gdb/server/
[deliverable/binutils-gdb.git] / libdecnumber / decNumberLocal.h
... / ...
CommitLineData
1/* Local definitions for the decNumber C Library.
2 Copyright (C) 2007, 2009 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17Under Section 7 of GPL version 3, you are granted additional
18permissions described in the GCC Runtime Library Exception, version
193.1, as published by the Free Software Foundation.
20
21You should have received a copy of the GNU General Public License and
22a copy of the GCC Runtime Library Exception along with this program;
23see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24<http://www.gnu.org/licenses/>. */
25
26/* ------------------------------------------------------------------ */
27/* decNumber package local type, tuning, and macro definitions */
28/* ------------------------------------------------------------------ */
29/* This header file is included by all modules in the decNumber */
30/* library, and contains local type definitions, tuning parameters, */
31/* etc. It should not need to be used by application programs. */
32/* decNumber.h or one of decDouble (etc.) must be included first. */
33/* ------------------------------------------------------------------ */
34
35#if !defined(DECNUMBERLOC)
36 #define DECNUMBERLOC
37 #define DECVERSION "decNumber 3.61" /* Package Version [16 max.] */
38 #define DECNLAUTHOR "Mike Cowlishaw" /* Who to blame */
39
40 #include <stdlib.h> /* for abs */
41 #include <string.h> /* for memset, strcpy */
42 #include "dconfig.h" /* for WORDS_BIGENDIAN */
43
44 /* Conditional code flag -- set this to match hardware platform */
45 /* 1=little-endian, 0=big-endian */
46 #if WORDS_BIGENDIAN
47 #define DECLITEND 0
48 #else
49 #define DECLITEND 1
50 #endif
51
52 #if !defined(DECLITEND)
53 #define DECLITEND 1 /* 1=little-endian, 0=big-endian */
54 #endif
55
56 /* Conditional code flag -- set this to 1 for best performance */
57 #if !defined(DECUSE64)
58 #define DECUSE64 1 /* 1=use int64s, 0=int32 & smaller only */
59 #endif
60
61 /* Conditional check flags -- set these to 0 for best performance */
62 #if !defined(DECCHECK)
63 #define DECCHECK 0 /* 1 to enable robust checking */
64 #endif
65 #if !defined(DECALLOC)
66 #define DECALLOC 0 /* 1 to enable memory accounting */
67 #endif
68 #if !defined(DECTRACE)
69 #define DECTRACE 0 /* 1 to trace certain internals, etc. */
70 #endif
71
72 /* Tuning parameter for decNumber (arbitrary precision) module */
73 #if !defined(DECBUFFER)
74 #define DECBUFFER 36 /* Size basis for local buffers. This */
75 /* should be a common maximum precision */
76 /* rounded up to a multiple of 4; must */
77 /* be zero or positive. */
78 #endif
79
80 /* ---------------------------------------------------------------- */
81 /* Definitions for all modules (general-purpose) */
82 /* ---------------------------------------------------------------- */
83
84 /* Local names for common types -- for safety, decNumber modules do */
85 /* not use int or long directly. */
86 #define Flag uint8_t
87 #define Byte int8_t
88 #define uByte uint8_t
89 #define Short int16_t
90 #define uShort uint16_t
91 #define Int int32_t
92 #define uInt uint32_t
93 #define Unit decNumberUnit
94 #if DECUSE64
95 #define Long int64_t
96 #define uLong uint64_t
97 #endif
98
99 /* Development-use definitions */
100 typedef long int LI; /* for printf arguments only */
101 #define DECNOINT 0 /* 1 to check no internal use of 'int' */
102 /* or stdint types */
103 #if DECNOINT
104 /* if these interfere with your C includes, do not set DECNOINT */
105 #define int ? /* enable to ensure that plain C 'int' */
106 #define long ?? /* .. or 'long' types are not used */
107 #endif
108
109 /* Shared lookup tables */
110 extern const uByte DECSTICKYTAB[10]; /* re-round digits if sticky */
111 extern const uInt DECPOWERS[10]; /* powers of ten table */
