
1007
1008 /* is flush in progress and are we at the flushing tip? */
1009 if (likely(pwq->flush_color != color))
1010 return;
1011
1012 /* are there still in-flight works? */
1013 if (pwq->nr_in_flight[color])
1014 return;
1015
1016 /* this pwq is done, clear flush_color */
1017 pwq->flush_color = -1;
1018
1019 /*
1020 * If this was the last pwq, wake up the first flusher. It
1021 * will handle the rest.
1022 */
1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 complete(&pwq->wq->first_flusher->done);
1025}
1026
1027/**
1028 * try_to_grab_pending - steal work item from worklist and disable irq
1029 * @work: work item to steal
1030 * @is_dwork: @work is a delayed_work
1031 * @flags: place to store irq state
1032 *
1033 * Try to grab PENDING bit of @work. This function can handle @work in any
1034 * stable state - idle, on timer or on worklist. Return values are
1035 *
1036 * 1 if @work was pending and we successfully stole PENDING
1037 * 0 if @work was idle and we claimed PENDING
1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039 * -ENOENT if someone else is canceling @work, this state may persist
1040 * for arbitrarily long
1041 *
1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1043 * interrupted while holding PENDING and @work off queue, irq must be
1044 * disabled on entry. This, combined with delayed_work->timer being
1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046 *
1047 * On successful return, >= 0, irq is disabled and the caller is
1048 * responsible for releasing it using local_irq_restore(*@flags).
1049 *
1050 * This function is safe to call from any context including IRQ handler.
1051 */
1052static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 unsigned long *flags)
1054{
1055 struct worker_pool *pool;
1056 struct pool_workqueue *pwq;
1057
1058 local_irq_save(*flags);
1059
1060 /* try to steal the timer if it exists */
1061 if (is_dwork) {
1062 struct delayed_work *dwork = to_delayed_work(work);
1063
1064 /*
1065 * dwork->timer is irqsafe. If del_timer() fails, it's
1066 * guaranteed that the timer is not queued anywhere and not
1067 * running on the local CPU.
1068 */
1069 if (likely(del_timer(&dwork->timer)))
1070 return 1;
1071 }
1072
1073 /* try to claim PENDING the normal way */
1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 return 0;
1076
1077 /*
1078 * The queueing is in progress, or it is already queued. Try to
1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 */
1081 pool = get_work_pool(work);
1082 if (!pool)
1083 goto fail;
1084
1085 spin_lock(&pool->lock);
1086 /*
1087 * work->data is guaranteed to point to pwq only while the work
1088 * item is queued on pwq->wq, and both updating work->data to point
1089 * to pwq on queueing and to pool on dequeueing are done under
1090 * pwq->pool->lock. This in turn guarantees that, if work->data
1091 * points to pwq which is associated with a locked pool, the work
1092 * item is currently queued on that pool.
1093 */
1094 pwq = get_work_pwq(work);
1095 if (pwq && pwq->pool == pool) {
1096 debug_work_deactivate(work);
1097
1098 /*
1099 * A delayed work item cannot be grabbed directly because
1100 * it might have linked NO_COLOR work items which, if left
1101 * on the delayed_list, will confuse pwq->nr_active
1102 * management later on and cause stall. Make sure the work
1103 * item is activated before grabbing.
1104 */
1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106 pwq_activate_delayed_work(work);
1107
1108 list_del_init(&work->entry);
1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110
1111 /* work->data points to pwq iff queued, point to pool */
1112 set_work_pool_and_keep_pending(work, pool->id);
1113
1114 spin_unlock(&pool->lock);
1115 return 1;
1116 }
1117 spin_unlock(&pool->lock);
1118fail:
1119 local_irq_restore(*flags);
1120 if (work_is_canceling(work))
1121 return -ENOENT;
1122 cpu_relax();
1123 return -EAGAIN;
1124}
1125
1126/**
1127 * insert_work - insert a work into a pool
1128 * @pwq: pwq @work belongs to
1129 * @work: work to insert
1130 * @head: insertion point
1131 * @extra_flags: extra WORK_STRUCT_* flags to set
1132 *
1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1134 * work_struct flags.
1135 *
1136 * CONTEXT:
1137 * spin_lock_irq(pool->lock).
1138 */
1139static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 struct list_head *head, unsigned int extra_flags)
1141{
1142 struct worker_pool *pool = pwq->pool;
1143
1144 /* we own @work, set data and link */
1145 set_work_pwq(work, pwq, extra_flags);
1146 list_add_tail(&work->entry, head);
1147
1148 /*
1149 * Ensure either worker_sched_deactivated() sees the above
1150 * list_add_tail() or we see zero nr_running to avoid workers
1151 * lying around lazily while there are works to be processed.
1152 */
1153 smp_mb();
1154
1155 if (__need_more_worker(pool))
1156 wake_up_worker(pool);
1157}
1158
1159/*
1160 * Test whether @work is being queued from another work executing on the
1161 * same workqueue.
1162 */
1163static bool is_chained_work(struct workqueue_struct *wq)
1164{
1165 struct worker *worker;
1166
1167 worker = current_wq_worker();
1168 /*
1169 * Return %true iff I'm a worker execuing a work item on @wq. If
1170 * I'm @worker, it's safe to dereference it without locking.
1171 */
1172 return worker && worker->current_pwq->wq == wq;
1173}
1174
1175static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1176 struct work_struct *work)
1177{
1178 struct pool_workqueue *pwq;
1179 struct list_head *worklist;
1180 unsigned int work_flags;
1181 unsigned int req_cpu = cpu;
1182
1183 /*
1184 * While a work item is PENDING && off queue, a task trying to
1185 * steal the PENDING will busy-loop waiting for it to either get
1186 * queued or lose PENDING. Grabbing PENDING and queueing should
1187 * happen with IRQ disabled.
1188 */
1189 WARN_ON_ONCE(!irqs_disabled());
1190
1191 debug_work_activate(work);
1192
1193 /* if dying, only works from the same workqueue are allowed */
1194 if (unlikely(wq->flags & WQ_DRAINING) &&
1195 WARN_ON_ONCE(!is_chained_work(wq)))
1196 return;
1197
1198 /* determine the pwq to use */
1199 if (!(wq->flags & WQ_UNBOUND)) {
1200 struct worker_pool *last_pool;
1201
1202 if (cpu == WORK_CPU_UNBOUND)
1203 cpu = raw_smp_processor_id();
1204
1205 /*
1206 * It's multi cpu. If @work was previously on a different
1207 * cpu, it might still be running there, in which case the
1208 * work needs to be queued on that cpu to guarantee
1209 * non-reentrancy.
1210 */
1211 pwq = get_pwq(cpu, wq);
1212 last_pool = get_work_pool(work);
1213
1214 if (last_pool && last_pool != pwq->pool) {
1215 struct worker *worker;
1216
1217 spin_lock(&last_pool->lock);
1218
1219 worker = find_worker_executing_work(last_pool, work);
1220
1221 if (worker && worker->current_pwq->wq == wq) {
1222 pwq = get_pwq(last_pool->cpu, wq);
1223 } else {
1224 /* meh... not running there, queue here */
1225 spin_unlock(&last_pool->lock);
1226 spin_lock(&pwq->pool->lock);
1227 }
1228 } else {
1229 spin_lock(&pwq->pool->lock);
1230 }
1231 } else {
1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 spin_lock(&pwq->pool->lock);
1234 }
1235
1236 /* pwq determined, queue */
1237 trace_workqueue_queue_work(req_cpu, pwq, work);
1238
1239 if (WARN_ON(!list_empty(&work->entry))) {
1240 spin_unlock(&pwq->pool->lock);
1241 return;
1242 }
1243
1244 pwq->nr_in_flight[pwq->work_color]++;
1245 work_flags = work_color_to_flags(pwq->work_color);
1246
1247 if (likely(pwq->nr_active < pwq->max_active)) {
1248 trace_workqueue_activate_work(work);
1249 pwq->nr_active++;
1250 worklist = &pwq->pool->worklist;
1251 } else {
1252 work_flags |= WORK_STRUCT_DELAYED;
1253 worklist = &pwq->delayed_works;
1254 }
1255
1256 insert_work(pwq, work, worklist, work_flags);
1257
1258 spin_unlock(&pwq->pool->lock);
1259}
1260
1261/**
1262 * queue_work_on - queue work on specific cpu
1263 * @cpu: CPU number to execute work on
1264 * @wq: workqueue to use
1265 * @work: work to queue
1266 *
1267 * Returns %false if @work was already on a queue, %true otherwise.
1268 *
1269 * We queue the work to a specific CPU, the caller must ensure it
1270 * can't go away.
1271 */
1272bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 struct work_struct *work)
1274{
1275 bool ret = false;
1276 unsigned long flags;
1277
1278 local_irq_save(flags);
1279
1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1281 __queue_work(cpu, wq, work);
1282 ret = true;
1283 }
1284
1285 local_irq_restore(flags);
1286 return ret;
1287}
1288EXPORT_SYMBOL_GPL(queue_work_on);
1289
1290/**
1291 * queue_work - queue work on a workqueue
1292 * @wq: workqueue to use
1293 * @work: work to queue
1294 *
1295 * Returns %false if @work was already on a queue, %true otherwise.
1296 *
1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298 * it can be processed by another CPU.
1299 */
1300bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301{
1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303}
1304EXPORT_SYMBOL_GPL(queue_work);
1305
1306void delayed_work_timer_fn(unsigned long __data)
1307{
1308 struct delayed_work *dwork = (struct delayed_work *)__data;
1309
1310 /* should have been called from irqsafe timer with irq already off */
1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1312}
1313EXPORT_SYMBOL(delayed_work_timer_fn);
1314
1315static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 struct delayed_work *dwork, unsigned long delay)
1317{
1318 struct timer_list *timer = &dwork->timer;
1319 struct work_struct *work = &dwork->work;
1320
1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 timer->data != (unsigned long)dwork);
1323 WARN_ON_ONCE(timer_pending(timer));
1324 WARN_ON_ONCE(!list_empty(&work->entry));
1325
1326 /*
1327 * If @delay is 0, queue @dwork->work immediately. This is for
1328 * both optimization and correctness. The earliest @timer can
1329 * expire is on the closest next tick and delayed_work users depend
1330 * on that there's no such delay when @delay is 0.
1331 */
1332 if (!delay) {
1333 __queue_work(cpu, wq, &dwork->work);
1334 return;
1335 }
1336
1337 timer_stats_timer_set_start_info(&dwork->timer);
1338
1339 dwork->wq = wq;
1340 dwork->cpu = cpu;
1341 timer->expires = jiffies + delay;
1342
1343 if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 add_timer_on(timer, cpu);
1345 else
1346 add_timer(timer);
1347}
1348
1349/**
1350 * queue_delayed_work_on - queue work on specific CPU after delay
1351 * @cpu: CPU number to execute work on
1352 * @wq: workqueue to use
1353 * @dwork: work to queue
1354 * @delay: number of jiffies to wait before queueing
1355 *
1356 * Returns %false if @work was already on a queue, %true otherwise. If
1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358 * execution.
