sched/numa: Check current->mm before allocating NUMA faults
[deliverable/linux.git] / mm / huge_memory.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
15#include <linux/shrinker.h>
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
19#include <linux/freezer.h>
20#include <linux/mman.h>
21#include <linux/pagemap.h>
22#include <linux/migrate.h>
23#include <linux/hashtable.h>
24
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
29/*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
36unsigned long transparent_hugepage_flags __read_mostly =
37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39#endif
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42#endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47/* default scan 8*512 pte (or vmas) every 30 second */
48static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49static unsigned int khugepaged_pages_collapsed;
50static unsigned int khugepaged_full_scans;
51static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52/* during fragmentation poll the hugepage allocator once every minute */
53static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54static struct task_struct *khugepaged_thread __read_mostly;
55static DEFINE_MUTEX(khugepaged_mutex);
56static DEFINE_SPINLOCK(khugepaged_mm_lock);
57static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58/*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65static int khugepaged(void *none);
66static int khugepaged_slab_init(void);
67
68#define MM_SLOTS_HASH_BITS 10
69static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71static struct kmem_cache *mm_slot_cache __read_mostly;
72
73/**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83};
84
85/**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
97};
98static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100};
101
102
103static int set_recommended_min_free_kbytes(void)
104{
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136}
137late_initcall(set_recommended_min_free_kbytes);
138
139static int start_khugepaged(void)
140{
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163}
164
165static atomic_t huge_zero_refcount;
166static struct page *huge_zero_page __read_mostly;
167
168static inline bool is_huge_zero_page(struct page *page)
169{
170 return ACCESS_ONCE(huge_zero_page) == page;
171}
172
173static inline bool is_huge_zero_pmd(pmd_t pmd)
174{
175 return is_huge_zero_page(pmd_page(pmd));
176}
177
178static struct page *get_huge_zero_page(void)
179{
180 struct page *zero_page;
181retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
203}
204
205static void put_huge_zero_page(void)
206{
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212}
213
214static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215 struct shrink_control *sc)
216{
217 /* we can free zero page only if last reference remains */
218 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219}
220
221static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222 struct shrink_control *sc)
223{
224 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225 struct page *zero_page = xchg(&huge_zero_page, NULL);
226 BUG_ON(zero_page == NULL);
227 __free_page(zero_page);
228 return HPAGE_PMD_NR;
229 }
230
231 return 0;
232}
233
234static struct shrinker huge_zero_page_shrinker = {
235 .count_objects = shrink_huge_zero_page_count,
236 .scan_objects = shrink_huge_zero_page_scan,
237 .seeks = DEFAULT_SEEKS,
238};
239
240#ifdef CONFIG_SYSFS
241
242static ssize_t double_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag enabled,
245 enum transparent_hugepage_flag req_madv)
246{
247 if (test_bit(enabled, &transparent_hugepage_flags)) {
248 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249 return sprintf(buf, "[always] madvise never\n");
250 } else if (test_bit(req_madv, &transparent_hugepage_flags))
251 return sprintf(buf, "always [madvise] never\n");
252 else
253 return sprintf(buf, "always madvise [never]\n");
254}
255static ssize_t double_flag_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count,
258 enum transparent_hugepage_flag enabled,
259 enum transparent_hugepage_flag req_madv)
260{
261 if (!memcmp("always", buf,
262 min(sizeof("always")-1, count))) {
263 set_bit(enabled, &transparent_hugepage_flags);
264 clear_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 set_bit(req_madv, &transparent_hugepage_flags);
269 } else if (!memcmp("never", buf,
270 min(sizeof("never")-1, count))) {
271 clear_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else
274 return -EINVAL;
275
276 return count;
277}
278
279static ssize_t enabled_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281{
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_FLAG,
284 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285}
286static ssize_t enabled_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289{
290 ssize_t ret;
291
292 ret = double_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_FLAG,
294 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295
296 if (ret > 0) {
297 int err;
298
299 mutex_lock(&khugepaged_mutex);
300 err = start_khugepaged();
301 mutex_unlock(&khugepaged_mutex);
302
303 if (err)
304 ret = err;
305 }
306
307 return ret;
308}
309static struct kobj_attribute enabled_attr =
310 __ATTR(enabled, 0644, enabled_show, enabled_store);
311
312static ssize_t single_flag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf,
314 enum transparent_hugepage_flag flag)
315{
316 return sprintf(buf, "%d\n",
317 !!test_bit(flag, &transparent_hugepage_flags));
318}
319
320static ssize_t single_flag_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count,
323 enum transparent_hugepage_flag flag)
324{
325 unsigned long value;
326 int ret;
327
328 ret = kstrtoul(buf, 10, &value);
329 if (ret < 0)
330 return ret;
331 if (value > 1)
332 return -EINVAL;
333
334 if (value)
335 set_bit(flag, &transparent_hugepage_flags);
336 else
337 clear_bit(flag, &transparent_hugepage_flags);
338
339 return count;
340}
341
342/*
343 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345 * memory just to allocate one more hugepage.