112 /* The following are included from decDPD.h */
113 #include "decDPDSymbols.h"
114 extern const uShort DPD2BIN[1024]; /* DPD -> 0-999 */
115 extern const uShort BIN2DPD[1000]; /* 0-999 -> DPD */
116 extern const uInt DPD2BINK[1024]; /* DPD -> 0-999000 */
117 extern const uInt DPD2BINM[1024]; /* DPD -> 0-999000000 */
118 extern const uByte DPD2BCD8[4096]; /* DPD -> ddd + len */
119 extern const uByte BIN2BCD8[4000]; /* 0-999 -> ddd + len */
120 extern const uShort BCD2DPD[2458]; /* 0-0x999 -> DPD (0x999=2457)*/
121
122 /* LONGMUL32HI -- set w=(u*v)>>32, where w, u, and v are uInts */
123 /* (that is, sets w to be the high-order word of the 64-bit result; */
124 /* the low-order word is simply u*v.) */
125 /* This version is derived from Knuth via Hacker's Delight; */
126 /* it seems to optimize better than some others tried */
127 #define LONGMUL32HI(w, u, v) { \
128 uInt u0, u1, v0, v1, w0, w1, w2, t; \
129 u0=u & 0xffff; u1=u>>16; \
130 v0=v & 0xffff; v1=v>>16; \
131 w0=u0*v0; \
132 t=u1*v0 + (w0>>16); \
133 w1=t & 0xffff; w2=t>>16; \
134 w1=u0*v1 + w1; \
135 (w)=u1*v1 + w2 + (w1>>16);}
136
137 /* ROUNDUP -- round an integer up to a multiple of n */
138 #define ROUNDUP(i, n) ((((i)+(n)-1)/n)*n)
139 #define ROUNDUP4(i) (((i)+3)&~3) /* special for n=4 */
140
141 /* ROUNDDOWN -- round an integer down to a multiple of n */
142 #define ROUNDDOWN(i, n) (((i)/n)*n)
143 #define ROUNDDOWN4(i) ((i)&~3) /* special for n=4 */
144
145 /* References to multi-byte sequences under different sizes; these */
146 /* require locally declared variables, but do not violate strict */
147 /* aliasing or alignment (as did the UINTAT simple cast to uInt). */
148 /* Variables needed are uswork, uiwork, etc. [so do not use at same */
149 /* level in an expression, e.g., UBTOUI(x)==UBTOUI(y) may fail]. */
150
151 /* Return a uInt, etc., from bytes starting at a char* or uByte* */
152 #define UBTOUS(b) (memcpy((void *)&uswork, b, 2), uswork)
153 #define UBTOUI(b) (memcpy((void *)&uiwork, b, 4), uiwork)
154
155 /* Store a uInt, etc., into bytes starting at a char* or uByte*. */
156 /* Returns i, evaluated, for convenience; has to use uiwork because */
157 /* i may be an expression. */
158 #define UBFROMUS(b, i) (uswork=(i), memcpy(b, (void *)&uswork, 2), uswork)
159 #define UBFROMUI(b, i) (uiwork=(i), memcpy(b, (void *)&uiwork, 4), uiwork)
160
161 /* X10 and X100 -- multiply integer i by 10 or 100 */
162 /* [shifts are usually faster than multiply; could be conditional] */
163 #define X10(i) (((i)<<1)+((i)<<3))
164 #define X100(i) (((i)<<2)+((i)<<5)+((i)<<6))
165
166 /* MAXI and MINI -- general max & min (not in ANSI) for integers */
167 #define MAXI(x,y) ((x)<(y)?(y):(x))
168 #define MINI(x,y) ((x)>(y)?(y):(x))
169
170 /* Useful constants */
171 #define BILLION 1000000000 /* 10**9 */
172 /* CHARMASK: 0x30303030 for ASCII/UTF8; 0xF0F0F0F0 for EBCDIC */
173 #define CHARMASK ((((((((uInt)'0')<<8)+'0')<<8)+'0')<<8)+'0')
174
175
176 /* ---------------------------------------------------------------- */
177 /* Definitions for arbitary-precision modules (only valid after */
178 /* decNumber.h has been included) */
179 /* ---------------------------------------------------------------- */
180
181 /* Limits and constants */
182 #define DECNUMMAXP 999999999 /* maximum precision code can handle */
183 #define DECNUMMAXE 999999999 /* maximum adjusted exponent ditto */
184 #define DECNUMMINE -999999999 /* minimum adjusted exponent ditto */
185 #if (DECNUMMAXP != DEC_MAX_DIGITS)
186 #error Maximum digits mismatch
187 #endif
188 #if (DECNUMMAXE != DEC_MAX_EMAX)
189 #error Maximum exponent mismatch
190 #endif
191 #if (DECNUMMINE != DEC_MIN_EMIN)
192 #error Minimum exponent mismatch
193 #endif
194
195 /* Set DECDPUNMAX -- the maximum integer that fits in DECDPUN */
196 /* digits, and D2UTABLE -- the initializer for the D2U table */
197 #if DECDPUN==1
198 #define DECDPUNMAX 9