1359 */
1360bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 struct delayed_work *dwork, unsigned long delay)
1362{
1363 struct work_struct *work = &dwork->work;
1364 bool ret = false;
1365 unsigned long flags;
1366
1367 /* read the comment in __queue_work() */
1368 local_irq_save(flags);
1369
1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371 __queue_delayed_work(cpu, wq, dwork, delay);
1372 ret = true;
1373 }
1374
1375 local_irq_restore(flags);
1376 return ret;
1377}
1378EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379
1380/**
1381 * queue_delayed_work - queue work on a workqueue after delay
1382 * @wq: workqueue to use
1383 * @dwork: delayable work to queue
1384 * @delay: number of jiffies to wait before queueing
1385 *
1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387 */
1388bool queue_delayed_work(struct workqueue_struct *wq,
1389 struct delayed_work *dwork, unsigned long delay)
1390{
1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392}
1393EXPORT_SYMBOL_GPL(queue_delayed_work);
1394
1395/**
1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397 * @cpu: CPU number to execute work on
1398 * @wq: workqueue to use
1399 * @dwork: work to queue
1400 * @delay: number of jiffies to wait before queueing
1401 *
1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403 * modify @dwork's timer so that it expires after @delay. If @delay is
1404 * zero, @work is guaranteed to be scheduled immediately regardless of its
1405 * current state.
1406 *
1407 * Returns %false if @dwork was idle and queued, %true if @dwork was
1408 * pending and its timer was modified.
1409 *
1410 * This function is safe to call from any context including IRQ handler.
1411 * See try_to_grab_pending() for details.
1412 */
1413bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 struct delayed_work *dwork, unsigned long delay)
1415{
1416 unsigned long flags;
1417 int ret;
1418
1419 do {
1420 ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 } while (unlikely(ret == -EAGAIN));
1422
1423 if (likely(ret >= 0)) {
1424 __queue_delayed_work(cpu, wq, dwork, delay);
1425 local_irq_restore(flags);
1426 }
1427
1428 /* -ENOENT from try_to_grab_pending() becomes %true */
1429 return ret;
1430}
1431EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432
1433/**
1434 * mod_delayed_work - modify delay of or queue a delayed work
1435 * @wq: workqueue to use
1436 * @dwork: work to queue
1437 * @delay: number of jiffies to wait before queueing
1438 *
1439 * mod_delayed_work_on() on local CPU.
1440 */
1441bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 unsigned long delay)
1443{
1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445}
1446EXPORT_SYMBOL_GPL(mod_delayed_work);
1447
1448/**
1449 * worker_enter_idle - enter idle state
1450 * @worker: worker which is entering idle state
1451 *
1452 * @worker is entering idle state. Update stats and idle timer if
1453 * necessary.
1454 *
1455 * LOCKING:
1456 * spin_lock_irq(pool->lock).
1457 */
1458static void worker_enter_idle(struct worker *worker)
1459{
1460 struct worker_pool *pool = worker->pool;
1461
1462 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1463 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1464 (worker->hentry.next || worker->hentry.pprev)))
1465 return;
1466
1467 /* can't use worker_set_flags(), also called from start_worker() */
1468 worker->flags |= WORKER_IDLE;
1469 pool->nr_idle++;
1470 worker->last_active = jiffies;
1471
1472 /* idle_list is LIFO */
1473 list_add(&worker->entry, &pool->idle_list);
1474
1475 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1476 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1477
1478 /*
1479 * Sanity check nr_running. Because wq_unbind_fn() releases
1480 * pool->lock between setting %WORKER_UNBOUND and zapping
1481 * nr_running, the warning may trigger spuriously. Check iff
1482 * unbind is not in progress.
1483 */
1484 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1485 pool->nr_workers == pool->nr_idle &&
1486 atomic_read(&pool->nr_running));
1487}
1488
1489/**
1490 * worker_leave_idle - leave idle state
1491 * @worker: worker which is leaving idle state
1492 *
1493 * @worker is leaving idle state. Update stats.
1494 *
1495 * LOCKING:
1496 * spin_lock_irq(pool->lock).
1497 */
1498static void worker_leave_idle(struct worker *worker)
1499{
1500 struct worker_pool *pool = worker->pool;
1501
1502 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1503 return;
1504 worker_clr_flags(worker, WORKER_IDLE);
1505 pool->nr_idle--;
1506 list_del_init(&worker->entry);
1507}
1508
1509/**
1510 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1511 * @pool: target worker_pool
1512 *
1513 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1514 *
1515 * Works which are scheduled while the cpu is online must at least be
1516 * scheduled to a worker which is bound to the cpu so that if they are
1517 * flushed from cpu callbacks while cpu is going down, they are
1518 * guaranteed to execute on the cpu.
1519 *
1520 * This function is to be used by unbound workers and rescuers to bind
1521 * themselves to the target cpu and may race with cpu going down or
1522 * coming online. kthread_bind() can't be used because it may put the
1523 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1524 * verbatim as it's best effort and blocking and pool may be
1525 * [dis]associated in the meantime.
1526 *
1527 * This function tries set_cpus_allowed() and locks pool and verifies the
1528 * binding against %POOL_DISASSOCIATED which is set during
1529 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1530 * enters idle state or fetches works without dropping lock, it can
1531 * guarantee the scheduling requirement described in the first paragraph.
1532 *
1533 * CONTEXT:
1534 * Might sleep. Called without any lock but returns with pool->lock
1535 * held.
1536 *
1537 * RETURNS:
1538 * %true if the associated pool is online (@worker is successfully
1539 * bound), %false if offline.
1540 */
1541static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1542__acquires(&pool->lock)
1543{
1544 while (true) {
1545 /*
1546 * The following call may fail, succeed or succeed
1547 * without actually migrating the task to the cpu if
1548 * it races with cpu hotunplug operation. Verify
1549 * against POOL_DISASSOCIATED.
1550 */
1551 if (!(pool->flags & POOL_DISASSOCIATED))
1552 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
1553
1554 spin_lock_irq(&pool->lock);
1555 if (pool->flags & POOL_DISASSOCIATED)
1556 return false;
1557 if (task_cpu(current) == pool->cpu &&
1558 cpumask_equal(&current->cpus_allowed,
1559 get_cpu_mask(pool->cpu)))
1560 return true;
1561 spin_unlock_irq(&pool->lock);
1562
1563 /*
1564 * We've raced with CPU hot[un]plug. Give it a breather
1565 * and retry migration. cond_resched() is required here;
1566 * otherwise, we might deadlock against cpu_stop trying to
1567 * bring down the CPU on non-preemptive kernel.
1568 */
1569 cpu_relax();
1570 cond_resched();
1571 }
1572}
1573
1574/*
1575 * Rebind an idle @worker to its CPU. worker_thread() will test
1576 * list_empty(@worker->entry) before leaving idle and call this function.
1577 */
1578static void idle_worker_rebind(struct worker *worker)
1579{
1580 /* CPU may go down again inbetween, clear UNBOUND only on success */
1581 if (worker_maybe_bind_and_lock(worker->pool))
1582 worker_clr_flags(worker, WORKER_UNBOUND);
1583
1584 /* rebind complete, become available again */
1585 list_add(&worker->entry, &worker->pool->idle_list);
1586 spin_unlock_irq(&worker->pool->lock);
1587}
1588
1589/*
1590 * Function for @worker->rebind.work used to rebind unbound busy workers to
1591 * the associated cpu which is coming back online. This is scheduled by
1592 * cpu up but can race with other cpu hotplug operations and may be
1593 * executed twice without intervening cpu down.
1594 */
1595static void busy_worker_rebind_fn(struct work_struct *work)
1596{
1597 struct worker *worker = container_of(work, struct worker, rebind_work);
1598
1599 if (worker_maybe_bind_and_lock(worker->pool))
1600 worker_clr_flags(worker, WORKER_UNBOUND);
1601
1602 spin_unlock_irq(&worker->pool->lock);
1603}
1604
1605/**
1606 * rebind_workers - rebind all workers of a pool to the associated CPU
1607 * @pool: pool of interest
1608 *
1609 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
1610 * is different for idle and busy ones.
1611 *
1612 * Idle ones will be removed from the idle_list and woken up. They will
1613 * add themselves back after completing rebind. This ensures that the
1614 * idle_list doesn't contain any unbound workers when re-bound busy workers
1615 * try to perform local wake-ups for concurrency management.
1616 *
1617 * Busy workers can rebind after they finish their current work items.
1618 * Queueing the rebind work item at the head of the scheduled list is
1619 * enough. Note that nr_running will be properly bumped as busy workers
1620 * rebind.
1621 *
1622 * On return, all non-manager workers are scheduled for rebind - see
1623 * manage_workers() for the manager special case. Any idle worker
1624 * including the manager will not appear on @idle_list until rebind is
1625 * complete, making local wake-ups safe.
1626 */
1627static void rebind_workers(struct worker_pool *pool)
1628{
1629 struct worker *worker, *n;
1630 int i;
1631
1632 lockdep_assert_held(&pool->assoc_mutex);
1633 lockdep_assert_held(&pool->lock);
1634
1635 /* dequeue and kick idle ones */
1636 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1637 /*
1638 * idle workers should be off @pool->idle_list until rebind
1639 * is complete to avoid receiving premature local wake-ups.
1640 */
1641 list_del_init(&worker->entry);
1642
1643 /*
1644 * worker_thread() will see the above dequeuing and call
1645 * idle_worker_rebind().
1646 */
1647 wake_up_process(worker->task);
1648 }
1649
1650 /* rebind busy workers */
1651 for_each_busy_worker(worker, i, pool) {
1652 struct work_struct *rebind_work = &worker->rebind_work;
1653 struct workqueue_struct *wq;
1654
1655 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1656 work_data_bits(rebind_work)))
1657 continue;
1658
1659 debug_work_activate(rebind_work);
1660
1661 /*
1662 * wq doesn't really matter but let's keep @worker->pool
1663 * and @pwq->pool consistent for sanity.
1664 */
1665 if (std_worker_pool_pri(worker->pool))
1666 wq = system_highpri_wq;
1667 else
1668 wq = system_wq;
1669
1670 insert_work(get_pwq(pool->cpu, wq), rebind_work,
1671 worker->scheduled.next,
1672 work_color_to_flags(WORK_NO_COLOR));
1673 }
1674}
1675
1676static struct worker *alloc_worker(void)
1677{
1678 struct worker *worker;
1679
1680 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1681 if (worker) {
1682 INIT_LIST_HEAD(&worker->entry);
1683 INIT_LIST_HEAD(&worker->scheduled);
1684 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1685 /* on creation a worker is in !idle && prep state */
1686 worker->flags = WORKER_PREP;
1687 }
1688 return worker;
1689}
1690
1691/**
1692 * create_worker - create a new workqueue worker
1693 * @pool: pool the new worker will belong to
1694 *
1695 * Create a new worker which is bound to @pool. The returned worker
1696 * can be started by calling start_worker() or destroyed using
1697 * destroy_worker().
1698 *
1699 * CONTEXT:
1700 * Might sleep. Does GFP_KERNEL allocations.