346 */
347static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
349{
350 return double_flag_show(kobj, attr, buf,
351 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353}
354static ssize_t defrag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count)
357{
358 return double_flag_store(kobj, attr, buf, count,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361}
362static struct kobj_attribute defrag_attr =
363 __ATTR(defrag, 0644, defrag_show, defrag_store);
364
365static ssize_t use_zero_page_show(struct kobject *kobj,
366 struct kobj_attribute *attr, char *buf)
367{
368 return single_flag_show(kobj, attr, buf,
369 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370}
371static ssize_t use_zero_page_store(struct kobject *kobj,
372 struct kobj_attribute *attr, const char *buf, size_t count)
373{
374 return single_flag_store(kobj, attr, buf, count,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376}
377static struct kobj_attribute use_zero_page_attr =
378 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379#ifdef CONFIG_DEBUG_VM
380static ssize_t debug_cow_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382{
383 return single_flag_show(kobj, attr, buf,
384 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385}
386static ssize_t debug_cow_store(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 const char *buf, size_t count)
389{
390 return single_flag_store(kobj, attr, buf, count,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392}
393static struct kobj_attribute debug_cow_attr =
394 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395#endif /* CONFIG_DEBUG_VM */
396
397static struct attribute *hugepage_attr[] = {
398 &enabled_attr.attr,
399 &defrag_attr.attr,
400 &use_zero_page_attr.attr,
401#ifdef CONFIG_DEBUG_VM
402 &debug_cow_attr.attr,
403#endif
404 NULL,
405};
406
407static struct attribute_group hugepage_attr_group = {
408 .attrs = hugepage_attr,
409};
410
411static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 char *buf)
414{
415 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416}
417
418static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 const char *buf, size_t count)
421{
422 unsigned long msecs;
423 int err;
424
425 err = kstrtoul(buf, 10, &msecs);
426 if (err || msecs > UINT_MAX)
427 return -EINVAL;
428
429 khugepaged_scan_sleep_millisecs = msecs;
430 wake_up_interruptible(&khugepaged_wait);
431
432 return count;
433}
434static struct kobj_attribute scan_sleep_millisecs_attr =
435 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436 scan_sleep_millisecs_store);
437
438static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439 struct kobj_attribute *attr,
440 char *buf)
441{
442 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443}
444
445static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 unsigned long msecs;
450 int err;
451
452 err = kstrtoul(buf, 10, &msecs);
453 if (err || msecs > UINT_MAX)
454 return -EINVAL;
455
456 khugepaged_alloc_sleep_millisecs = msecs;
457 wake_up_interruptible(&khugepaged_wait);
458
459 return count;
460}
461static struct kobj_attribute alloc_sleep_millisecs_attr =
462 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463 alloc_sleep_millisecs_store);
464
465static ssize_t pages_to_scan_show(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 char *buf)
468{
469 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470}
471static ssize_t pages_to_scan_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474{
475 int err;
476 unsigned long pages;
477
478 err = kstrtoul(buf, 10, &pages);
479 if (err || !pages || pages > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_pages_to_scan = pages;
483
484 return count;
485}
486static struct kobj_attribute pages_to_scan_attr =
487 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488 pages_to_scan_store);
489
490static ssize_t pages_collapsed_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493{
494 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495}
496static struct kobj_attribute pages_collapsed_attr =
497 __ATTR_RO(pages_collapsed);
498
499static ssize_t full_scans_show(struct kobject *kobj,
500 struct kobj_attribute *attr,
501 char *buf)
502{
503 return sprintf(buf, "%u\n", khugepaged_full_scans);
504}
505static struct kobj_attribute full_scans_attr =
506 __ATTR_RO(full_scans);
507
508static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509 struct kobj_attribute *attr, char *buf)
510{
511 return single_flag_show(kobj, attr, buf,
512 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513}
514static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
517{
518 return single_flag_store(kobj, attr, buf, count,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520}
521static struct kobj_attribute khugepaged_defrag_attr =
522 __ATTR(defrag, 0644, khugepaged_defrag_show,
523 khugepaged_defrag_store);
524
525/*
526 * max_ptes_none controls if khugepaged should collapse hugepages over
527 * any unmapped ptes in turn potentially increasing the memory
528 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529 * reduce the available free memory in the system as it
530 * runs. Increasing max_ptes_none will instead potentially reduce the
531 * free memory in the system during the khugepaged scan.