199 #define D2UTABLE {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, \
200 18,19,20,21,22,23,24,25,26,27,28,29,30,31,32, \
201 33,34,35,36,37,38,39,40,41,42,43,44,45,46,47, \
202 48,49}
203 #elif DECDPUN==2
204 #define DECDPUNMAX 99
205 #define D2UTABLE {0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10, \
206 11,11,12,12,13,13,14,14,15,15,16,16,17,17,18, \
207 18,19,19,20,20,21,21,22,22,23,23,24,24,25}
208 #elif DECDPUN==3
209 #define DECDPUNMAX 999
210 #define D2UTABLE {0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7, \
211 8,8,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13, \
212 13,14,14,14,15,15,15,16,16,16,17}
213 #elif DECDPUN==4
214 #define DECDPUNMAX 9999
215 #define D2UTABLE {0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,6, \
216 6,6,6,7,7,7,7,8,8,8,8,9,9,9,9,10,10,10,10,11, \
217 11,11,11,12,12,12,12,13}
218 #elif DECDPUN==5
219 #define DECDPUNMAX 99999
220 #define D2UTABLE {0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4,5, \
221 5,5,5,5,6,6,6,6,6,7,7,7,7,7,8,8,8,8,8,9,9,9, \
222 9,9,10,10,10,10}
223 #elif DECDPUN==6
224 #define DECDPUNMAX 999999
225 #define D2UTABLE {0,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4, \
226 4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,7,7,7,7,7,7,8, \
227 8,8,8,8,8,9}
228 #elif DECDPUN==7
229 #define DECDPUNMAX 9999999
230 #define D2UTABLE {0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3, \
231 4,4,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7, \
232 7,7,7,7,7,7}
233 #elif DECDPUN==8
234 #define DECDPUNMAX 99999999
235 #define D2UTABLE {0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3, \
236 3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6, \
237 6,6,6,6,6,7}
238 #elif DECDPUN==9
239 #define DECDPUNMAX 999999999
240 #define D2UTABLE {0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3,3, \
241 3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5, \
242 5,5,6,6,6,6}
243 #elif defined(DECDPUN)
244 #error DECDPUN must be in the range 1-9
245 #endif
246
247 /* ----- Shared data (in decNumber.c) ----- */
248 /* Public lookup table used by the D2U macro (see below) */
249 #define DECMAXD2U 49
250 extern const uByte d2utable[DECMAXD2U+1];
251
252 /* ----- Macros ----- */
253 /* ISZERO -- return true if decNumber dn is a zero */
254 /* [performance-critical in some situations] */
255 #define ISZERO(dn) decNumberIsZero(dn) /* now just a local name */
256
257 /* D2U -- return the number of Units needed to hold d digits */
258 /* (runtime version, with table lookaside for small d) */
259 #if DECDPUN==8
260 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+7)>>3))
261 #elif DECDPUN==4
262 #define D2U(d) ((unsigned)((d)<=DECMAXD2U?d2utable[d]:((d)+3)>>2))
263 #else
264 #define D2U(d) ((d)<=DECMAXD2U?d2utable[d]:((d)+DECDPUN-1)/DECDPUN)
265 #endif
266 /* SD2U -- static D2U macro (for compile-time calculation) */
267 #define SD2U(d) (((d)+DECDPUN-1)/DECDPUN)
268
269 /* MSUDIGITS -- returns digits in msu, from digits, calculated */
270 /* using D2U */
271 #define MSUDIGITS(d) ((d)-(D2U(d)-1)*DECDPUN)
272
273 /* D2N -- return the number of decNumber structs that would be */
274 /* needed to contain that number of digits (and the initial */
275 /* decNumber struct) safely. Note that one Unit is included in the */
276 /* initial structure. Used for allocating space that is aligned on */
277 /* a decNumber struct boundary. */
278 #define D2N(d) \
279 ((((SD2U(d)-1)*sizeof(Unit))+sizeof(decNumber)*2-1)/sizeof(decNumber))
280
281 /* TODIGIT -- macro to remove the leading digit from the unsigned */
282 /* integer u at column cut (counting from the right, LSD=0) and */
283 /* place it as an ASCII character into the character pointed to by */
284 /* c. Note that cut must be <= 9, and the maximum value for u is */
285 /* 2,000,000,000 (as is needed for negative exponents of */