1701 *
1702 * RETURNS:
1703 * Pointer to the newly created worker.
1704 */
1705static struct worker *create_worker(struct worker_pool *pool)
1706{
1707 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1708 struct worker *worker = NULL;
1709 int id = -1;
1710
1711 spin_lock_irq(&pool->lock);
1712 while (ida_get_new(&pool->worker_ida, &id)) {
1713 spin_unlock_irq(&pool->lock);
1714 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1715 goto fail;
1716 spin_lock_irq(&pool->lock);
1717 }
1718 spin_unlock_irq(&pool->lock);
1719
1720 worker = alloc_worker();
1721 if (!worker)
1722 goto fail;
1723
1724 worker->pool = pool;
1725 worker->id = id;
1726
1727 if (pool->cpu != WORK_CPU_UNBOUND)
1728 worker->task = kthread_create_on_node(worker_thread,
1729 worker, cpu_to_node(pool->cpu),
1730 "kworker/%u:%d%s", pool->cpu, id, pri);
1731 else
1732 worker->task = kthread_create(worker_thread, worker,
1733 "kworker/u:%d%s", id, pri);
1734 if (IS_ERR(worker->task))
1735 goto fail;
1736
1737 if (std_worker_pool_pri(pool))
1738 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1739
1740 /*
1741 * Determine CPU binding of the new worker depending on
1742 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
1743 * flag remains stable across this function. See the comments
1744 * above the flag definition for details.
1745 *
1746 * As an unbound worker may later become a regular one if CPU comes
1747 * online, make sure every worker has %PF_THREAD_BOUND set.
1748 */
1749 if (!(pool->flags & POOL_DISASSOCIATED)) {
1750 kthread_bind(worker->task, pool->cpu);
1751 } else {
1752 worker->task->flags |= PF_THREAD_BOUND;
1753 worker->flags |= WORKER_UNBOUND;
1754 }
1755
1756 return worker;
1757fail:
1758 if (id >= 0) {
1759 spin_lock_irq(&pool->lock);
1760 ida_remove(&pool->worker_ida, id);
1761 spin_unlock_irq(&pool->lock);
1762 }
1763 kfree(worker);
1764 return NULL;
1765}
1766
1767/**
1768 * start_worker - start a newly created worker
1769 * @worker: worker to start
1770 *
1771 * Make the pool aware of @worker and start it.
1772 *
1773 * CONTEXT:
1774 * spin_lock_irq(pool->lock).
1775 */
1776static void start_worker(struct worker *worker)
1777{
1778 worker->flags |= WORKER_STARTED;
1779 worker->pool->nr_workers++;
1780 worker_enter_idle(worker);
1781 wake_up_process(worker->task);
1782}
1783
1784/**
1785 * destroy_worker - destroy a workqueue worker
1786 * @worker: worker to be destroyed
1787 *
1788 * Destroy @worker and adjust @pool stats accordingly.
1789 *
1790 * CONTEXT:
1791 * spin_lock_irq(pool->lock) which is released and regrabbed.
1792 */
1793static void destroy_worker(struct worker *worker)
1794{
1795 struct worker_pool *pool = worker->pool;
1796 int id = worker->id;
1797
1798 /* sanity check frenzy */
1799 if (WARN_ON(worker->current_work) ||
1800 WARN_ON(!list_empty(&worker->scheduled)))
1801 return;
1802
1803 if (worker->flags & WORKER_STARTED)
1804 pool->nr_workers--;
1805 if (worker->flags & WORKER_IDLE)
1806 pool->nr_idle--;
1807
1808 list_del_init(&worker->entry);
1809 worker->flags |= WORKER_DIE;
1810
1811 spin_unlock_irq(&pool->lock);
1812
1813 kthread_stop(worker->task);
1814 kfree(worker);
1815
1816 spin_lock_irq(&pool->lock);
1817 ida_remove(&pool->worker_ida, id);
1818}
1819
1820static void idle_worker_timeout(unsigned long __pool)
1821{
1822 struct worker_pool *pool = (void *)__pool;
1823
1824 spin_lock_irq(&pool->lock);
1825
1826 if (too_many_workers(pool)) {
1827 struct worker *worker;
1828 unsigned long expires;
1829
1830 /* idle_list is kept in LIFO order, check the last one */
1831 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1832 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1833
1834 if (time_before(jiffies, expires))
1835 mod_timer(&pool->idle_timer, expires);
1836 else {
1837 /* it's been idle for too long, wake up manager */
1838 pool->flags |= POOL_MANAGE_WORKERS;
1839 wake_up_worker(pool);
1840 }
1841 }
1842
1843 spin_unlock_irq(&pool->lock);
1844}
1845
1846static bool send_mayday(struct work_struct *work)
1847{
1848 struct pool_workqueue *pwq = get_work_pwq(work);
1849 struct workqueue_struct *wq = pwq->wq;
1850 unsigned int cpu;
1851
1852 if (!(wq->flags & WQ_RESCUER))
1853 return false;
1854
1855 /* mayday mayday mayday */
1856 cpu = pwq->pool->cpu;
1857 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1858 if (cpu == WORK_CPU_UNBOUND)
1859 cpu = 0;
1860 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1861 wake_up_process(wq->rescuer->task);
1862 return true;
1863}
1864
1865static void pool_mayday_timeout(unsigned long __pool)
1866{
1867 struct worker_pool *pool = (void *)__pool;
1868 struct work_struct *work;
1869
1870 spin_lock_irq(&pool->lock);
1871
1872 if (need_to_create_worker(pool)) {
1873 /*
1874 * We've been trying to create a new worker but
1875 * haven't been successful. We might be hitting an
1876 * allocation deadlock. Send distress signals to
1877 * rescuers.
1878 */
1879 list_for_each_entry(work, &pool->worklist, entry)
1880 send_mayday(work);
1881 }
1882
1883 spin_unlock_irq(&pool->lock);
1884
1885 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1886}
1887
1888/**
1889 * maybe_create_worker - create a new worker if necessary
1890 * @pool: pool to create a new worker for
1891 *
1892 * Create a new worker for @pool if necessary. @pool is guaranteed to
1893 * have at least one idle worker on return from this function. If
1894 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1895 * sent to all rescuers with works scheduled on @pool to resolve
1896 * possible allocation deadlock.
1897 *
1898 * On return, need_to_create_worker() is guaranteed to be false and
1899 * may_start_working() true.
1900 *
1901 * LOCKING:
1902 * spin_lock_irq(pool->lock) which may be released and regrabbed
1903 * multiple times. Does GFP_KERNEL allocations. Called only from
1904 * manager.
1905 *
1906 * RETURNS:
1907 * false if no action was taken and pool->lock stayed locked, true
1908 * otherwise.
1909 */
1910static bool maybe_create_worker(struct worker_pool *pool)
1911__releases(&pool->lock)
1912__acquires(&pool->lock)
1913{
1914 if (!need_to_create_worker(pool))
1915 return false;
1916restart:
1917 spin_unlock_irq(&pool->lock);
1918
1919 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1920 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1921
1922 while (true) {
1923 struct worker *worker;
1924
1925 worker = create_worker(pool);
1926 if (worker) {
1927 del_timer_sync(&pool->mayday_timer);
1928 spin_lock_irq(&pool->lock);
1929 start_worker(worker);
1930 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1931 goto restart;
1932 return true;
1933 }
1934
1935 if (!need_to_create_worker(pool))
1936 break;
1937
1938 __set_current_state(TASK_INTERRUPTIBLE);
1939 schedule_timeout(CREATE_COOLDOWN);
1940
1941 if (!need_to_create_worker(pool))
1942 break;
1943 }
1944
1945 del_timer_sync(&pool->mayday_timer);
1946 spin_lock_irq(&pool->lock);
1947 if (need_to_create_worker(pool))
1948 goto restart;
1949 return true;
1950}
1951
1952/**
1953 * maybe_destroy_worker - destroy workers which have been idle for a while
1954 * @pool: pool to destroy workers for
1955 *
1956 * Destroy @pool workers which have been idle for longer than
1957 * IDLE_WORKER_TIMEOUT.
1958 *
1959 * LOCKING:
1960 * spin_lock_irq(pool->lock) which may be released and regrabbed
1961 * multiple times. Called only from manager.
1962 *
1963 * RETURNS:
1964 * false if no action was taken and pool->lock stayed locked, true
1965 * otherwise.
1966 */
1967static bool maybe_destroy_workers(struct worker_pool *pool)
1968{
1969 bool ret = false;
1970
1971 while (too_many_workers(pool)) {
1972 struct worker *worker;
1973 unsigned long expires;
1974
1975 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1976 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1977
1978 if (time_before(jiffies, expires)) {
1979 mod_timer(&pool->idle_timer, expires);
1980 break;
1981 }
1982
1983 destroy_worker(worker);
1984 ret = true;
1985 }
1986
1987 return ret;
1988}
1989
1990/**
1991 * manage_workers - manage worker pool
1992 * @worker: self
1993 *
1994 * Assume the manager role and manage the worker pool @worker belongs
1995 * to. At any given time, there can be only zero or one manager per
1996 * pool. The exclusion is handled automatically by this function.
1997 *
1998 * The caller can safely start processing works on false return. On
1999 * true return, it's guaranteed that need_to_create_worker() is false
2000 * and may_start_working() is true.
2001 *
2002 * CONTEXT:
2003 * spin_lock_irq(pool->lock) which may be released and regrabbed
2004 * multiple times. Does GFP_KERNEL allocations.
2005 *
2006 * RETURNS:
2007 * spin_lock_irq(pool->lock) which may be released and regrabbed
2008 * multiple times. Does GFP_KERNEL allocations.
2009 */
2010static bool manage_workers(struct worker *worker)
2011{
2012 struct worker_pool *pool = worker->pool;
2013 bool ret = false;
2014
2015 if (pool->flags & POOL_MANAGING_WORKERS)
2016 return ret;
2017
2018 pool->flags |= POOL_MANAGING_WORKERS;
2019
2020 /*
2021 * To simplify both worker management and CPU hotplug, hold off
2022 * management while hotplug is in progress. CPU hotplug path can't
2023 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2024 * lead to idle worker depletion (all become busy thinking someone
2025 * else is managing) which in turn can result in deadlock under
2026 * extreme circumstances. Use @pool->assoc_mutex to synchronize
2027 * manager against CPU hotplug.
2028 *
2029 * assoc_mutex would always be free unless CPU hotplug is in
2030 * progress. trylock first without dropping @pool->lock.
2031 */
2032 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2033 spin_unlock_irq(&pool->lock);
2034 mutex_lock(&pool->assoc_mutex);
2035 /*
2036 * CPU hotplug could have happened while we were waiting
2037 * for assoc_mutex. Hotplug itself can't handle us
2038 * because manager isn't either on idle or busy list, and
2039 * @pool's state and ours could have deviated.
2040 *
2041 * As hotplug is now excluded via assoc_mutex, we can
2042 * simply try to bind. It will succeed or fail depending
2043 * on @pool's current state. Try it and adjust
2044 * %WORKER_UNBOUND accordingly.