532 */
533static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
536{
537 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538}
539static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542{
543 int err;
544 unsigned long max_ptes_none;
545
546 err = kstrtoul(buf, 10, &max_ptes_none);
547 if (err || max_ptes_none > HPAGE_PMD_NR-1)
548 return -EINVAL;
549
550 khugepaged_max_ptes_none = max_ptes_none;
551
552 return count;
553}
554static struct kobj_attribute khugepaged_max_ptes_none_attr =
555 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556 khugepaged_max_ptes_none_store);
557
558static struct attribute *khugepaged_attr[] = {
559 &khugepaged_defrag_attr.attr,
560 &khugepaged_max_ptes_none_attr.attr,
561 &pages_to_scan_attr.attr,
562 &pages_collapsed_attr.attr,
563 &full_scans_attr.attr,
564 &scan_sleep_millisecs_attr.attr,
565 &alloc_sleep_millisecs_attr.attr,
566 NULL,
567};
568
569static struct attribute_group khugepaged_attr_group = {
570 .attrs = khugepaged_attr,
571 .name = "khugepaged",
572};
573
574static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575{
576 int err;
577
578 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579 if (unlikely(!*hugepage_kobj)) {
580 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581 return -ENOMEM;
582 }
583
584 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585 if (err) {
586 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587 goto delete_obj;
588 }
589
590 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591 if (err) {
592 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593 goto remove_hp_group;
594 }
595
596 return 0;
597
598remove_hp_group:
599 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600delete_obj:
601 kobject_put(*hugepage_kobj);
602 return err;
603}
604
605static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606{
607 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609 kobject_put(hugepage_kobj);
610}
611#else
612static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613{
614 return 0;
615}
616
617static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618{
619}
620#endif /* CONFIG_SYSFS */
621
622static int __init hugepage_init(void)
623{
624 int err;
625 struct kobject *hugepage_kobj;
626
627 if (!has_transparent_hugepage()) {
628 transparent_hugepage_flags = 0;
629 return -EINVAL;
630 }
631
632 err = hugepage_init_sysfs(&hugepage_kobj);
633 if (err)
634 return err;
635
636 err = khugepaged_slab_init();
637 if (err)
638 goto out;
639
640 register_shrinker(&huge_zero_page_shrinker);
641
642 /*
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
646 */
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648 transparent_hugepage_flags = 0;
649
650 start_khugepaged();
651
652 return 0;
653out:
654 hugepage_exit_sysfs(hugepage_kobj);
655 return err;
656}
657module_init(hugepage_init)
658
659static int __init setup_transparent_hugepage(char *str)
660{
661 int ret = 0;
662 if (!str)
663 goto out;
664 if (!strcmp(str, "always")) {
665 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666 &transparent_hugepage_flags);
667 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668 &transparent_hugepage_flags);
669 ret = 1;
670 } else if (!strcmp(str, "madvise")) {
671 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672 &transparent_hugepage_flags);
673 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674 &transparent_hugepage_flags);
675 ret = 1;
676 } else if (!strcmp(str, "never")) {
677 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678 &transparent_hugepage_flags);
679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680 &transparent_hugepage_flags);
681 ret = 1;
682 }
683out:
684 if (!ret)
685 printk(KERN_WARNING
686 "transparent_hugepage= cannot parse, ignored\n");
687 return ret;
688}
689__setup("transparent_hugepage=", setup_transparent_hugepage);
690
691pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692{
693 if (likely(vma->vm_flags & VM_WRITE))
694 pmd = pmd_mkwrite(pmd);
695 return pmd;
696}
697
698static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
699{
700 pmd_t entry;
701 entry = mk_pmd(page, prot);
702 entry = pmd_mkhuge(entry);
703 return entry;
704}
705
706static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
707 struct vm_area_struct *vma,
708 unsigned long haddr, pmd_t *pmd,
709 struct page *page)
710{
711 pgtable_t pgtable;
712
713 VM_BUG_ON(!PageCompound(page));
714 pgtable = pte_alloc_one(mm, haddr);
715 if (unlikely(!pgtable))
716 return VM_FAULT_OOM;
717
718 clear_huge_page(page, haddr, HPAGE_PMD_NR);
719 /*
720 * The memory barrier inside __SetPageUptodate makes sure that
721 * clear_huge_page writes become visible before the set_pmd_at()
722 * write.