286 /* subnormals). The unsigned integer pow is used as a temporary */
287 /* variable. */
288 #define TODIGIT(u, cut, c, pow) { \
289 *(c)='0'; \
290 pow=DECPOWERS[cut]*2; \
291 if ((u)>pow) { \
292 pow*=4; \
293 if ((u)>=pow) {(u)-=pow; *(c)+=8;} \
294 pow/=2; \
295 if ((u)>=pow) {(u)-=pow; *(c)+=4;} \
296 pow/=2; \
297 } \
298 if ((u)>=pow) {(u)-=pow; *(c)+=2;} \
299 pow/=2; \
300 if ((u)>=pow) {(u)-=pow; *(c)+=1;} \
301 }
302
303 /* ---------------------------------------------------------------- */
304 /* Definitions for fixed-precision modules (only valid after */
305 /* decSingle.h, decDouble.h, or decQuad.h has been included) */
306 /* ---------------------------------------------------------------- */
307
308 /* bcdnum -- a structure describing a format-independent finite */
309 /* number, whose coefficient is a string of bcd8 uBytes */
310 typedef struct {
311 uByte *msd; /* -> most significant digit */
312 uByte *lsd; /* -> least ditto */
313 uInt sign; /* 0=positive, DECFLOAT_Sign=negative */
314 Int exponent; /* Unadjusted signed exponent (q), or */
315 /* DECFLOAT_NaN etc. for a special */
316 } bcdnum;
317
318 /* Test if exponent or bcdnum exponent must be a special, etc. */
319 #define EXPISSPECIAL(exp) ((exp)>=DECFLOAT_MinSp)
320 #define EXPISINF(exp) (exp==DECFLOAT_Inf)
321 #define EXPISNAN(exp) (exp==DECFLOAT_qNaN || exp==DECFLOAT_sNaN)
322 #define NUMISSPECIAL(num) (EXPISSPECIAL((num)->exponent))
323
324 /* Refer to a 32-bit word or byte in a decFloat (df) by big-endian */
325 /* (array) notation (the 0 word or byte contains the sign bit), */
326 /* automatically adjusting for endianness; similarly address a word */
327 /* in the next-wider format (decFloatWider, or dfw) */
328 #define DECWORDS (DECBYTES/4)
329 #define DECWWORDS (DECWBYTES/4)
330 #if DECLITEND
331 #define DFBYTE(df, off) ((df)->bytes[DECBYTES-1-(off)])
332 #define DFWORD(df, off) ((df)->words[DECWORDS-1-(off)])
333 #define DFWWORD(dfw, off) ((dfw)->words[DECWWORDS-1-(off)])
334 #else
335 #define DFBYTE(df, off) ((df)->bytes[off])
336 #define DFWORD(df, off) ((df)->words[off])
337 #define DFWWORD(dfw, off) ((dfw)->words[off])
338 #endif
339
340 /* Tests for sign or specials, directly on DECFLOATs */
341 #define DFISSIGNED(df) (DFWORD(df, 0)&0x80000000)
342 #define DFISSPECIAL(df) ((DFWORD(df, 0)&0x78000000)==0x78000000)
343 #define DFISINF(df) ((DFWORD(df, 0)&0x7c000000)==0x78000000)
344 #define DFISNAN(df) ((DFWORD(df, 0)&0x7c000000)==0x7c000000)
345 #define DFISQNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7c000000)
346 #define DFISSNAN(df) ((DFWORD(df, 0)&0x7e000000)==0x7e000000)
347
348 /* Shared lookup tables */
349#include "decCommonSymbols.h"
350 extern const uInt DECCOMBMSD[64]; /* Combination field -> MSD */
351 extern const uInt DECCOMBFROM[48]; /* exp+msd -> Combination */
352
353 /* Private generic (utility) routine */
354 #if DECCHECK || DECTRACE
355 extern void decShowNum(const bcdnum *, const char *);
356 #endif
357
358 /* Format-dependent macros and constants */
359 #if defined(DECPMAX)
360
361 /* Useful constants */
362 #define DECPMAX9 (ROUNDUP(DECPMAX, 9)/9) /* 'Pmax' in 10**9s */
363 /* Top words for a zero */
364 #define SINGLEZERO 0x22500000
365 #define DOUBLEZERO 0x22380000
366 #define QUADZERO 0x22080000
367 /* [ZEROWORD is defined to be one of these in the DFISZERO macro] */
368
369 /* Format-dependent common tests: */
370 /* DFISZERO -- test for (any) zero */
371 /* DFISCCZERO -- test for coefficient continuation being zero */
372 /* DFISCC01 -- test for coefficient contains only 0s and 1s */
373 /* DFISINT -- test for finite and exponent q=0 */
374 /* DFISUINT01 -- test for sign=0, finite, exponent q=0, and */
375 /* MSD=0 or 1 */
376 /* ZEROWORD is also defined here. */
377 /* In DFISZERO the first test checks the least-significant word */
378 /* (most likely to be non-zero); the penultimate tests MSD and */