2045 */
2046 if (worker_maybe_bind_and_lock(pool))
2047 worker->flags &= ~WORKER_UNBOUND;
2048 else
2049 worker->flags |= WORKER_UNBOUND;
2050
2051 ret = true;
2052 }
2053
2054 pool->flags &= ~POOL_MANAGE_WORKERS;
2055
2056 /*
2057 * Destroy and then create so that may_start_working() is true
2058 * on return.
2059 */
2060 ret |= maybe_destroy_workers(pool);
2061 ret |= maybe_create_worker(pool);
2062
2063 pool->flags &= ~POOL_MANAGING_WORKERS;
2064 mutex_unlock(&pool->assoc_mutex);
2065 return ret;
2066}
2067
2068/**
2069 * process_one_work - process single work
2070 * @worker: self
2071 * @work: work to process
2072 *
2073 * Process @work. This function contains all the logics necessary to
2074 * process a single work including synchronization against and
2075 * interaction with other workers on the same cpu, queueing and
2076 * flushing. As long as context requirement is met, any worker can
2077 * call this function to process a work.
2078 *
2079 * CONTEXT:
2080 * spin_lock_irq(pool->lock) which is released and regrabbed.
2081 */
2082static void process_one_work(struct worker *worker, struct work_struct *work)
2083__releases(&pool->lock)
2084__acquires(&pool->lock)
2085{
2086 struct pool_workqueue *pwq = get_work_pwq(work);
2087 struct worker_pool *pool = worker->pool;
2088 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2089 int work_color;
2090 struct worker *collision;
2091#ifdef CONFIG_LOCKDEP
2092 /*
2093 * It is permissible to free the struct work_struct from
2094 * inside the function that is called from it, this we need to
2095 * take into account for lockdep too. To avoid bogus "held
2096 * lock freed" warnings as well as problems when looking into
2097 * work->lockdep_map, make a copy and use that here.
2098 */
2099 struct lockdep_map lockdep_map;
2100
2101 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2102#endif
2103 /*
2104 * Ensure we're on the correct CPU. DISASSOCIATED test is
2105 * necessary to avoid spurious warnings from rescuers servicing the
2106 * unbound or a disassociated pool.
2107 */
2108 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2109 !(pool->flags & POOL_DISASSOCIATED) &&
2110 raw_smp_processor_id() != pool->cpu);
2111
2112 /*
2113 * A single work shouldn't be executed concurrently by
2114 * multiple workers on a single cpu. Check whether anyone is
2115 * already processing the work. If so, defer the work to the
2116 * currently executing one.
2117 */
2118 collision = find_worker_executing_work(pool, work);
2119 if (unlikely(collision)) {
2120 move_linked_works(work, &collision->scheduled, NULL);
2121 return;
2122 }
2123
2124 /* claim and dequeue */
2125 debug_work_deactivate(work);
2126 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2127 worker->current_work = work;
2128 worker->current_func = work->func;
2129 worker->current_pwq = pwq;
2130 work_color = get_work_color(work);
2131
2132 list_del_init(&work->entry);
2133
2134 /*
2135 * CPU intensive works don't participate in concurrency
2136 * management. They're the scheduler's responsibility.
2137 */
2138 if (unlikely(cpu_intensive))
2139 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2140
2141 /*
2142 * Unbound pool isn't concurrency managed and work items should be
2143 * executed ASAP. Wake up another worker if necessary.
2144 */
2145 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2146 wake_up_worker(pool);
2147
2148 /*
2149 * Record the last pool and clear PENDING which should be the last
2150 * update to @work. Also, do this inside @pool->lock so that
2151 * PENDING and queued state changes happen together while IRQ is
2152 * disabled.
2153 */
2154 set_work_pool_and_clear_pending(work, pool->id);
2155
2156 spin_unlock_irq(&pool->lock);
2157
2158 lock_map_acquire_read(&pwq->wq->lockdep_map);
2159 lock_map_acquire(&lockdep_map);
2160 trace_workqueue_execute_start(work);
2161 worker->current_func(work);
2162 /*
2163 * While we must be careful to not use "work" after this, the trace
2164 * point will only record its address.
2165 */
2166 trace_workqueue_execute_end(work);
2167 lock_map_release(&lockdep_map);
2168 lock_map_release(&pwq->wq->lockdep_map);
2169
2170 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2171 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2172 " last function: %pf\n",
2173 current->comm, preempt_count(), task_pid_nr(current),
2174 worker->current_func);
2175 debug_show_held_locks(current);
2176 dump_stack();
2177 }
2178
2179 spin_lock_irq(&pool->lock);
2180
2181 /* clear cpu intensive status */
2182 if (unlikely(cpu_intensive))
2183 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2184
2185 /* we're done with it, release */
2186 hash_del(&worker->hentry);
2187 worker->current_work = NULL;
2188 worker->current_func = NULL;
2189 worker->current_pwq = NULL;
2190 pwq_dec_nr_in_flight(pwq, work_color);
2191}
2192
2193/**
2194 * process_scheduled_works - process scheduled works
2195 * @worker: self
2196 *
2197 * Process all scheduled works. Please note that the scheduled list
2198 * may change while processing a work, so this function repeatedly
2199 * fetches a work from the top and executes it.
2200 *
2201 * CONTEXT:
2202 * spin_lock_irq(pool->lock) which may be released and regrabbed
2203 * multiple times.
2204 */
2205static void process_scheduled_works(struct worker *worker)
2206{
2207 while (!list_empty(&worker->scheduled)) {
2208 struct work_struct *work = list_first_entry(&worker->scheduled,
2209 struct work_struct, entry);
2210 process_one_work(worker, work);
2211 }
2212}
2213
2214/**
2215 * worker_thread - the worker thread function
2216 * @__worker: self
2217 *
2218 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2219 * of these per each cpu. These workers process all works regardless of
2220 * their specific target workqueue. The only exception is works which
2221 * belong to workqueues with a rescuer which will be explained in
2222 * rescuer_thread().
2223 */
2224static int worker_thread(void *__worker)
2225{
2226 struct worker *worker = __worker;
2227 struct worker_pool *pool = worker->pool;
2228
2229 /* tell the scheduler that this is a workqueue worker */
2230 worker->task->flags |= PF_WQ_WORKER;
2231woke_up:
2232 spin_lock_irq(&pool->lock);
2233
2234 /* we are off idle list if destruction or rebind is requested */
2235 if (unlikely(list_empty(&worker->entry))) {
2236 spin_unlock_irq(&pool->lock);
2237
2238 /* if DIE is set, destruction is requested */
2239 if (worker->flags & WORKER_DIE) {
2240 worker->task->flags &= ~PF_WQ_WORKER;
2241 return 0;
2242 }
2243
2244 /* otherwise, rebind */
2245 idle_worker_rebind(worker);
2246 goto woke_up;
2247 }
2248
2249 worker_leave_idle(worker);
2250recheck:
2251 /* no more worker necessary? */
2252 if (!need_more_worker(pool))
2253 goto sleep;
2254
2255 /* do we need to manage? */
2256 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2257 goto recheck;
2258
2259 /*
2260 * ->scheduled list can only be filled while a worker is
2261 * preparing to process a work or actually processing it.
2262 * Make sure nobody diddled with it while I was sleeping.
2263 */
2264 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2265
2266 /*
2267 * When control reaches this point, we're guaranteed to have
2268 * at least one idle worker or that someone else has already
2269 * assumed the manager role.
2270 */
2271 worker_clr_flags(worker, WORKER_PREP);
2272
2273 do {
2274 struct work_struct *work =
2275 list_first_entry(&pool->worklist,
2276 struct work_struct, entry);
2277
2278 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2279 /* optimization path, not strictly necessary */
2280 process_one_work(worker, work);
2281 if (unlikely(!list_empty(&worker->scheduled)))
2282 process_scheduled_works(worker);
2283 } else {
2284 move_linked_works(work, &worker->scheduled, NULL);
2285 process_scheduled_works(worker);
2286 }
2287 } while (keep_working(pool));
2288
2289 worker_set_flags(worker, WORKER_PREP, false);
2290sleep:
2291 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2292 goto recheck;
2293
2294 /*
2295 * pool->lock is held and there's no work to process and no need to
2296 * manage, sleep. Workers are woken up only while holding
2297 * pool->lock or from local cpu, so setting the current state
2298 * before releasing pool->lock is enough to prevent losing any
2299 * event.
2300 */
2301 worker_enter_idle(worker);
2302 __set_current_state(TASK_INTERRUPTIBLE);
2303 spin_unlock_irq(&pool->lock);
2304 schedule();
2305 goto woke_up;
2306}
2307
2308/**
2309 * rescuer_thread - the rescuer thread function
2310 * @__rescuer: self
2311 *
2312 * Workqueue rescuer thread function. There's one rescuer for each
2313 * workqueue which has WQ_RESCUER set.
2314 *
2315 * Regular work processing on a pool may block trying to create a new
2316 * worker which uses GFP_KERNEL allocation which has slight chance of
2317 * developing into deadlock if some works currently on the same queue
2318 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2319 * the problem rescuer solves.
2320 *
2321 * When such condition is possible, the pool summons rescuers of all
2322 * workqueues which have works queued on the pool and let them process
2323 * those works so that forward progress can be guaranteed.
2324 *
2325 * This should happen rarely.
2326 */
2327static int rescuer_thread(void *__rescuer)
2328{
2329 struct worker *rescuer = __rescuer;
2330 struct workqueue_struct *wq = rescuer->rescue_wq;
2331 struct list_head *scheduled = &rescuer->scheduled;
2332 bool is_unbound = wq->flags & WQ_UNBOUND;
2333 unsigned int cpu;
2334
2335 set_user_nice(current, RESCUER_NICE_LEVEL);
2336
2337 /*
2338 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2339 * doesn't participate in concurrency management.
2340 */
2341 rescuer->task->flags |= PF_WQ_WORKER;
2342repeat:
2343 set_current_state(TASK_INTERRUPTIBLE);
2344
2345 if (kthread_should_stop()) {
2346 __set_current_state(TASK_RUNNING);
2347 rescuer->task->flags &= ~PF_WQ_WORKER;
2348 return 0;
2349 }
2350
2351 /*
2352 * See whether any cpu is asking for help. Unbounded
2353 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2354 */
2355 for_each_mayday_cpu(cpu, wq->mayday_mask) {
2356 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2357 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2358 struct worker_pool *pool = pwq->pool;
2359 struct work_struct *work, *n;
2360
2361 __set_current_state(TASK_RUNNING);
2362 mayday_clear_cpu(cpu, wq->mayday_mask);
2363
2364 /* migrate to the target cpu if possible */
2365 worker_maybe_bind_and_lock(pool);
2366 rescuer->pool = pool;
2367
2368 /*
2369 * Slurp in all works issued via this workqueue and
2370 * process'em.
2371 */
2372 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2373 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2374 if (get_work_pwq(work) == pwq)
2375 move_linked_works(work, scheduled, &n);
2376
2377 process_scheduled_works(rescuer);
2378
2379 /*
2380 * Leave this pool. If keep_working() is %true, notify a
2381 * regular worker; otherwise, we end up with 0 concurrency
2382 * and stalling the execution.