723 */
724 __SetPageUptodate(page);
725
726 spin_lock(&mm->page_table_lock);
727 if (unlikely(!pmd_none(*pmd))) {
728 spin_unlock(&mm->page_table_lock);
729 mem_cgroup_uncharge_page(page);
730 put_page(page);
731 pte_free(mm, pgtable);
732 } else {
733 pmd_t entry;
734 entry = mk_huge_pmd(page, vma->vm_page_prot);
735 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
736 page_add_new_anon_rmap(page, vma, haddr);
737 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738 set_pmd_at(mm, haddr, pmd, entry);
739 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 mm->nr_ptes++;
741 spin_unlock(&mm->page_table_lock);
742 }
743
744 return 0;
745}
746
747static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748{
749 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750}
751
752static inline struct page *alloc_hugepage_vma(int defrag,
753 struct vm_area_struct *vma,
754 unsigned long haddr, int nd,
755 gfp_t extra_gfp)
756{
757 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758 HPAGE_PMD_ORDER, vma, haddr, nd);
759}
760
761#ifndef CONFIG_NUMA
762static inline struct page *alloc_hugepage(int defrag)
763{
764 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765 HPAGE_PMD_ORDER);
766}
767#endif
768
769static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771 struct page *zero_page)
772{
773 pmd_t entry;
774 if (!pmd_none(*pmd))
775 return false;
776 entry = mk_pmd(zero_page, vma->vm_page_prot);
777 entry = pmd_wrprotect(entry);
778 entry = pmd_mkhuge(entry);
779 pgtable_trans_huge_deposit(mm, pmd, pgtable);
780 set_pmd_at(mm, haddr, pmd, entry);
781 mm->nr_ptes++;
782 return true;
783}
784
785int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 unsigned int flags)
788{
789 struct page *page;
790 unsigned long haddr = address & HPAGE_PMD_MASK;
791
792 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
793 return VM_FAULT_FALLBACK;
794 if (unlikely(anon_vma_prepare(vma)))
795 return VM_FAULT_OOM;
796 if (unlikely(khugepaged_enter(vma)))
797 return VM_FAULT_OOM;
798 if (!(flags & FAULT_FLAG_WRITE) &&
799 transparent_hugepage_use_zero_page()) {
800 pgtable_t pgtable;
801 struct page *zero_page;
802 bool set;
803 pgtable = pte_alloc_one(mm, haddr);
804 if (unlikely(!pgtable))
805 return VM_FAULT_OOM;
806 zero_page = get_huge_zero_page();
807 if (unlikely(!zero_page)) {
808 pte_free(mm, pgtable);
809 count_vm_event(THP_FAULT_FALLBACK);
810 return VM_FAULT_FALLBACK;
811 }
812 spin_lock(&mm->page_table_lock);
813 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 zero_page);
815 spin_unlock(&mm->page_table_lock);
816 if (!set) {
817 pte_free(mm, pgtable);
818 put_huge_zero_page();
819 }
820 return 0;
821 }
822 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823 vma, haddr, numa_node_id(), 0);
824 if (unlikely(!page)) {
825 count_vm_event(THP_FAULT_FALLBACK);
826 return VM_FAULT_FALLBACK;
827 }
828 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
829 put_page(page);
830 count_vm_event(THP_FAULT_FALLBACK);
831 return VM_FAULT_FALLBACK;
832 }
833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
834 mem_cgroup_uncharge_page(page);
835 put_page(page);
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
839
840 count_vm_event(THP_FAULT_ALLOC);
841 return 0;
842}
843
844int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
845 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
846 struct vm_area_struct *vma)
847{
848 struct page *src_page;
849 pmd_t pmd;
850 pgtable_t pgtable;
851 int ret;
852
853 ret = -ENOMEM;
854 pgtable = pte_alloc_one(dst_mm, addr);
855 if (unlikely(!pgtable))
856 goto out;
857
858 spin_lock(&dst_mm->page_table_lock);
859 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
860
861 ret = -EAGAIN;
862 pmd = *src_pmd;
863 if (unlikely(!pmd_trans_huge(pmd))) {
864 pte_free(dst_mm, pgtable);
865 goto out_unlock;
866 }
867 /*
868 * mm->page_table_lock is enough to be sure that huge zero pmd is not
869 * under splitting since we don't split the page itself, only pmd to
870 * a page table.
871 */
872 if (is_huge_zero_pmd(pmd)) {
873 struct page *zero_page;
874 bool set;
875 /*
876 * get_huge_zero_page() will never allocate a new page here,
877 * since we already have a zero page to copy. It just takes a
878 * reference.
879 */
880 zero_page = get_huge_zero_page();
881 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
882 zero_page);
883 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
884 ret = 0;
885 goto out_unlock;
886 }
887 if (unlikely(pmd_trans_splitting(pmd))) {
888 /* split huge page running from under us */
889 spin_unlock(&src_mm->page_table_lock);
890 spin_unlock(&dst_mm->page_table_lock);
891 pte_free(dst_mm, pgtable);
892
893 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
894 goto out;
895 }
896 src_page = pmd_page(pmd);
897 VM_BUG_ON(!PageHead(src_page));
898 get_page(src_page);
899 page_dup_rmap(src_page);
900 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
901
902 pmdp_set_wrprotect(src_mm, addr, src_pmd);
903 pmd = pmd_mkold(pmd_wrprotect(pmd));
