* mips-linux-tdep.c (mips_linux_in_dynsym_resolve_code): Update
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
... / ...
CommitLineData
1/* A splay-tree datatype.
2 Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
21
22/* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
34
35#include <stdio.h>
36
37#include "libiberty.h"
38#include "splay-tree.h"
39
40static void splay_tree_delete_helper (splay_tree, splay_tree_node);
41static inline void rotate_left (splay_tree_node *,
42 splay_tree_node, splay_tree_node);
43static inline void rotate_right (splay_tree_node *,
44 splay_tree_node, splay_tree_node);
45static void splay_tree_splay (splay_tree, splay_tree_key);
46static int splay_tree_foreach_helper (splay_tree, splay_tree_node,
47 splay_tree_foreach_fn, void*);
48
49/* Deallocate NODE (a member of SP), and all its sub-trees. */
50
51static void
52splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
53{
54 splay_tree_node pending = 0;
55 splay_tree_node active = 0;
56
57 if (!node)
58 return;
59
60#define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
61#define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
62
63 KDEL (node->key);
64 VDEL (node->value);
65
66 /* We use the "key" field to hold the "next" pointer. */
67 node->key = (splay_tree_key)pending;
68 pending = (splay_tree_node)node;
69
70 /* Now, keep processing the pending list until there aren't any
71 more. This is a little more complicated than just recursing, but
72 it doesn't toast the stack for large trees. */
73
74 while (pending)
75 {
76 active = pending;
77 pending = 0;
78 while (active)
79 {
80 splay_tree_node temp;
81
82 /* active points to a node which has its key and value
83 deallocated, we just need to process left and right. */
84
85 if (active->left)
86 {
87 KDEL (active->left->key);
88 VDEL (active->left->value);
89 active->left->key = (splay_tree_key)pending;
90 pending = (splay_tree_node)(active->left);
91 }
92 if (active->right)
93 {
94 KDEL (active->right->key);
95 VDEL (active->right->value);
96 active->right->key = (splay_tree_key)pending;
97 pending = (splay_tree_node)(active->right);
98 }
99
100 temp = active;
101 active = (splay_tree_node)(temp->key);
102 (*sp->deallocate) ((char*) temp, sp->allocate_data);
103 }
104 }
105#undef KDEL
106#undef VDEL
107}
108
109/* Rotate the edge joining the left child N with its parent P. PP is the
110 grandparents' pointer to P. */
111
112static inline void
113rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
114{
115 splay_tree_node tmp;
116 tmp = n->right;
117 n->right = p;
118 p->left = tmp;
119 *pp = n;
120}
121
122/* Rotate the edge joining the right child N with its parent P. PP is the
123 grandparents' pointer to P. */
124
125static inline void
126rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
127{
128 splay_tree_node tmp;
129 tmp = n->left;
130 n->left = p;
131 p->right = tmp;
132 *pp = n;
133}
134
135/* Bottom up splay of key. */
136
137static void
138splay_tree_splay (splay_tree sp, splay_tree_key key)
139{
140 if (sp->root == 0)
141 return;
142
143 do {
144 int cmp1, cmp2;
145 splay_tree_node n, c;
146
147 n = sp->root;
148 cmp1 = (*sp->comp) (key, n->key);
149
150 /* Found. */
151 if (cmp1 == 0)
152 return;
153
154 /* Left or right? If no child, then we're done. */
155 if (cmp1 < 0)
156 c = n->left;
157 else
158 c = n->right;
159 if (!c)
160 return;
161
162 /* Next one left or right? If found or no child, we're done
163 after one rotation. */
164 cmp2 = (*sp->comp) (key, c->key);
165 if (cmp2 == 0
166 || (cmp2 < 0 && !c->left)
167 || (cmp2 > 0 && !c->right))
168 {
169 if (cmp1 < 0)
170 rotate_left (&sp->root, n, c);
171 else
172 rotate_right (&sp->root, n, c);
173 return;
174 }
175
176 /* Now we have the four cases of double-rotation. */
177 if (cmp1 < 0 && cmp2 < 0)
178 {
179 rotate_left (&n->left, c, c->left);
180 rotate_left (&sp->root, n, n->left);
181 }
182 else if (cmp1 > 0 && cmp2 > 0)
183 {
184 rotate_right (&n->right, c, c->right);
185 rotate_right (&sp->root, n, n->right);
186 }
187 else if (cmp1 < 0 && cmp2 > 0)
188 {
189 rotate_right (&n->left, c, c->right);
190 rotate_left (&sp->root, n, n->left);
191 }
192 else if (cmp1 > 0 && cmp2 < 0)