379 /* DPDs in the signword, and the final test excludes specials and */
380 /* MSD>7. DFISINT similarly has to allow for the two forms of */
381 /* MSD codes. DFISUINT01 only has to allow for one form of MSD */
382 /* code. */
383 #if DECPMAX==7
384 #define ZEROWORD SINGLEZERO
385 /* [test macros not needed except for Zero] */
386 #define DFISZERO(df) ((DFWORD(df, 0)&0x1c0fffff)==0 \
387 && (DFWORD(df, 0)&0x60000000)!=0x60000000)
388 #elif DECPMAX==16
389 #define ZEROWORD DOUBLEZERO
390 #define DFISZERO(df) ((DFWORD(df, 1)==0 \
391 && (DFWORD(df, 0)&0x1c03ffff)==0 \
392 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
393 #define DFISINT(df) ((DFWORD(df, 0)&0x63fc0000)==0x22380000 \
394 ||(DFWORD(df, 0)&0x7bfc0000)==0x6a380000)
395 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbfc0000)==0x22380000)
396 #define DFISCCZERO(df) (DFWORD(df, 1)==0 \
397 && (DFWORD(df, 0)&0x0003ffff)==0)
398 #define DFISCC01(df) ((DFWORD(df, 0)&~0xfffc9124)==0 \
399 && (DFWORD(df, 1)&~0x49124491)==0)
400 #elif DECPMAX==34
401 #define ZEROWORD QUADZERO
402 #define DFISZERO(df) ((DFWORD(df, 3)==0 \
403 && DFWORD(df, 2)==0 \
404 && DFWORD(df, 1)==0 \
405 && (DFWORD(df, 0)&0x1c003fff)==0 \
406 && (DFWORD(df, 0)&0x60000000)!=0x60000000))
407 #define DFISINT(df) ((DFWORD(df, 0)&0x63ffc000)==0x22080000 \
408 ||(DFWORD(df, 0)&0x7bffc000)==0x6a080000)
409 #define DFISUINT01(df) ((DFWORD(df, 0)&0xfbffc000)==0x22080000)
410 #define DFISCCZERO(df) (DFWORD(df, 3)==0 \
411 && DFWORD(df, 2)==0 \
412 && DFWORD(df, 1)==0 \
413 && (DFWORD(df, 0)&0x00003fff)==0)
414
415 #define DFISCC01(df) ((DFWORD(df, 0)&~0xffffc912)==0 \
416 && (DFWORD(df, 1)&~0x44912449)==0 \
417 && (DFWORD(df, 2)&~0x12449124)==0 \
418 && (DFWORD(df, 3)&~0x49124491)==0)
419 #endif
420
421 /* Macros to test if a certain 10 bits of a uInt or pair of uInts */
422 /* are a canonical declet [higher or lower bits are ignored]. */
423 /* declet is at offset 0 (from the right) in a uInt: */
424 #define CANONDPD(dpd) (((dpd)&0x300)==0 || ((dpd)&0x6e)!=0x6e)
425 /* declet is at offset k (a multiple of 2) in a uInt: */
426 #define CANONDPDOFF(dpd, k) (((dpd)&(0x300<<(k)))==0 \
427 || ((dpd)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
428 /* declet is at offset k (a multiple of 2) in a pair of uInts: */
429 /* [the top 2 bits will always be in the more-significant uInt] */
430 #define CANONDPDTWO(hi, lo, k) (((hi)&(0x300>>(32-(k))))==0 \
431 || ((hi)&(0x6e>>(32-(k))))!=(0x6e>>(32-(k))) \
432 || ((lo)&(((uInt)0x6e)<<(k)))!=(((uInt)0x6e)<<(k)))
433
434 /* Macro to test whether a full-length (length DECPMAX) BCD8 */
435 /* coefficient, starting at uByte u, is all zeros */
436 /* Test just the LSWord first, then the remainder as a sequence */
437 /* of tests in order to avoid same-level use of UBTOUI */
438 #if DECPMAX==7
439 #define ISCOEFFZERO(u) ( \
440 UBTOUI((u)+DECPMAX-4)==0 \
441 && UBTOUS((u)+DECPMAX-6)==0 \
442 && *(u)==0)
443 #elif DECPMAX==16
444 #define ISCOEFFZERO(u) ( \
445 UBTOUI((u)+DECPMAX-4)==0 \
446 && UBTOUI((u)+DECPMAX-8)==0 \
447 && UBTOUI((u)+DECPMAX-12)==0 \
448 && UBTOUI(u)==0)
449 #elif DECPMAX==34
450 #define ISCOEFFZERO(u) ( \
451 UBTOUI((u)+DECPMAX-4)==0 \
452 && UBTOUI((u)+DECPMAX-8)==0 \
453 && UBTOUI((u)+DECPMAX-12)==0 \
454 && UBTOUI((u)+DECPMAX-16)==0 \
455 && UBTOUI((u)+DECPMAX-20)==0 \
456 && UBTOUI((u)+DECPMAX-24)==0 \
457 && UBTOUI((u)+DECPMAX-28)==0 \
458 && UBTOUI((u)+DECPMAX-32)==0 \
459 && UBTOUS(u)==0)
460 #endif
461
462 /* Macros and masks for the exponent continuation field and MSD */
463 /* Get the exponent continuation from a decFloat *df as an Int */
464 #define GETECON(df) ((Int)((DFWORD((df), 0)&0x03ffffff)>>(32-6-DECECONL)))
465 /* Ditto, from the next-wider format */
466 #define GETWECON(df) ((Int)((DFWWORD((df), 0)&0x03ffffff)>>(32-6-DECWECONL)))
467 /* Get the biased exponent similarly */