2383 */
2384 if (keep_working(pool))
2385 wake_up_worker(pool);
2386
2387 rescuer->pool = NULL;
2388 spin_unlock_irq(&pool->lock);
2389 }
2390
2391 /* rescuers should never participate in concurrency management */
2392 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2393 schedule();
2394 goto repeat;
2395}
2396
2397struct wq_barrier {
2398 struct work_struct work;
2399 struct completion done;
2400};
2401
2402static void wq_barrier_func(struct work_struct *work)
2403{
2404 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2405 complete(&barr->done);
2406}
2407
2408/**
2409 * insert_wq_barrier - insert a barrier work
2410 * @pwq: pwq to insert barrier into
2411 * @barr: wq_barrier to insert
2412 * @target: target work to attach @barr to
2413 * @worker: worker currently executing @target, NULL if @target is not executing
2414 *
2415 * @barr is linked to @target such that @barr is completed only after
2416 * @target finishes execution. Please note that the ordering
2417 * guarantee is observed only with respect to @target and on the local
2418 * cpu.
2419 *
2420 * Currently, a queued barrier can't be canceled. This is because
2421 * try_to_grab_pending() can't determine whether the work to be
2422 * grabbed is at the head of the queue and thus can't clear LINKED
2423 * flag of the previous work while there must be a valid next work
2424 * after a work with LINKED flag set.
2425 *
2426 * Note that when @worker is non-NULL, @target may be modified
2427 * underneath us, so we can't reliably determine pwq from @target.
2428 *
2429 * CONTEXT:
2430 * spin_lock_irq(pool->lock).
2431 */
2432static void insert_wq_barrier(struct pool_workqueue *pwq,
2433 struct wq_barrier *barr,
2434 struct work_struct *target, struct worker *worker)
2435{
2436 struct list_head *head;
2437 unsigned int linked = 0;
2438
2439 /*
2440 * debugobject calls are safe here even with pool->lock locked
2441 * as we know for sure that this will not trigger any of the
2442 * checks and call back into the fixup functions where we
2443 * might deadlock.
2444 */
2445 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2446 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2447 init_completion(&barr->done);
2448
2449 /*
2450 * If @target is currently being executed, schedule the
2451 * barrier to the worker; otherwise, put it after @target.
2452 */
2453 if (worker)
2454 head = worker->scheduled.next;
2455 else {
2456 unsigned long *bits = work_data_bits(target);
2457
2458 head = target->entry.next;
2459 /* there can already be other linked works, inherit and set */
2460 linked = *bits & WORK_STRUCT_LINKED;
2461 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2462 }
2463
2464 debug_work_activate(&barr->work);
2465 insert_work(pwq, &barr->work, head,
2466 work_color_to_flags(WORK_NO_COLOR) | linked);
2467}
2468
2469/**
2470 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2471 * @wq: workqueue being flushed
2472 * @flush_color: new flush color, < 0 for no-op
2473 * @work_color: new work color, < 0 for no-op
2474 *
2475 * Prepare pwqs for workqueue flushing.
2476 *
2477 * If @flush_color is non-negative, flush_color on all pwqs should be
2478 * -1. If no pwq has in-flight commands at the specified color, all
2479 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2480 * has in flight commands, its pwq->flush_color is set to
2481 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2482 * wakeup logic is armed and %true is returned.
2483 *
2484 * The caller should have initialized @wq->first_flusher prior to
2485 * calling this function with non-negative @flush_color. If
2486 * @flush_color is negative, no flush color update is done and %false
2487 * is returned.
2488 *
2489 * If @work_color is non-negative, all pwqs should have the same
2490 * work_color which is previous to @work_color and all will be
2491 * advanced to @work_color.
2492 *
2493 * CONTEXT:
2494 * mutex_lock(wq->flush_mutex).
2495 *
2496 * RETURNS:
2497 * %true if @flush_color >= 0 and there's something to flush. %false
2498 * otherwise.
2499 */
2500static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2501 int flush_color, int work_color)
2502{
2503 bool wait = false;
2504 unsigned int cpu;
2505
2506 if (flush_color >= 0) {
2507 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2508 atomic_set(&wq->nr_pwqs_to_flush, 1);
2509 }
2510
2511 for_each_pwq_cpu(cpu, wq) {
2512 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2513 struct worker_pool *pool = pwq->pool;
2514
2515 spin_lock_irq(&pool->lock);
2516
2517 if (flush_color >= 0) {
2518 WARN_ON_ONCE(pwq->flush_color != -1);
2519
2520 if (pwq->nr_in_flight[flush_color]) {
2521 pwq->flush_color = flush_color;
2522 atomic_inc(&wq->nr_pwqs_to_flush);
2523 wait = true;
2524 }
2525 }
2526
2527 if (work_color >= 0) {
2528 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2529 pwq->work_color = work_color;
2530 }
2531
2532 spin_unlock_irq(&pool->lock);
2533 }
2534
2535 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2536 complete(&wq->first_flusher->done);
2537
2538 return wait;
2539}
2540
2541/**
2542 * flush_workqueue - ensure that any scheduled work has run to completion.
2543 * @wq: workqueue to flush
2544 *
2545 * Forces execution of the workqueue and blocks until its completion.
2546 * This is typically used in driver shutdown handlers.
2547 *
2548 * We sleep until all works which were queued on entry have been handled,
2549 * but we are not livelocked by new incoming ones.
2550 */
2551void flush_workqueue(struct workqueue_struct *wq)
2552{
2553 struct wq_flusher this_flusher = {
2554 .list = LIST_HEAD_INIT(this_flusher.list),
2555 .flush_color = -1,
2556 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2557 };
2558 int next_color;
2559
2560 lock_map_acquire(&wq->lockdep_map);
2561 lock_map_release(&wq->lockdep_map);
2562
2563 mutex_lock(&wq->flush_mutex);
2564
2565 /*
2566 * Start-to-wait phase
2567 */
2568 next_color = work_next_color(wq->work_color);
2569
2570 if (next_color != wq->flush_color) {
2571 /*
2572 * Color space is not full. The current work_color
2573 * becomes our flush_color and work_color is advanced
2574 * by one.
2575 */
2576 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2577 this_flusher.flush_color = wq->work_color;
2578 wq->work_color = next_color;
2579
2580 if (!wq->first_flusher) {
2581 /* no flush in progress, become the first flusher */
2582 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2583
2584 wq->first_flusher = &this_flusher;
2585
2586 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2587 wq->work_color)) {
2588 /* nothing to flush, done */
2589 wq->flush_color = next_color;
2590 wq->first_flusher = NULL;
2591 goto out_unlock;
2592 }
2593 } else {
2594 /* wait in queue */
2595 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2596 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2597 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2598 }
2599 } else {
2600 /*
2601 * Oops, color space is full, wait on overflow queue.
2602 * The next flush completion will assign us
2603 * flush_color and transfer to flusher_queue.
2604 */
2605 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2606 }
2607
2608 mutex_unlock(&wq->flush_mutex);
2609
2610 wait_for_completion(&this_flusher.done);
2611
2612 /*
2613 * Wake-up-and-cascade phase
2614 *
2615 * First flushers are responsible for cascading flushes and
2616 * handling overflow. Non-first flushers can simply return.
2617 */
2618 if (wq->first_flusher != &this_flusher)
2619 return;
2620
2621 mutex_lock(&wq->flush_mutex);
2622
2623 /* we might have raced, check again with mutex held */
2624 if (wq->first_flusher != &this_flusher)
2625 goto out_unlock;
2626
2627 wq->first_flusher = NULL;
2628
2629 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2630 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2631
2632 while (true) {
2633 struct wq_flusher *next, *tmp;
2634
2635 /* complete all the flushers sharing the current flush color */
2636 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2637 if (next->flush_color != wq->flush_color)
2638 break;
2639 list_del_init(&next->list);
2640 complete(&next->done);
2641 }
2642
2643 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2644 wq->flush_color != work_next_color(wq->work_color));
2645
2646 /* this flush_color is finished, advance by one */
2647 wq->flush_color = work_next_color(wq->flush_color);
2648
2649 /* one color has been freed, handle overflow queue */
2650 if (!list_empty(&wq->flusher_overflow)) {
2651 /*
2652 * Assign the same color to all overflowed
2653 * flushers, advance work_color and append to
2654 * flusher_queue. This is the start-to-wait
2655 * phase for these overflowed flushers.
2656 */
2657 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2658 tmp->flush_color = wq->work_color;
2659
2660 wq->work_color = work_next_color(wq->work_color);
2661
2662 list_splice_tail_init(&wq->flusher_overflow,
2663 &wq->flusher_queue);
2664 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2665 }
2666
2667 if (list_empty(&wq->flusher_queue)) {
2668 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2669 break;
2670 }
2671
2672 /*
2673 * Need to flush more colors. Make the next flusher
2674 * the new first flusher and arm pwqs.
2675 */
2676 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2677 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2678
2679 list_del_init(&next->list);
2680 wq->first_flusher = next;
2681
2682 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2683 break;
2684
2685 /*
2686 * Meh... this color is already done, clear first
2687 * flusher and repeat cascading.
2688 */
2689 wq->first_flusher = NULL;
2690 }
2691
2692out_unlock:
2693 mutex_unlock(&wq->flush_mutex);
2694}
2695EXPORT_SYMBOL_GPL(flush_workqueue);
2696
2697/**
2698 * drain_workqueue - drain a workqueue
2699 * @wq: workqueue to drain
2700 *
2701 * Wait until the workqueue becomes empty. While draining is in progress,
2702 * only chain queueing is allowed. IOW, only currently pending or running
2703 * work items on @wq can queue further work items on it. @wq is flushed
2704 * repeatedly until it becomes empty. The number of flushing is detemined
2705 * by the depth of chaining and should be relatively short. Whine if it
2706 * takes too long.
2707 */
2708void drain_workqueue(struct workqueue_struct *wq)
2709{
2710 unsigned int flush_cnt = 0;
2711 unsigned int cpu;
2712
2713 /*
2714 * __queue_work() needs to test whether there are drainers, is much
2715 * hotter than drain_workqueue() and already looks at @wq->flags.