904 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
905 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
906 dst_mm->nr_ptes++;
907
908 ret = 0;
909out_unlock:
910 spin_unlock(&src_mm->page_table_lock);
911 spin_unlock(&dst_mm->page_table_lock);
912out:
913 return ret;
914}
915
916void huge_pmd_set_accessed(struct mm_struct *mm,
917 struct vm_area_struct *vma,
918 unsigned long address,
919 pmd_t *pmd, pmd_t orig_pmd,
920 int dirty)
921{
922 pmd_t entry;
923 unsigned long haddr;
924
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto unlock;
928
929 entry = pmd_mkyoung(orig_pmd);
930 haddr = address & HPAGE_PMD_MASK;
931 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
932 update_mmu_cache_pmd(vma, address, pmd);
933
934unlock:
935 spin_unlock(&mm->page_table_lock);
936}
937
938static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
939 struct vm_area_struct *vma, unsigned long address,
940 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
941{
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 struct page *page;
945 int i, ret = 0;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
948
949 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
950 if (!page) {
951 ret |= VM_FAULT_OOM;
952 goto out;
953 }
954
955 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
956 put_page(page);
957 ret |= VM_FAULT_OOM;
958 goto out;
959 }
960
961 clear_user_highpage(page, address);
962 __SetPageUptodate(page);
963
964 mmun_start = haddr;
965 mmun_end = haddr + HPAGE_PMD_SIZE;
966 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
967
968 spin_lock(&mm->page_table_lock);
969 if (unlikely(!pmd_same(*pmd, orig_pmd)))
970 goto out_free_page;
971
972 pmdp_clear_flush(vma, haddr, pmd);
973 /* leave pmd empty until pte is filled */
974
975 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
976 pmd_populate(mm, &_pmd, pgtable);
977
978 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
979 pte_t *pte, entry;
980 if (haddr == (address & PAGE_MASK)) {
981 entry = mk_pte(page, vma->vm_page_prot);
982 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
983 page_add_new_anon_rmap(page, vma, haddr);
984 } else {
985 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
986 entry = pte_mkspecial(entry);
987 }
988 pte = pte_offset_map(&_pmd, haddr);
989 VM_BUG_ON(!pte_none(*pte));
990 set_pte_at(mm, haddr, pte, entry);
991 pte_unmap(pte);
992 }
993 smp_wmb(); /* make pte visible before pmd */
994 pmd_populate(mm, pmd, pgtable);
995 spin_unlock(&mm->page_table_lock);
996 put_huge_zero_page();
997 inc_mm_counter(mm, MM_ANONPAGES);
998
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000
1001 ret |= VM_FAULT_WRITE;
1002out:
1003 return ret;
1004out_free_page:
1005 spin_unlock(&mm->page_table_lock);
1006 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1007 mem_cgroup_uncharge_page(page);
1008 put_page(page);
1009 goto out;
1010}
1011
1012static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1013 struct vm_area_struct *vma,
1014 unsigned long address,
1015 pmd_t *pmd, pmd_t orig_pmd,
1016 struct page *page,
1017 unsigned long haddr)
1018{
1019 pgtable_t pgtable;
1020 pmd_t _pmd;
1021 int ret = 0, i;
1022 struct page **pages;
1023 unsigned long mmun_start; /* For mmu_notifiers */
1024 unsigned long mmun_end; /* For mmu_notifiers */
1025
1026 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1027 GFP_KERNEL);
1028 if (unlikely(!pages)) {
1029 ret |= VM_FAULT_OOM;
1030 goto out;
1031 }
1032
1033 for (i = 0; i < HPAGE_PMD_NR; i++) {
1034 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1035 __GFP_OTHER_NODE,
1036 vma, address, page_to_nid(page));
1037 if (unlikely(!pages[i] ||
1038 mem_cgroup_newpage_charge(pages[i], mm,
1039 GFP_KERNEL))) {
1040 if (pages[i])
1041 put_page(pages[i]);
1042 mem_cgroup_uncharge_start();
1043 while (--i >= 0) {
1044 mem_cgroup_uncharge_page(pages[i]);
1045 put_page(pages[i]);
1046 }
1047 mem_cgroup_uncharge_end();
1048 kfree(pages);
1049 ret |= VM_FAULT_OOM;
1050 goto out;
1051 }
1052 }
1053
1054 for (i = 0; i < HPAGE_PMD_NR; i++) {
1055 copy_user_highpage(pages[i], page + i,
1056 haddr + PAGE_SIZE * i, vma);
1057 __SetPageUptodate(pages[i]);
1058 cond_resched();
1059 }
1060
1061 mmun_start = haddr;
1062 mmun_end = haddr + HPAGE_PMD_SIZE;
1063 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1064
1065 spin_lock(&mm->page_table_lock);
1066 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1067 goto out_free_pages;
1068 VM_BUG_ON(!PageHead(page));
1069
1070 pmdp_clear_flush(vma, haddr, pmd);
1071 /* leave pmd empty until pte is filled */
1072
1073 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1074 pmd_populate(mm, &_pmd, pgtable);
1075
1076 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1077 pte_t *pte, entry;
1078 entry = mk_pte(pages[i], vma->vm_page_prot);
1079 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1080 page_add_new_anon_rmap(pages[i], vma, haddr);
1081 pte = pte_offset_map(&_pmd, haddr);
1082 VM_BUG_ON(!pte_none(*pte));