468 #define GETEXP(df) ((Int)(DECCOMBEXP[DFWORD((df), 0)>>26]+GETECON(df)))
469 /* Get the unbiased exponent similarly */
470 #define GETEXPUN(df) ((Int)GETEXP(df)-DECBIAS)
471 /* Get the MSD similarly (as uInt) */
472 #define GETMSD(df) (DECCOMBMSD[DFWORD((df), 0)>>26])
473
474 /* Compile-time computes of the exponent continuation field masks */
475 /* full exponent continuation field: */
476 #define ECONMASK ((0x03ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
477 /* same, not including its first digit (the qNaN/sNaN selector): */
478 #define ECONNANMASK ((0x01ffffff>>(32-6-DECECONL))<<(32-6-DECECONL))
479
480 /* Macros to decode the coefficient in a finite decFloat *df into */
481 /* a BCD string (uByte *bcdin) of length DECPMAX uBytes. */
482
483 /* In-line sequence to convert least significant 10 bits of uInt */
484 /* dpd to three BCD8 digits starting at uByte u. Note that an */
485 /* extra byte is written to the right of the three digits because */
486 /* four bytes are moved at a time for speed; the alternative */
487 /* macro moves exactly three bytes (usually slower). */
488 #define dpd2bcd8(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 4)
489 #define dpd2bcd83(u, dpd) memcpy(u, &DPD2BCD8[((dpd)&0x3ff)*4], 3)
490
491 /* Decode the declets. After extracting each one, it is decoded */
492 /* to BCD8 using a table lookup (also used for variable-length */
493 /* decode). Each DPD decode is 3 bytes BCD8 plus a one-byte */
494 /* length which is not used, here). Fixed-length 4-byte moves */
495 /* are fast, however, almost everywhere, and so are used except */
496 /* for the final three bytes (to avoid overrun). The code below */
497 /* is 36 instructions for Doubles and about 70 for Quads, even */
498 /* on IA32. */
499
500 /* Two macros are defined for each format: */
501 /* GETCOEFF extracts the coefficient of the current format */
502 /* GETWCOEFF extracts the coefficient of the next-wider format. */
503 /* The latter is a copy of the next-wider GETCOEFF using DFWWORD. */
504
505 #if DECPMAX==7
506 #define GETCOEFF(df, bcd) { \
507 uInt sourhi=DFWORD(df, 0); \
508 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
509 dpd2bcd8(bcd+1, sourhi>>10); \
510 dpd2bcd83(bcd+4, sourhi);}
511 #define GETWCOEFF(df, bcd) { \
512 uInt sourhi=DFWWORD(df, 0); \
513 uInt sourlo=DFWWORD(df, 1); \
514 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
515 dpd2bcd8(bcd+1, sourhi>>8); \
516 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
517 dpd2bcd8(bcd+7, sourlo>>20); \
518 dpd2bcd8(bcd+10, sourlo>>10); \
519 dpd2bcd83(bcd+13, sourlo);}
520
521 #elif DECPMAX==16
522 #define GETCOEFF(df, bcd) { \
523 uInt sourhi=DFWORD(df, 0); \
524 uInt sourlo=DFWORD(df, 1); \
525 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
526 dpd2bcd8(bcd+1, sourhi>>8); \
527 dpd2bcd8(bcd+4, (sourhi<<2) | (sourlo>>30)); \
528 dpd2bcd8(bcd+7, sourlo>>20); \
529 dpd2bcd8(bcd+10, sourlo>>10); \
530 dpd2bcd83(bcd+13, sourlo);}
531 #define GETWCOEFF(df, bcd) { \
532 uInt sourhi=DFWWORD(df, 0); \
533 uInt sourmh=DFWWORD(df, 1); \
534 uInt sourml=DFWWORD(df, 2); \
535 uInt sourlo=DFWWORD(df, 3); \
536 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
537 dpd2bcd8(bcd+1, sourhi>>4); \
538 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
539 dpd2bcd8(bcd+7, sourmh>>16); \
540 dpd2bcd8(bcd+10, sourmh>>6); \
541 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
542 dpd2bcd8(bcd+16, sourml>>18); \
543 dpd2bcd8(bcd+19, sourml>>8); \
544 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
545 dpd2bcd8(bcd+25, sourlo>>20); \
546 dpd2bcd8(bcd+28, sourlo>>10); \
547 dpd2bcd83(bcd+31, sourlo);}
548
549 #elif DECPMAX==34
550 #define GETCOEFF(df, bcd) { \
551 uInt sourhi=DFWORD(df, 0); \
552 uInt sourmh=DFWORD(df, 1); \
553 uInt sourml=DFWORD(df, 2); \
554 uInt sourlo=DFWORD(df, 3); \
555 *(bcd)=(uByte)DECCOMBMSD[sourhi>>26]; \