193 {
194 rotate_left (&n->right, c, c->left);
195 rotate_right (&sp->root, n, n->right);
196 }
197 } while (1);
198}
199
200/* Call FN, passing it the DATA, for every node below NODE, all of
201 which are from SP, following an in-order traversal. If FN every
202 returns a non-zero value, the iteration ceases immediately, and the
203 value is returned. Otherwise, this function returns 0. */
204
205static int
206splay_tree_foreach_helper (splay_tree sp, splay_tree_node node,
207 splay_tree_foreach_fn fn, void *data)
208{
209 int val;
210
211 if (!node)
212 return 0;
213
214 val = splay_tree_foreach_helper (sp, node->left, fn, data);
215 if (val)
216 return val;
217
218 val = (*fn)(node, data);
219 if (val)
220 return val;
221
222 return splay_tree_foreach_helper (sp, node->right, fn, data);
223}
224
225
226/* An allocator and deallocator based on xmalloc. */
227static void *
228splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
229{
230 return (void *) xmalloc (size);
231}
232
233static void
234splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
235{
236 free (object);
237}
238
239
240/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
241 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
242 values. Use xmalloc to allocate the splay tree structure, and any
243 nodes added. */
244
245splay_tree
246splay_tree_new (splay_tree_compare_fn compare_fn,
247 splay_tree_delete_key_fn delete_key_fn,
248 splay_tree_delete_value_fn delete_value_fn)
249{
250 return (splay_tree_new_with_allocator
251 (compare_fn, delete_key_fn, delete_value_fn,
252 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
253}
254
255
256/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
257 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
258 values. */
259
260splay_tree
261splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
262 splay_tree_delete_key_fn delete_key_fn,
263 splay_tree_delete_value_fn delete_value_fn,
264 splay_tree_allocate_fn allocate_fn,
265 splay_tree_deallocate_fn deallocate_fn,
266 void *allocate_data)
267{
268 splay_tree sp = (splay_tree) (*allocate_fn) (sizeof (struct splay_tree_s),
269 allocate_data);
270 sp->root = 0;
271 sp->comp = compare_fn;
272 sp->delete_key = delete_key_fn;
273 sp->delete_value = delete_value_fn;
274 sp->allocate = allocate_fn;
275 sp->deallocate = deallocate_fn;
276 sp->allocate_data = allocate_data;
277
278 return sp;
279}
280
281/* Deallocate SP. */
282
283void
284splay_tree_delete (splay_tree sp)
285{
286 splay_tree_delete_helper (sp, sp->root);
287 (*sp->deallocate) ((char*) sp, sp->allocate_data);
288}
289
290/* Insert a new node (associating KEY with DATA) into SP. If a
291 previous node with the indicated KEY exists, its data is replaced
292 with the new value. Returns the new node. */
293
294splay_tree_node
295splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
296{
297 int comparison = 0;
298
299 splay_tree_splay (sp, key);
300
301 if (sp->root)
302 comparison = (*sp->comp)(sp->root->key, key);
303
304 if (sp->root && comparison == 0)
305 {
306 /* If the root of the tree already has the indicated KEY, just
307 replace the value with VALUE. */
308 if (sp->delete_value)
309 (*sp->delete_value)(sp->root->value);
310 sp->root->value = value;
311 }
312 else
313 {
314 /* Create a new node, and insert it at the root. */
315 splay_tree_node node;
316
317 node = ((splay_tree_node)
318 (*sp->allocate) (sizeof (struct splay_tree_node_s),
319 sp->allocate_data));
320 node->key = key;
321 node->value = value;
322
323 if (!sp->root)
324 node->left = node->right = 0;
325 else if (comparison < 0)
326 {
327 node->left = sp->root;
328 node->right = node->left->right;
329 node->left->right = 0;
330 }
331 else
332 {
333 node->right = sp->root;
334 node->left = node->right->left;
335 node->right->left = 0;
336 }
337
338 sp->root = node;
339 }
340
341 return sp->root;
342}
343
344/* Remove KEY from SP. It is not an error if it did not exist. */
345
346void
347splay_tree_remove (splay_tree sp, splay_tree_key key)
348{
349 splay_tree_splay (sp, key);
350
351 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
352 {
353 splay_tree_node left, right;
354
355 left = sp->root->left;