1083 set_pte_at(mm, haddr, pte, entry);
1084 pte_unmap(pte);
1085 }
1086 kfree(pages);
1087
1088 smp_wmb(); /* make pte visible before pmd */
1089 pmd_populate(mm, pmd, pgtable);
1090 page_remove_rmap(page);
1091 spin_unlock(&mm->page_table_lock);
1092
1093 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1094
1095 ret |= VM_FAULT_WRITE;
1096 put_page(page);
1097
1098out:
1099 return ret;
1100
1101out_free_pages:
1102 spin_unlock(&mm->page_table_lock);
1103 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1104 mem_cgroup_uncharge_start();
1105 for (i = 0; i < HPAGE_PMD_NR; i++) {
1106 mem_cgroup_uncharge_page(pages[i]);
1107 put_page(pages[i]);
1108 }
1109 mem_cgroup_uncharge_end();
1110 kfree(pages);
1111 goto out;
1112}
1113
1114int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1115 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1116{
1117 int ret = 0;
1118 struct page *page = NULL, *new_page;
1119 unsigned long haddr;
1120 unsigned long mmun_start; /* For mmu_notifiers */
1121 unsigned long mmun_end; /* For mmu_notifiers */
1122
1123 VM_BUG_ON(!vma->anon_vma);
1124 haddr = address & HPAGE_PMD_MASK;
1125 if (is_huge_zero_pmd(orig_pmd))
1126 goto alloc;
1127 spin_lock(&mm->page_table_lock);
1128 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1129 goto out_unlock;
1130
1131 page = pmd_page(orig_pmd);
1132 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1133 if (page_mapcount(page) == 1) {
1134 pmd_t entry;
1135 entry = pmd_mkyoung(orig_pmd);
1136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1137 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1138 update_mmu_cache_pmd(vma, address, pmd);
1139 ret |= VM_FAULT_WRITE;
1140 goto out_unlock;
1141 }
1142 get_page(page);
1143 spin_unlock(&mm->page_table_lock);
1144alloc:
1145 if (transparent_hugepage_enabled(vma) &&
1146 !transparent_hugepage_debug_cow())
1147 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1148 vma, haddr, numa_node_id(), 0);
1149 else
1150 new_page = NULL;
1151
1152 if (unlikely(!new_page)) {
1153 if (is_huge_zero_pmd(orig_pmd)) {
1154 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1155 address, pmd, orig_pmd, haddr);
1156 } else {
1157 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1158 pmd, orig_pmd, page, haddr);
1159 if (ret & VM_FAULT_OOM)
1160 split_huge_page(page);
1161 put_page(page);
1162 }
1163 count_vm_event(THP_FAULT_FALLBACK);
1164 goto out;
1165 }
1166
1167 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1168 put_page(new_page);
1169 if (page) {
1170 split_huge_page(page);
1171 put_page(page);
1172 }
1173 count_vm_event(THP_FAULT_FALLBACK);
1174 ret |= VM_FAULT_OOM;
1175 goto out;
1176 }
1177
1178 count_vm_event(THP_FAULT_ALLOC);
1179
1180 if (is_huge_zero_pmd(orig_pmd))
1181 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1182 else
1183 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1184 __SetPageUptodate(new_page);
1185
1186 mmun_start = haddr;
1187 mmun_end = haddr + HPAGE_PMD_SIZE;
1188 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1189
1190 spin_lock(&mm->page_table_lock);
1191 if (page)
1192 put_page(page);
1193 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1194 spin_unlock(&mm->page_table_lock);
1195 mem_cgroup_uncharge_page(new_page);
1196 put_page(new_page);
1197 goto out_mn;
1198 } else {
1199 pmd_t entry;
1200 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1201 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1202 pmdp_clear_flush(vma, haddr, pmd);
1203 page_add_new_anon_rmap(new_page, vma, haddr);
1204 set_pmd_at(mm, haddr, pmd, entry);
1205 update_mmu_cache_pmd(vma, address, pmd);
1206 if (is_huge_zero_pmd(orig_pmd)) {
1207 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1208 put_huge_zero_page();
1209 } else {
1210 VM_BUG_ON(!PageHead(page));
1211 page_remove_rmap(page);
1212 put_page(page);
1213 }
1214 ret |= VM_FAULT_WRITE;
1215 }
1216 spin_unlock(&mm->page_table_lock);
1217out_mn:
1218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1219out:
1220 return ret;
1221out_unlock:
1222 spin_unlock(&mm->page_table_lock);
1223 return ret;
1224}
1225
1226struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1227 unsigned long addr,
1228 pmd_t *pmd,
1229 unsigned int flags)
1230{
1231 struct mm_struct *mm = vma->vm_mm;
1232 struct page *page = NULL;
1233
1234 assert_spin_locked(&mm->page_table_lock);
1235
1236 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237 goto out;
1238
1239 /* Avoid dumping huge zero page */
1240 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1241 return ERR_PTR(-EFAULT);
1242
1243 page = pmd_page(*pmd);
1244 VM_BUG_ON(!PageHead(page));
1245 if (flags & FOLL_TOUCH) {
1246 pmd_t _pmd;
1247 /*
1248 * We should set the dirty bit only for FOLL_WRITE but
1249 * for now the dirty bit in the pmd is meaningless.
1250 * And if the dirty bit will become meaningful and
1251 * we'll only set it with FOLL_WRITE, an atomic
1252 * set_bit will be required on the pmd to set the
1253 * young bit, instead of the current set_pmd_at.