2716 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2717 */
2718 spin_lock_irq(&workqueue_lock);
2719 if (!wq->nr_drainers++)
2720 wq->flags |= WQ_DRAINING;
2721 spin_unlock_irq(&workqueue_lock);
2722reflush:
2723 flush_workqueue(wq);
2724
2725 for_each_pwq_cpu(cpu, wq) {
2726 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2727 bool drained;
2728
2729 spin_lock_irq(&pwq->pool->lock);
2730 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2731 spin_unlock_irq(&pwq->pool->lock);
2732
2733 if (drained)
2734 continue;
2735
2736 if (++flush_cnt == 10 ||
2737 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2738 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2739 wq->name, flush_cnt);
2740 goto reflush;
2741 }
2742
2743 spin_lock_irq(&workqueue_lock);
2744 if (!--wq->nr_drainers)
2745 wq->flags &= ~WQ_DRAINING;
2746 spin_unlock_irq(&workqueue_lock);
2747}
2748EXPORT_SYMBOL_GPL(drain_workqueue);
2749
2750static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2751{
2752 struct worker *worker = NULL;
2753 struct worker_pool *pool;
2754 struct pool_workqueue *pwq;
2755
2756 might_sleep();
2757 pool = get_work_pool(work);
2758 if (!pool)
2759 return false;
2760
2761 spin_lock_irq(&pool->lock);
2762 /* see the comment in try_to_grab_pending() with the same code */
2763 pwq = get_work_pwq(work);
2764 if (pwq) {
2765 if (unlikely(pwq->pool != pool))
2766 goto already_gone;
2767 } else {
2768 worker = find_worker_executing_work(pool, work);
2769 if (!worker)
2770 goto already_gone;
2771 pwq = worker->current_pwq;
2772 }
2773
2774 insert_wq_barrier(pwq, barr, work, worker);
2775 spin_unlock_irq(&pool->lock);
2776
2777 /*
2778 * If @max_active is 1 or rescuer is in use, flushing another work
2779 * item on the same workqueue may lead to deadlock. Make sure the
2780 * flusher is not running on the same workqueue by verifying write
2781 * access.
2782 */
2783 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2784 lock_map_acquire(&pwq->wq->lockdep_map);
2785 else
2786 lock_map_acquire_read(&pwq->wq->lockdep_map);
2787 lock_map_release(&pwq->wq->lockdep_map);
2788
2789 return true;
2790already_gone:
2791 spin_unlock_irq(&pool->lock);
2792 return false;
2793}
2794
2795/**
2796 * flush_work - wait for a work to finish executing the last queueing instance
2797 * @work: the work to flush
2798 *
2799 * Wait until @work has finished execution. @work is guaranteed to be idle
2800 * on return if it hasn't been requeued since flush started.
2801 *
2802 * RETURNS:
2803 * %true if flush_work() waited for the work to finish execution,
2804 * %false if it was already idle.
2805 */
2806bool flush_work(struct work_struct *work)
2807{
2808 struct wq_barrier barr;
2809
2810 lock_map_acquire(&work->lockdep_map);
2811 lock_map_release(&work->lockdep_map);
2812
2813 if (start_flush_work(work, &barr)) {
2814 wait_for_completion(&barr.done);
2815 destroy_work_on_stack(&barr.work);
2816 return true;
2817 } else {
2818 return false;
2819 }
2820}
2821EXPORT_SYMBOL_GPL(flush_work);
2822
2823static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2824{
2825 unsigned long flags;
2826 int ret;
2827
2828 do {
2829 ret = try_to_grab_pending(work, is_dwork, &flags);
2830 /*
2831 * If someone else is canceling, wait for the same event it
2832 * would be waiting for before retrying.
2833 */
2834 if (unlikely(ret == -ENOENT))
2835 flush_work(work);
2836 } while (unlikely(ret < 0));
2837
2838 /* tell other tasks trying to grab @work to back off */
2839 mark_work_canceling(work);
2840 local_irq_restore(flags);
2841
2842 flush_work(work);
2843 clear_work_data(work);
2844 return ret;
2845}
2846
2847/**
2848 * cancel_work_sync - cancel a work and wait for it to finish
2849 * @work: the work to cancel
2850 *
2851 * Cancel @work and wait for its execution to finish. This function
2852 * can be used even if the work re-queues itself or migrates to
2853 * another workqueue. On return from this function, @work is
2854 * guaranteed to be not pending or executing on any CPU.
2855 *
2856 * cancel_work_sync(&delayed_work->work) must not be used for
2857 * delayed_work's. Use cancel_delayed_work_sync() instead.
2858 *
2859 * The caller must ensure that the workqueue on which @work was last
2860 * queued can't be destroyed before this function returns.
2861 *
2862 * RETURNS:
2863 * %true if @work was pending, %false otherwise.
2864 */
2865bool cancel_work_sync(struct work_struct *work)
2866{
2867 return __cancel_work_timer(work, false);
2868}
2869EXPORT_SYMBOL_GPL(cancel_work_sync);
2870
2871/**
2872 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2873 * @dwork: the delayed work to flush
2874 *
2875 * Delayed timer is cancelled and the pending work is queued for
2876 * immediate execution. Like flush_work(), this function only
2877 * considers the last queueing instance of @dwork.
2878 *
2879 * RETURNS:
2880 * %true if flush_work() waited for the work to finish execution,
2881 * %false if it was already idle.
2882 */
2883bool flush_delayed_work(struct delayed_work *dwork)
2884{
2885 local_irq_disable();
2886 if (del_timer_sync(&dwork->timer))
2887 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2888 local_irq_enable();
2889 return flush_work(&dwork->work);
2890}
2891EXPORT_SYMBOL(flush_delayed_work);
2892
2893/**
2894 * cancel_delayed_work - cancel a delayed work
2895 * @dwork: delayed_work to cancel
2896 *
2897 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2898 * and canceled; %false if wasn't pending. Note that the work callback
2899 * function may still be running on return, unless it returns %true and the
2900 * work doesn't re-arm itself. Explicitly flush or use
2901 * cancel_delayed_work_sync() to wait on it.
2902 *
2903 * This function is safe to call from any context including IRQ handler.
2904 */
2905bool cancel_delayed_work(struct delayed_work *dwork)
2906{
2907 unsigned long flags;
2908 int ret;
2909
2910 do {
2911 ret = try_to_grab_pending(&dwork->work, true, &flags);
2912 } while (unlikely(ret == -EAGAIN));
2913
2914 if (unlikely(ret < 0))
2915 return false;
2916
2917 set_work_pool_and_clear_pending(&dwork->work,
2918 get_work_pool_id(&dwork->work));
2919 local_irq_restore(flags);
2920 return ret;
2921}
2922EXPORT_SYMBOL(cancel_delayed_work);
2923
2924/**
2925 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2926 * @dwork: the delayed work cancel
2927 *
2928 * This is cancel_work_sync() for delayed works.
2929 *
2930 * RETURNS:
2931 * %true if @dwork was pending, %false otherwise.
2932 */
2933bool cancel_delayed_work_sync(struct delayed_work *dwork)
2934{
2935 return __cancel_work_timer(&dwork->work, true);
2936}
2937EXPORT_SYMBOL(cancel_delayed_work_sync);
2938
2939/**
2940 * schedule_work_on - put work task on a specific cpu
2941 * @cpu: cpu to put the work task on
2942 * @work: job to be done
2943 *
2944 * This puts a job on a specific cpu
2945 */
2946bool schedule_work_on(int cpu, struct work_struct *work)
2947{
2948 return queue_work_on(cpu, system_wq, work);
2949}
2950EXPORT_SYMBOL(schedule_work_on);
2951
2952/**
2953 * schedule_work - put work task in global workqueue
2954 * @work: job to be done
2955 *
2956 * Returns %false if @work was already on the kernel-global workqueue and
2957 * %true otherwise.
2958 *
2959 * This puts a job in the kernel-global workqueue if it was not already
2960 * queued and leaves it in the same position on the kernel-global
2961 * workqueue otherwise.
2962 */
2963bool schedule_work(struct work_struct *work)
2964{
2965 return queue_work(system_wq, work);
2966}
2967EXPORT_SYMBOL(schedule_work);
2968
2969/**
2970 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2971 * @cpu: cpu to use
2972 * @dwork: job to be done
2973 * @delay: number of jiffies to wait
2974 *
2975 * After waiting for a given time this puts a job in the kernel-global
2976 * workqueue on the specified CPU.
2977 */
2978bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2979 unsigned long delay)
2980{
2981 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2982}
2983EXPORT_SYMBOL(schedule_delayed_work_on);
2984
2985/**
2986 * schedule_delayed_work - put work task in global workqueue after delay
2987 * @dwork: job to be done
2988 * @delay: number of jiffies to wait or 0 for immediate execution
2989 *
2990 * After waiting for a given time this puts a job in the kernel-global
2991 * workqueue.
2992 */
2993bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2994{
2995 return queue_delayed_work(system_wq, dwork, delay);
2996}
2997EXPORT_SYMBOL(schedule_delayed_work);
2998
2999/**
3000 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3001 * @func: the function to call
3002 *
3003 * schedule_on_each_cpu() executes @func on each online CPU using the
3004 * system workqueue and blocks until all CPUs have completed.
3005 * schedule_on_each_cpu() is very slow.
3006 *
3007 * RETURNS:
3008 * 0 on success, -errno on failure.
3009 */
3010int schedule_on_each_cpu(work_func_t func)
3011{
3012 int cpu;
3013 struct work_struct __percpu *works;
3014
3015 works = alloc_percpu(struct work_struct);
3016 if (!works)
3017 return -ENOMEM;
3018
3019 get_online_cpus();
3020
3021 for_each_online_cpu(cpu) {
3022 struct work_struct *work = per_cpu_ptr(works, cpu);
3023
3024 INIT_WORK(work, func);
3025 schedule_work_on(cpu, work);
3026 }
3027
3028 for_each_online_cpu(cpu)
3029 flush_work(per_cpu_ptr(works, cpu));
3030
3031 put_online_cpus();
3032 free_percpu(works);
3033 return 0;
3034}
3035
3036/**
3037 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3038 *
3039 * Forces execution of the kernel-global workqueue and blocks until its
3040 * completion.
3041 *
3042 * Think twice before calling this function! It's very easy to get into
3043 * trouble if you don't take great care. Either of the following situations
3044 * will lead to deadlock:
3045 *
3046 * One of the work items currently on the workqueue needs to acquire
3047 * a lock held by your code or its caller.
3048 *
3049 * Your code is running in the context of a work routine.
3050 *
3051 * They will be detected by lockdep when they occur, but the first might not
3052 * occur very often. It depends on what work items are on the workqueue and
3053 * what locks they need, which you have no control over.
3054 *
3055 * In most situations flushing the entire workqueue is overkill; you merely
3056 * need to know that a particular work item isn't queued and isn't running.
3057 * In such cases you should use cancel_delayed_work_sync() or
3058 * cancel_work_sync() instead.
3059 */
3060void flush_scheduled_work(void)
3061{
3062 flush_workqueue(system_wq);
3063}
3064EXPORT_SYMBOL(flush_scheduled_work);
3065
3066/**
3067 * execute_in_process_context - reliably execute the routine with user context
3068 * @fn: the function to execute
3069 * @ew: guaranteed storage for the execute work structure (must
3070 * be available when the work executes)
3071 *
3072 * Executes the function immediately if process context is available,
3073 * otherwise schedules the function for delayed execution.
3074 *
3075 * Returns: 0 - function was executed
3076 * 1 - function was scheduled for execution
3077 */
3078int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3079{
3080 if (!in_interrupt()) {
3081 fn(&ew->work);
3082 return 0;
3083 }
3084
3085 INIT_WORK(&ew->work, fn);
3086 schedule_work(&ew->work);
3087
3088 return 1;
3089}
3090EXPORT_SYMBOL_GPL(execute_in_process_context);
3091
3092int keventd_up(void)
3093{
3094 return system_wq != NULL;
3095}
3096
3097static int alloc_pwqs(struct workqueue_struct *wq)
3098{
3099 /*
3100 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3101 * Make sure that the alignment isn't lower than that of
3102 * unsigned long long.