356 right = sp->root->right;
357
358 /* Delete the root node itself. */
359 if (sp->delete_value)
360 (*sp->delete_value) (sp->root->value);
361 (*sp->deallocate) (sp->root, sp->allocate_data);
362
363 /* One of the children is now the root. Doesn't matter much
364 which, so long as we preserve the properties of the tree. */
365 if (left)
366 {
367 sp->root = left;
368
369 /* If there was a right child as well, hang it off the
370 right-most leaf of the left child. */
371 if (right)
372 {
373 while (left->right)
374 left = left->right;
375 left->right = right;
376 }
377 }
378 else
379 sp->root = right;
380 }
381}
382
383/* Lookup KEY in SP, returning VALUE if present, and NULL
384 otherwise. */
385
386splay_tree_node
387splay_tree_lookup (splay_tree sp, splay_tree_key key)
388{
389 splay_tree_splay (sp, key);
390
391 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
392 return sp->root;
393 else
394 return 0;
395}
396
397/* Return the node in SP with the greatest key. */
398
399splay_tree_node
400splay_tree_max (splay_tree sp)
401{
402 splay_tree_node n = sp->root;
403
404 if (!n)
405 return NULL;
406
407 while (n->right)
408 n = n->right;
409
410 return n;
411}
412
413/* Return the node in SP with the smallest key. */
414
415splay_tree_node
416splay_tree_min (splay_tree sp)
417{
418 splay_tree_node n = sp->root;
419
420 if (!n)
421 return NULL;
422
423 while (n->left)
424 n = n->left;
425
426 return n;
427}
428
429/* Return the immediate predecessor KEY, or NULL if there is no
430 predecessor. KEY need not be present in the tree. */
431
432splay_tree_node
433splay_tree_predecessor (splay_tree sp, splay_tree_key key)
434{
435 int comparison;
436 splay_tree_node node;
437
438 /* If the tree is empty, there is certainly no predecessor. */
439 if (!sp->root)
440 return NULL;
441
442 /* Splay the tree around KEY. That will leave either the KEY
443 itself, its predecessor, or its successor at the root. */
444 splay_tree_splay (sp, key);
445 comparison = (*sp->comp)(sp->root->key, key);
446
447 /* If the predecessor is at the root, just return it. */
448 if (comparison < 0)
449 return sp->root;
450
451 /* Otherwise, find the rightmost element of the left subtree. */
452 node = sp->root->left;
453 if (node)
454 while (node->right)
455 node = node->right;
456
457 return node;
458}
459
460/* Return the immediate successor KEY, or NULL if there is no
461 successor. KEY need not be present in the tree. */
462
463splay_tree_node
464splay_tree_successor (splay_tree sp, splay_tree_key key)
465{
466 int comparison;
467 splay_tree_node node;
468
469 /* If the tree is empty, there is certainly no successor. */
470 if (!sp->root)
471 return NULL;
472
473 /* Splay the tree around KEY. That will leave either the KEY
474 itself, its predecessor, or its successor at the root. */
475 splay_tree_splay (sp, key);
476 comparison = (*sp->comp)(sp->root->key, key);
477
478 /* If the successor is at the root, just return it. */
479 if (comparison > 0)
480 return sp->root;
481
482 /* Otherwise, find the leftmost element of the right subtree. */
483 node = sp->root->right;
484 if (node)
485 while (node->left)
486 node = node->left;
487
488 return node;
489}
490
491/* Call FN, passing it the DATA, for every node in SP, following an
492 in-order traversal. If FN every returns a non-zero value, the
493 iteration ceases immediately, and the value is returned.
494 Otherwise, this function returns 0. */
495
496int
497splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
498{
499 return splay_tree_foreach_helper (sp, sp->root, fn, data);
500}
501
502/* Splay-tree comparison function, treating the keys as ints. */
503
504int
505splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
506{
507 if ((int) k1 < (int) k2)
508 return -1;
509 else if ((int) k1 > (int) k2)
510 return 1;
511 else
512 return 0;
513}
514
515/* Splay-tree comparison function, treating the keys as pointers. */
516
517int
518splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
519{
520 if ((char*) k1 < (char*) k2)
521 return -1;
522 else if ((char*) k1 > (char*) k2)
523 return 1;
524 else
525 return 0;
526}
This page took 0.026902 seconds and 4 git commands to generate.