1254 */
1255 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1256 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1257 pmd, _pmd, 1))
1258 update_mmu_cache_pmd(vma, addr, pmd);
1259 }
1260 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1261 if (page->mapping && trylock_page(page)) {
1262 lru_add_drain();
1263 if (page->mapping)
1264 mlock_vma_page(page);
1265 unlock_page(page);
1266 }
1267 }
1268 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1269 VM_BUG_ON(!PageCompound(page));
1270 if (flags & FOLL_GET)
1271 get_page_foll(page);
1272
1273out:
1274 return page;
1275}
1276
1277/* NUMA hinting page fault entry point for trans huge pmds */
1278int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1279 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1280{
1281 struct anon_vma *anon_vma = NULL;
1282 struct page *page;
1283 unsigned long haddr = addr & HPAGE_PMD_MASK;
1284 int page_nid = -1, this_nid = numa_node_id();
1285 int target_nid, last_nid = -1;
1286 bool page_locked;
1287 bool migrated = false;
1288
1289 spin_lock(&mm->page_table_lock);
1290 if (unlikely(!pmd_same(pmd, *pmdp)))
1291 goto out_unlock;
1292
1293 page = pmd_page(pmd);
1294 BUG_ON(is_huge_zero_page(page));
1295 page_nid = page_to_nid(page);
1296 last_nid = page_nid_last(page);
1297 count_vm_numa_event(NUMA_HINT_FAULTS);
1298 if (page_nid == this_nid)
1299 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1300
1301 /*
1302 * Acquire the page lock to serialise THP migrations but avoid dropping
1303 * page_table_lock if at all possible
1304 */
1305 page_locked = trylock_page(page);
1306 target_nid = mpol_misplaced(page, vma, haddr);
1307 if (target_nid == -1) {
1308 /* If the page was locked, there are no parallel migrations */
1309 if (page_locked)
1310 goto clear_pmdnuma;
1311
1312 /*
1313 * Otherwise wait for potential migrations and retry. We do
1314 * relock and check_same as the page may no longer be mapped.
1315 * As the fault is being retried, do not account for it.
1316 */
1317 spin_unlock(&mm->page_table_lock);
1318 wait_on_page_locked(page);
1319 page_nid = -1;
1320 goto out;
1321 }
1322
1323 /* Page is misplaced, serialise migrations and parallel THP splits */
1324 get_page(page);
1325 spin_unlock(&mm->page_table_lock);
1326 if (!page_locked)
1327 lock_page(page);
1328 anon_vma = page_lock_anon_vma_read(page);
1329
1330 /* Confirm the PMD did not change while page_table_lock was released */
1331 spin_lock(&mm->page_table_lock);
1332 if (unlikely(!pmd_same(pmd, *pmdp))) {
1333 unlock_page(page);
1334 put_page(page);
1335 page_nid = -1;
1336 goto out_unlock;
1337 }
1338
1339 /*
1340 * Migrate the THP to the requested node, returns with page unlocked
1341 * and pmd_numa cleared.
1342 */
1343 spin_unlock(&mm->page_table_lock);
1344 migrated = migrate_misplaced_transhuge_page(mm, vma,
1345 pmdp, pmd, addr, page, target_nid);
1346 if (migrated)
1347 page_nid = target_nid;
1348
1349 goto out;
1350clear_pmdnuma:
1351 BUG_ON(!PageLocked(page));
1352 pmd = pmd_mknonnuma(pmd);
1353 set_pmd_at(mm, haddr, pmdp, pmd);
1354 VM_BUG_ON(pmd_numa(*pmdp));
1355 update_mmu_cache_pmd(vma, addr, pmdp);
1356 unlock_page(page);
1357out_unlock:
1358 spin_unlock(&mm->page_table_lock);
1359
1360out:
1361 if (anon_vma)
1362 page_unlock_anon_vma_read(anon_vma);
1363
1364 if (page_nid != -1)
1365 task_numa_fault(last_nid, page_nid, HPAGE_PMD_NR, migrated);
1366
1367 return 0;
1368}
1369
1370int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1371 pmd_t *pmd, unsigned long addr)
1372{
1373 int ret = 0;
1374
1375 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1376 struct page *page;
1377 pgtable_t pgtable;
1378 pmd_t orig_pmd;
1379 /*
1380 * For architectures like ppc64 we look at deposited pgtable
1381 * when calling pmdp_get_and_clear. So do the
1382 * pgtable_trans_huge_withdraw after finishing pmdp related
1383 * operations.
1384 */
1385 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1386 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1387 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1388 if (is_huge_zero_pmd(orig_pmd)) {
1389 tlb->mm->nr_ptes--;
1390 spin_unlock(&tlb->mm->page_table_lock);
1391 put_huge_zero_page();
1392 } else {
1393 page = pmd_page(orig_pmd);
1394 page_remove_rmap(page);
1395 VM_BUG_ON(page_mapcount(page) < 0);
1396 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1397 VM_BUG_ON(!PageHead(page));
1398 tlb->mm->nr_ptes--;
1399 spin_unlock(&tlb->mm->page_table_lock);
1400 tlb_remove_page(tlb, page);
1401 }
1402 pte_free(tlb->mm, pgtable);
1403 ret = 1;
1404 }
1405 return ret;
1406}
1407
1408int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1409 unsigned long addr, unsigned long end,
1410 unsigned char *vec)
1411{
1412 int ret = 0;
1413
1414 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1415 /*
1416 * All logical pages in the range are present
1417 * if backed by a huge page.