556 dpd2bcd8(bcd+1, sourhi>>4); \
557 dpd2bcd8(bcd+4, ((sourhi)<<6) | (sourmh>>26)); \
558 dpd2bcd8(bcd+7, sourmh>>16); \
559 dpd2bcd8(bcd+10, sourmh>>6); \
560 dpd2bcd8(bcd+13, ((sourmh)<<4) | (sourml>>28)); \
561 dpd2bcd8(bcd+16, sourml>>18); \
562 dpd2bcd8(bcd+19, sourml>>8); \
563 dpd2bcd8(bcd+22, ((sourml)<<2) | (sourlo>>30)); \
564 dpd2bcd8(bcd+25, sourlo>>20); \
565 dpd2bcd8(bcd+28, sourlo>>10); \
566 dpd2bcd83(bcd+31, sourlo);}
567
568 #define GETWCOEFF(df, bcd) {??} /* [should never be used] */
569 #endif
570
571 /* Macros to decode the coefficient in a finite decFloat *df into */
572 /* a base-billion uInt array, with the least-significant */
573 /* 0-999999999 'digit' at offset 0. */
574
575 /* Decode the declets. After extracting each one, it is decoded */
576 /* to binary using a table lookup. Three tables are used; one */
577 /* the usual DPD to binary, the other two pre-multiplied by 1000 */
578 /* and 1000000 to avoid multiplication during decode. These */
579 /* tables can also be used for multiplying up the MSD as the DPD */
580 /* code for 0 through 9 is the identity. */
581 #define DPD2BIN0 DPD2BIN /* for prettier code */
582
583 #if DECPMAX==7
584 #define GETCOEFFBILL(df, buf) { \
585 uInt sourhi=DFWORD(df, 0); \
586 (buf)[0]=DPD2BIN0[sourhi&0x3ff] \
587 +DPD2BINK[(sourhi>>10)&0x3ff] \
588 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
589
590 #elif DECPMAX==16
591 #define GETCOEFFBILL(df, buf) { \
592 uInt sourhi, sourlo; \
593 sourlo=DFWORD(df, 1); \
594 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
595 +DPD2BINK[(sourlo>>10)&0x3ff] \
596 +DPD2BINM[(sourlo>>20)&0x3ff]; \
597 sourhi=DFWORD(df, 0); \
598 (buf)[1]=DPD2BIN0[((sourhi<<2) | (sourlo>>30))&0x3ff] \
599 +DPD2BINK[(sourhi>>8)&0x3ff] \
600 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
601
602 #elif DECPMAX==34
603 #define GETCOEFFBILL(df, buf) { \
604 uInt sourhi, sourmh, sourml, sourlo; \
605 sourlo=DFWORD(df, 3); \
606 (buf)[0]=DPD2BIN0[sourlo&0x3ff] \
607 +DPD2BINK[(sourlo>>10)&0x3ff] \
608 +DPD2BINM[(sourlo>>20)&0x3ff]; \
609 sourml=DFWORD(df, 2); \
610 (buf)[1]=DPD2BIN0[((sourml<<2) | (sourlo>>30))&0x3ff] \
611 +DPD2BINK[(sourml>>8)&0x3ff] \
612 +DPD2BINM[(sourml>>18)&0x3ff]; \
613 sourmh=DFWORD(df, 1); \
614 (buf)[2]=DPD2BIN0[((sourmh<<4) | (sourml>>28))&0x3ff] \
615 +DPD2BINK[(sourmh>>6)&0x3ff] \
616 +DPD2BINM[(sourmh>>16)&0x3ff]; \
617 sourhi=DFWORD(df, 0); \
618 (buf)[3]=DPD2BIN0[((sourhi<<6) | (sourmh>>26))&0x3ff] \
619 +DPD2BINK[(sourhi>>4)&0x3ff] \
620 +DPD2BINM[DECCOMBMSD[sourhi>>26]];}
621
622 #endif
623
624 /* Macros to decode the coefficient in a finite decFloat *df into */
625 /* a base-thousand uInt array (of size DECLETS+1, to allow for */
626 /* the MSD), with the least-significant 0-999 'digit' at offset 0.*/
627
628 /* Decode the declets. After extracting each one, it is decoded */
629 /* to binary using a table lookup. */
630 #if DECPMAX==7
631 #define GETCOEFFTHOU(df, buf) { \
632 uInt sourhi=DFWORD(df, 0); \
633 (buf)[0]=DPD2BIN[sourhi&0x3ff]; \
634 (buf)[1]=DPD2BIN[(sourhi>>10)&0x3ff]; \
635 (buf)[2]=DECCOMBMSD[sourhi>>26];}
636
637 #elif DECPMAX==16
638 #define GETCOEFFTHOU(df, buf) { \
639 uInt sourhi, sourlo; \
640 sourlo=DFWORD(df, 1); \
641 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
642 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
643 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
644 sourhi=DFWORD(df, 0); \
645 (buf)[3]=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
646 (buf)[4]=DPD2BIN[(sourhi>>8)&0x3ff]; \
647 (buf)[5]=DECCOMBMSD[sourhi>>26];}
648
649 #elif DECPMAX==34
650 #define GETCOEFFTHOU(df, buf) { \
651 uInt sourhi, sourmh, sourml, sourlo; \
652 sourlo=DFWORD(df, 3); \
653 (buf)[0]=DPD2BIN[sourlo&0x3ff]; \
654 (buf)[1]=DPD2BIN[(sourlo>>10)&0x3ff]; \
655 (buf)[2]=DPD2BIN[(sourlo>>20)&0x3ff]; \
656 sourml=DFWORD(df, 2); \