3103 */
3104 const size_t size = sizeof(struct pool_workqueue);
3105 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3106 __alignof__(unsigned long long));
3107
3108 if (!(wq->flags & WQ_UNBOUND))
3109 wq->pool_wq.pcpu = __alloc_percpu(size, align);
3110 else {
3111 void *ptr;
3112
3113 /*
3114 * Allocate enough room to align pwq and put an extra
3115 * pointer at the end pointing back to the originally
3116 * allocated pointer which will be used for free.
3117 */
3118 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3119 if (ptr) {
3120 wq->pool_wq.single = PTR_ALIGN(ptr, align);
3121 *(void **)(wq->pool_wq.single + 1) = ptr;
3122 }
3123 }
3124
3125 /* just in case, make sure it's actually aligned */
3126 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3127 return wq->pool_wq.v ? 0 : -ENOMEM;
3128}
3129
3130static void free_pwqs(struct workqueue_struct *wq)
3131{
3132 if (!(wq->flags & WQ_UNBOUND))
3133 free_percpu(wq->pool_wq.pcpu);
3134 else if (wq->pool_wq.single) {
3135 /* the pointer to free is stored right after the pwq */
3136 kfree(*(void **)(wq->pool_wq.single + 1));
3137 }
3138}
3139
3140static int wq_clamp_max_active(int max_active, unsigned int flags,
3141 const char *name)
3142{
3143 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3144
3145 if (max_active < 1 || max_active > lim)
3146 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3147 max_active, name, 1, lim);
3148
3149 return clamp_val(max_active, 1, lim);
3150}
3151
3152struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3153 unsigned int flags,
3154 int max_active,
3155 struct lock_class_key *key,
3156 const char *lock_name, ...)
3157{
3158 va_list args, args1;
3159 struct workqueue_struct *wq;
3160 unsigned int cpu;
3161 size_t namelen;
3162
3163 /* determine namelen, allocate wq and format name */
3164 va_start(args, lock_name);
3165 va_copy(args1, args);
3166 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3167
3168 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3169 if (!wq)
3170 goto err;
3171
3172 vsnprintf(wq->name, namelen, fmt, args1);
3173 va_end(args);
3174 va_end(args1);
3175
3176 /*
3177 * Workqueues which may be used during memory reclaim should
3178 * have a rescuer to guarantee forward progress.
3179 */
3180 if (flags & WQ_MEM_RECLAIM)
3181 flags |= WQ_RESCUER;
3182
3183 max_active = max_active ?: WQ_DFL_ACTIVE;
3184 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3185
3186 /* init wq */
3187 wq->flags = flags;
3188 wq->saved_max_active = max_active;
3189 mutex_init(&wq->flush_mutex);
3190 atomic_set(&wq->nr_pwqs_to_flush, 0);
3191 INIT_LIST_HEAD(&wq->flusher_queue);
3192 INIT_LIST_HEAD(&wq->flusher_overflow);
3193
3194 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3195 INIT_LIST_HEAD(&wq->list);
3196
3197 if (alloc_pwqs(wq) < 0)
3198 goto err;
3199
3200 for_each_pwq_cpu(cpu, wq) {
3201 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3202
3203 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3204 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3205 pwq->wq = wq;
3206 pwq->flush_color = -1;
3207 pwq->max_active = max_active;
3208 INIT_LIST_HEAD(&pwq->delayed_works);
3209 }
3210
3211 if (flags & WQ_RESCUER) {
3212 struct worker *rescuer;
3213
3214 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3215 goto err;
3216
3217 wq->rescuer = rescuer = alloc_worker();
3218 if (!rescuer)
3219 goto err;
3220
3221 rescuer->rescue_wq = wq;
3222 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3223 wq->name);
3224 if (IS_ERR(rescuer->task))
3225 goto err;
3226
3227 rescuer->task->flags |= PF_THREAD_BOUND;
3228 wake_up_process(rescuer->task);
3229 }
3230
3231 /*
3232 * workqueue_lock protects global freeze state and workqueues
3233 * list. Grab it, set max_active accordingly and add the new
3234 * workqueue to workqueues list.
3235 */
3236 spin_lock_irq(&workqueue_lock);
3237
3238 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3239 for_each_pwq_cpu(cpu, wq)
3240 get_pwq(cpu, wq)->max_active = 0;
3241
3242 list_add(&wq->list, &workqueues);
3243
3244 spin_unlock_irq(&workqueue_lock);
3245
3246 return wq;
3247err:
3248 if (wq) {
3249 free_pwqs(wq);
3250 free_mayday_mask(wq->mayday_mask);
3251 kfree(wq->rescuer);
3252 kfree(wq);
3253 }
3254 return NULL;
3255}
3256EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3257
3258/**
3259 * destroy_workqueue - safely terminate a workqueue
3260 * @wq: target workqueue
3261 *
3262 * Safely destroy a workqueue. All work currently pending will be done first.
3263 */
3264void destroy_workqueue(struct workqueue_struct *wq)
3265{
3266 unsigned int cpu;
3267
3268 /* drain it before proceeding with destruction */
3269 drain_workqueue(wq);
3270
3271 /* sanity checks */
3272 for_each_pwq_cpu(cpu, wq) {
3273 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3274 int i;
3275
3276 for (i = 0; i < WORK_NR_COLORS; i++)
3277 if (WARN_ON(pwq->nr_in_flight[i]))
3278 return;
3279 if (WARN_ON(pwq->nr_active) ||
3280 WARN_ON(!list_empty(&pwq->delayed_works)))
3281 return;
3282 }
3283
3284 /*
3285 * wq list is used to freeze wq, remove from list after
3286 * flushing is complete in case freeze races us.
3287 */
3288 spin_lock_irq(&workqueue_lock);
3289 list_del(&wq->list);
3290 spin_unlock_irq(&workqueue_lock);
3291
3292 if (wq->flags & WQ_RESCUER) {
3293 kthread_stop(wq->rescuer->task);
3294 free_mayday_mask(wq->mayday_mask);
3295 kfree(wq->rescuer);
3296 }
3297
3298 free_pwqs(wq);
3299 kfree(wq);
3300}
3301EXPORT_SYMBOL_GPL(destroy_workqueue);
3302
3303/**
3304 * pwq_set_max_active - adjust max_active of a pwq
3305 * @pwq: target pool_workqueue
3306 * @max_active: new max_active value.
3307 *
3308 * Set @pwq->max_active to @max_active and activate delayed works if
3309 * increased.
3310 *
3311 * CONTEXT:
3312 * spin_lock_irq(pool->lock).
3313 */
3314static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3315{
3316 pwq->max_active = max_active;
3317
3318 while (!list_empty(&pwq->delayed_works) &&
3319 pwq->nr_active < pwq->max_active)
3320 pwq_activate_first_delayed(pwq);
3321}
3322
3323/**
3324 * workqueue_set_max_active - adjust max_active of a workqueue
3325 * @wq: target workqueue
3326 * @max_active: new max_active value.
3327 *
3328 * Set max_active of @wq to @max_active.
3329 *
3330 * CONTEXT:
3331 * Don't call from IRQ context.
3332 */
3333void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3334{
3335 unsigned int cpu;
3336
3337 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3338
3339 spin_lock_irq(&workqueue_lock);
3340
3341 wq->saved_max_active = max_active;
3342
3343 for_each_pwq_cpu(cpu, wq) {
3344 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3345 struct worker_pool *pool = pwq->pool;
3346
3347 spin_lock(&pool->lock);
3348
3349 if (!(wq->flags & WQ_FREEZABLE) ||
3350 !(pool->flags & POOL_FREEZING))
3351 pwq_set_max_active(pwq, max_active);
3352
3353 spin_unlock(&pool->lock);
3354 }
3355
3356 spin_unlock_irq(&workqueue_lock);
3357}
3358EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3359
3360/**
3361 * workqueue_congested - test whether a workqueue is congested
3362 * @cpu: CPU in question
3363 * @wq: target workqueue
3364 *
3365 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3366 * no synchronization around this function and the test result is
3367 * unreliable and only useful as advisory hints or for debugging.
3368 *
3369 * RETURNS:
3370 * %true if congested, %false otherwise.
3371 */
3372bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3373{
3374 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3375
3376 return !list_empty(&pwq->delayed_works);
3377}
3378EXPORT_SYMBOL_GPL(workqueue_congested);
3379
3380/**
3381 * work_busy - test whether a work is currently pending or running
3382 * @work: the work to be tested
3383 *
3384 * Test whether @work is currently pending or running. There is no
3385 * synchronization around this function and the test result is
3386 * unreliable and only useful as advisory hints or for debugging.
3387 *
3388 * RETURNS:
3389 * OR'd bitmask of WORK_BUSY_* bits.
3390 */
3391unsigned int work_busy(struct work_struct *work)
3392{
3393 struct worker_pool *pool = get_work_pool(work);
3394 unsigned long flags;
3395 unsigned int ret = 0;
3396
3397 if (work_pending(work))
3398 ret |= WORK_BUSY_PENDING;
3399
3400 if (pool) {
3401 spin_lock_irqsave(&pool->lock, flags);
3402 if (find_worker_executing_work(pool, work))
3403 ret |= WORK_BUSY_RUNNING;
3404 spin_unlock_irqrestore(&pool->lock, flags);
3405 }
3406
3407 return ret;
3408}
3409EXPORT_SYMBOL_GPL(work_busy);
3410
3411/*
3412 * CPU hotplug.
3413 *
3414 * There are two challenges in supporting CPU hotplug. Firstly, there
3415 * are a lot of assumptions on strong associations among work, pwq and
3416 * pool which make migrating pending and scheduled works very
3417 * difficult to implement without impacting hot paths. Secondly,
3418 * worker pools serve mix of short, long and very long running works making
3419 * blocked draining impractical.
3420 *
3421 * This is solved by allowing the pools to be disassociated from the CPU
3422 * running as an unbound one and allowing it to be reattached later if the
3423 * cpu comes back online.
3424 */
3425
3426static void wq_unbind_fn(struct work_struct *work)
3427{
3428 int cpu = smp_processor_id();
3429 struct worker_pool *pool;
3430 struct worker *worker;
3431 int i;
3432
3433 for_each_std_worker_pool(pool, cpu) {
3434 WARN_ON_ONCE(cpu != smp_processor_id());
3435
3436 mutex_lock(&pool->assoc_mutex);
3437 spin_lock_irq(&pool->lock);
3438
3439 /*
3440 * We've claimed all manager positions. Make all workers
3441 * unbound and set DISASSOCIATED. Before this, all workers
3442 * except for the ones which are still executing works from
3443 * before the last CPU down must be on the cpu. After
3444 * this, they may become diasporas.
3445 */
3446 list_for_each_entry(worker, &pool->idle_list, entry)
3447 worker->flags |= WORKER_UNBOUND;
3448
3449 for_each_busy_worker(worker, i, pool)
3450 worker->flags |= WORKER_UNBOUND;
3451
3452 pool->flags |= POOL_DISASSOCIATED;
3453
3454 spin_unlock_irq(&pool->lock);
3455 mutex_unlock(&pool->assoc_mutex);
3456 }
3457
3458 /*
3459 * Call schedule() so that we cross rq->lock and thus can guarantee
3460 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3461 * as scheduler callbacks may be invoked from other cpus.
3462 */
3463 schedule();
3464
3465 /*
3466 * Sched callbacks are disabled now. Zap nr_running. After this,
3467 * nr_running stays zero and need_more_worker() and keep_working()
3468 * are always true as long as the worklist is not empty. Pools on
3469 * @cpu now behave as unbound (in terms of concurrency management)
3470 * pools which are served by workers tied to the CPU.
3471 *
3472 * On return from this function, the current worker would trigger
3473 * unbound chain execution of pending work items if other workers
3474 * didn't already.
3475 */
3476 for_each_std_worker_pool(pool, cpu)
3477 atomic_set(&pool->nr_running, 0);
3478}
3479
3480/*
3481 * Workqueues should be brought up before normal priority CPU notifiers.
3482 * This will be registered high priority CPU notifier.
3483 */
3484static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3485 unsigned long action,
3486 void *hcpu)
3487{
3488 unsigned int cpu = (unsigned long)hcpu;
3489 struct worker_pool *pool;
3490
3491 switch (action & ~CPU_TASKS_FROZEN) {
3492 case CPU_UP_PREPARE:
3493 for_each_std_worker_pool(pool, cpu) {
3494 struct worker *worker;
3495
3496 if (pool->nr_workers)
3497 continue;
3498
3499 worker = create_worker(pool);
3500 if (!worker)
3501 return NOTIFY_BAD;
3502
3503 spin_lock_irq(&pool->lock);
3504 start_worker(worker);
3505 spin_unlock_irq(&pool->lock);
3506 }
3507 break;
3508
3509 case CPU_DOWN_FAILED:
3510 case CPU_ONLINE:
3511 for_each_std_worker_pool(pool, cpu) {
3512 mutex_lock(&pool->assoc_mutex);
3513 spin_lock_irq(&pool->lock);
3514
3515 pool->flags &= ~POOL_DISASSOCIATED;
3516 rebind_workers(pool);
3517
3518 spin_unlock_irq(&pool->lock);
3519 mutex_unlock(&pool->assoc_mutex);
3520 }
3521 break;
3522 }
3523 return NOTIFY_OK;
3524}
3525
3526/*
3527 * Workqueues should be brought down after normal priority CPU notifiers.
3528 * This will be registered as low priority CPU notifier.
3529 */
3530static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3531 unsigned long action,
3532 void *hcpu)
3533{
3534 unsigned int cpu = (unsigned long)hcpu;
3535 struct work_struct unbind_work;
3536
3537 switch (action & ~CPU_TASKS_FROZEN) {
3538 case CPU_DOWN_PREPARE:
3539 /* unbinding should happen on the local CPU */
3540 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3541 queue_work_on(cpu, system_highpri_wq, &unbind_work);
3542 flush_work(&unbind_work);
3543 break;
3544 }
3545 return NOTIFY_OK;
3546}
3547
3548#ifdef CONFIG_SMP
3549
3550struct work_for_cpu {
3551 struct work_struct work;
3552 long (*fn)(void *);
3553 void *arg;
3554 long ret;
3555};
3556
3557static void work_for_cpu_fn(struct work_struct *work)
3558{
3559 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3560
3561 wfc->ret = wfc->fn(wfc->arg);
3562}
3563
3564/**
3565 * work_on_cpu - run a function in user context on a particular cpu
3566 * @cpu: the cpu to run on
3567 * @fn: the function to run
3568 * @arg: the function arg
3569 *
3570 * This will return the value @fn returns.
3571 * It is up to the caller to ensure that the cpu doesn't go offline.
3572 * The caller must not hold any locks which would prevent @fn from completing.
3573 */
3574long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3575{
3576 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3577
3578 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3579 schedule_work_on(cpu, &wfc.work);
3580 flush_work(&wfc.work);
3581 return wfc.ret;
3582}
3583EXPORT_SYMBOL_GPL(work_on_cpu);
3584#endif /* CONFIG_SMP */
3585
3586#ifdef CONFIG_FREEZER
3587
3588/**
3589 * freeze_workqueues_begin - begin freezing workqueues
3590 *
3591 * Start freezing workqueues. After this function returns, all freezable
3592 * workqueues will queue new works to their frozen_works list instead of
3593 * pool->worklist.
3594 *
3595 * CONTEXT:
3596 * Grabs and releases workqueue_lock and pool->lock's.
3597 */
3598void freeze_workqueues_begin(void)
3599{
3600 unsigned int cpu;
3601
3602 spin_lock_irq(&workqueue_lock);
3603
3604 WARN_ON_ONCE(workqueue_freezing);
3605 workqueue_freezing = true;
3606
3607 for_each_wq_cpu(cpu) {
3608 struct worker_pool *pool;
3609 struct workqueue_struct *wq;
3610
3611 for_each_std_worker_pool(pool, cpu) {
3612 spin_lock(&pool->lock);
3613
3614 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3615 pool->flags |= POOL_FREEZING;
3616
3617 list_for_each_entry(wq, &workqueues, list) {
3618 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3619
3620 if (pwq && pwq->pool == pool &&
3621 (wq->flags & WQ_FREEZABLE))
3622 pwq->max_active = 0;
3623 }
3624
3625 spin_unlock(&pool->lock);
3626 }
3627 }
3628
3629 spin_unlock_irq(&workqueue_lock);
3630}
3631
3632/**
3633 * freeze_workqueues_busy - are freezable workqueues still busy?
3634 *
3635 * Check whether freezing is complete. This function must be called
3636 * between freeze_workqueues_begin() and thaw_workqueues().
3637 *
3638 * CONTEXT:
3639 * Grabs and releases workqueue_lock.
3640 *
3641 * RETURNS:
3642 * %true if some freezable workqueues are still busy. %false if freezing
3643 * is complete.
3644 */
3645bool freeze_workqueues_busy(void)
3646{
3647 unsigned int cpu;
3648 bool busy = false;
3649
3650 spin_lock_irq(&workqueue_lock);
3651
3652 WARN_ON_ONCE(!workqueue_freezing);
3653
3654 for_each_wq_cpu(cpu) {
3655 struct workqueue_struct *wq;
3656 /*
3657 * nr_active is monotonically decreasing. It's safe
3658 * to peek without lock.
3659 */
3660 list_for_each_entry(wq, &workqueues, list) {
3661 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3662
3663 if (!pwq || !(wq->flags & WQ_FREEZABLE))
3664 continue;
3665
3666 WARN_ON_ONCE(pwq->nr_active < 0);
3667 if (pwq->nr_active) {
3668 busy = true;
3669 goto out_unlock;
3670 }
3671 }
3672 }
3673out_unlock:
3674 spin_unlock_irq(&workqueue_lock);
3675 return busy;
3676}
3677
3678/**
3679 * thaw_workqueues - thaw workqueues
3680 *
3681 * Thaw workqueues. Normal queueing is restored and all collected
3682 * frozen works are transferred to their respective pool worklists.
3683 *
3684 * CONTEXT:
3685 * Grabs and releases workqueue_lock and pool->lock's.
3686 */
3687void thaw_workqueues(void)
3688{
3689 unsigned int cpu;
3690
3691 spin_lock_irq(&workqueue_lock);
3692
3693 if (!workqueue_freezing)
3694 goto out_unlock;
3695
3696 for_each_wq_cpu(cpu) {
3697 struct worker_pool *pool;
3698 struct workqueue_struct *wq;
3699
3700 for_each_std_worker_pool(pool, cpu) {
3701 spin_lock(&pool->lock);
3702
3703 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3704 pool->flags &= ~POOL_FREEZING;
3705
3706 list_for_each_entry(wq, &workqueues, list) {
3707 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3708
3709 if (!pwq || pwq->pool != pool ||
3710 !(wq->flags & WQ_FREEZABLE))
3711 continue;
3712
3713 /* restore max_active and repopulate worklist */
3714 pwq_set_max_active(pwq, wq->saved_max_active);
3715 }
3716
3717 wake_up_worker(pool);
3718
3719 spin_unlock(&pool->lock);
3720 }
3721 }
3722
3723 workqueue_freezing = false;
3724out_unlock:
3725 spin_unlock_irq(&workqueue_lock);
3726}
3727#endif /* CONFIG_FREEZER */
3728
3729static int __init init_workqueues(void)
3730{
3731 unsigned int cpu;
3732
3733 /* make sure we have enough bits for OFFQ pool ID */
3734 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3735 WORK_CPU_END * NR_STD_WORKER_POOLS);
3736
3737 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3738 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3739
3740 /* initialize CPU pools */
3741 for_each_wq_cpu(cpu) {
3742 struct worker_pool *pool;
3743
3744 for_each_std_worker_pool(pool, cpu) {
3745 spin_lock_init(&pool->lock);
3746 pool->cpu = cpu;
3747 pool->flags |= POOL_DISASSOCIATED;
3748 INIT_LIST_HEAD(&pool->worklist);
3749 INIT_LIST_HEAD(&pool->idle_list);
3750 hash_init(pool->busy_hash);
3751
3752 init_timer_deferrable(&pool->idle_timer);
3753 pool->idle_timer.function = idle_worker_timeout;
3754 pool->idle_timer.data = (unsigned long)pool;
3755
3756 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3757 (unsigned long)pool);
3758
3759 mutex_init(&pool->assoc_mutex);
3760 ida_init(&pool->worker_ida);
3761
3762 /* alloc pool ID */
3763 BUG_ON(worker_pool_assign_id(pool));
3764 }
3765 }
3766
3767 /* create the initial worker */
3768 for_each_online_wq_cpu(cpu) {
3769 struct worker_pool *pool;
3770
3771 for_each_std_worker_pool(pool, cpu) {
3772 struct worker *worker;
3773
3774 if (cpu != WORK_CPU_UNBOUND)
3775 pool->flags &= ~POOL_DISASSOCIATED;
3776
3777 worker = create_worker(pool);
3778 BUG_ON(!worker);
3779 spin_lock_irq(&pool->lock);
3780 start_worker(worker);
3781 spin_unlock_irq(&pool->lock);
3782 }
3783 }
3784
3785 system_wq = alloc_workqueue("events", 0, 0);
3786 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3787 system_long_wq = alloc_workqueue("events_long", 0, 0);
3788 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3789 WQ_UNBOUND_MAX_ACTIVE);
3790 system_freezable_wq = alloc_workqueue("events_freezable",
3791 WQ_FREEZABLE, 0);
3792 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3793 !system_unbound_wq || !system_freezable_wq);
3794 return 0;
3795}
3796early_initcall(init_workqueues);
This page took 0.08144 seconds and 5 git commands to generate.