657 (buf)[3]=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
658 (buf)[4]=DPD2BIN[(sourml>>8)&0x3ff]; \
659 (buf)[5]=DPD2BIN[(sourml>>18)&0x3ff]; \
660 sourmh=DFWORD(df, 1); \
661 (buf)[6]=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
662 (buf)[7]=DPD2BIN[(sourmh>>6)&0x3ff]; \
663 (buf)[8]=DPD2BIN[(sourmh>>16)&0x3ff]; \
664 sourhi=DFWORD(df, 0); \
665 (buf)[9]=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
666 (buf)[10]=DPD2BIN[(sourhi>>4)&0x3ff]; \
667 (buf)[11]=DECCOMBMSD[sourhi>>26];}
668 #endif
669
670
671 /* Macros to decode the coefficient in a finite decFloat *df and */
672 /* add to a base-thousand uInt array (as for GETCOEFFTHOU). */
673 /* After the addition then most significant 'digit' in the array */
674 /* might have a value larger then 10 (with a maximum of 19). */
675 #if DECPMAX==7
676 #define ADDCOEFFTHOU(df, buf) { \
677 uInt sourhi=DFWORD(df, 0); \
678 (buf)[0]+=DPD2BIN[sourhi&0x3ff]; \
679 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
680 (buf)[1]+=DPD2BIN[(sourhi>>10)&0x3ff]; \
681 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
682 (buf)[2]+=DECCOMBMSD[sourhi>>26];}
683
684 #elif DECPMAX==16
685 #define ADDCOEFFTHOU(df, buf) { \
686 uInt sourhi, sourlo; \
687 sourlo=DFWORD(df, 1); \
688 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
689 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
690 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
691 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
692 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
693 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
694 sourhi=DFWORD(df, 0); \
695 (buf)[3]+=DPD2BIN[((sourhi<<2) | (sourlo>>30))&0x3ff]; \
696 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
697 (buf)[4]+=DPD2BIN[(sourhi>>8)&0x3ff]; \
698 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
699 (buf)[5]+=DECCOMBMSD[sourhi>>26];}
700
701 #elif DECPMAX==34
702 #define ADDCOEFFTHOU(df, buf) { \
703 uInt sourhi, sourmh, sourml, sourlo; \
704 sourlo=DFWORD(df, 3); \
705 (buf)[0]+=DPD2BIN[sourlo&0x3ff]; \
706 if (buf[0]>999) {buf[0]-=1000; buf[1]++;} \
707 (buf)[1]+=DPD2BIN[(sourlo>>10)&0x3ff]; \
708 if (buf[1]>999) {buf[1]-=1000; buf[2]++;} \
709 (buf)[2]+=DPD2BIN[(sourlo>>20)&0x3ff]; \
710 if (buf[2]>999) {buf[2]-=1000; buf[3]++;} \
711 sourml=DFWORD(df, 2); \
712 (buf)[3]+=DPD2BIN[((sourml<<2) | (sourlo>>30))&0x3ff]; \
713 if (buf[3]>999) {buf[3]-=1000; buf[4]++;} \
714 (buf)[4]+=DPD2BIN[(sourml>>8)&0x3ff]; \
715 if (buf[4]>999) {buf[4]-=1000; buf[5]++;} \
716 (buf)[5]+=DPD2BIN[(sourml>>18)&0x3ff]; \
717 if (buf[5]>999) {buf[5]-=1000; buf[6]++;} \
718 sourmh=DFWORD(df, 1); \
719 (buf)[6]+=DPD2BIN[((sourmh<<4) | (sourml>>28))&0x3ff]; \
720 if (buf[6]>999) {buf[6]-=1000; buf[7]++;} \
721 (buf)[7]+=DPD2BIN[(sourmh>>6)&0x3ff]; \
722 if (buf[7]>999) {buf[7]-=1000; buf[8]++;} \
723 (buf)[8]+=DPD2BIN[(sourmh>>16)&0x3ff]; \
724 if (buf[8]>999) {buf[8]-=1000; buf[9]++;} \
725 sourhi=DFWORD(df, 0); \
726 (buf)[9]+=DPD2BIN[((sourhi<<6) | (sourmh>>26))&0x3ff]; \
727 if (buf[9]>999) {buf[9]-=1000; buf[10]++;} \
728 (buf)[10]+=DPD2BIN[(sourhi>>4)&0x3ff]; \
729 if (buf[10]>999) {buf[10]-=1000; buf[11]++;} \
730 (buf)[11]+=DECCOMBMSD[sourhi>>26];}
731 #endif
732
733
734 /* Set a decFloat to the maximum positive finite number (Nmax) */
735 #if DECPMAX==7
736 #define DFSETNMAX(df) \
737 {DFWORD(df, 0)=0x77f3fcff;}
738 #elif DECPMAX==16
739 #define DFSETNMAX(df) \
740 {DFWORD(df, 0)=0x77fcff3f; \
741 DFWORD(df, 1)=0xcff3fcff;}
742 #elif DECPMAX==34
743 #define DFSETNMAX(df) \
744 {DFWORD(df, 0)=0x77ffcff3; \
745 DFWORD(df, 1)=0xfcff3fcf; \
746 DFWORD(df, 2)=0xf3fcff3f; \
747 DFWORD(df, 3)=0xcff3fcff;}
748 #endif
749
750 /* [end of format-dependent macros and constants] */
751 #endif
752
753#else
754 #error decNumberLocal included more than once
755#endif
This page took 0.044082 seconds and 4 git commands to generate.