1418 */
1419 spin_unlock(&vma->vm_mm->page_table_lock);
1420 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1421 ret = 1;
1422 }
1423
1424 return ret;
1425}
1426
1427int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1428 unsigned long old_addr,
1429 unsigned long new_addr, unsigned long old_end,
1430 pmd_t *old_pmd, pmd_t *new_pmd)
1431{
1432 int ret = 0;
1433 pmd_t pmd;
1434
1435 struct mm_struct *mm = vma->vm_mm;
1436
1437 if ((old_addr & ~HPAGE_PMD_MASK) ||
1438 (new_addr & ~HPAGE_PMD_MASK) ||
1439 old_end - old_addr < HPAGE_PMD_SIZE ||
1440 (new_vma->vm_flags & VM_NOHUGEPAGE))
1441 goto out;
1442
1443 /*
1444 * The destination pmd shouldn't be established, free_pgtables()
1445 * should have release it.
1446 */
1447 if (WARN_ON(!pmd_none(*new_pmd))) {
1448 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1449 goto out;
1450 }
1451
1452 ret = __pmd_trans_huge_lock(old_pmd, vma);
1453 if (ret == 1) {
1454 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1455 VM_BUG_ON(!pmd_none(*new_pmd));
1456 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1457 spin_unlock(&mm->page_table_lock);
1458 }
1459out:
1460 return ret;
1461}
1462
1463/*
1464 * Returns
1465 * - 0 if PMD could not be locked
1466 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1467 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1468 */
1469int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1470 unsigned long addr, pgprot_t newprot, int prot_numa)
1471{
1472 struct mm_struct *mm = vma->vm_mm;
1473 int ret = 0;
1474
1475 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1476 pmd_t entry;
1477 ret = 1;
1478 if (!prot_numa) {
1479 entry = pmdp_get_and_clear(mm, addr, pmd);
1480 entry = pmd_modify(entry, newprot);
1481 ret = HPAGE_PMD_NR;
1482 BUG_ON(pmd_write(entry));
1483 } else {
1484 struct page *page = pmd_page(*pmd);
1485
1486 /*
1487 * Only check non-shared pages. Do not trap faults
1488 * against the zero page. The read-only data is likely
1489 * to be read-cached on the local CPU cache and it is
1490 * less useful to know about local vs remote hits on
1491 * the zero page.
1492 */
1493 if (page_mapcount(page) == 1 &&
1494 !is_huge_zero_page(page) &&
1495 !pmd_numa(*pmd)) {
1496 entry = pmdp_get_and_clear(mm, addr, pmd);
1497 entry = pmd_mknuma(entry);
1498 ret = HPAGE_PMD_NR;
1499 }
1500 }
1501
1502 /* Set PMD if cleared earlier */
1503 if (ret == HPAGE_PMD_NR)
1504 set_pmd_at(mm, addr, pmd, entry);
1505
1506 spin_unlock(&vma->vm_mm->page_table_lock);
1507 }
1508
1509 return ret;
1510}
1511
1512/*
1513 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1514 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1515 *
1516 * Note that if it returns 1, this routine returns without unlocking page
1517 * table locks. So callers must unlock them.
1518 */
1519int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1520{
1521 spin_lock(&vma->vm_mm->page_table_lock);
1522 if (likely(pmd_trans_huge(*pmd))) {
1523 if (unlikely(pmd_trans_splitting(*pmd))) {
1524 spin_unlock(&vma->vm_mm->page_table_lock);
1525 wait_split_huge_page(vma->anon_vma, pmd);
1526 return -1;
1527 } else {
1528 /* Thp mapped by 'pmd' is stable, so we can
1529 * handle it as it is. */
1530 return 1;
1531 }
1532 }
1533 spin_unlock(&vma->vm_mm->page_table_lock);
1534 return 0;
1535}
1536
1537pmd_t *page_check_address_pmd(struct page *page,
1538 struct mm_struct *mm,
1539 unsigned long address,
1540 enum page_check_address_pmd_flag flag)
1541{
1542 pmd_t *pmd, *ret = NULL;
1543
1544 if (address & ~HPAGE_PMD_MASK)
1545 goto out;
1546
1547 pmd = mm_find_pmd(mm, address);
1548 if (!pmd)
1549 goto out;
1550 if (pmd_none(*pmd))
1551 goto out;
1552 if (pmd_page(*pmd) != page)
1553 goto out;
1554 /*
1555 * split_vma() may create temporary aliased mappings. There is
1556 * no risk as long as all huge pmd are found and have their
1557 * splitting bit set before __split_huge_page_refcount
1558 * runs. Finding the same huge pmd more than once during the
1559 * same rmap walk is not a problem.
1560 */
1561 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1562 pmd_trans_splitting(*pmd))
1563 goto out;
1564 if (pmd_trans_huge(*pmd)) {
1565 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1566 !pmd_trans_splitting(*pmd));
1567 ret = pmd;
1568 }
1569out:
1570 return ret;
1571}
1572
1573static int __split_huge_page_splitting(struct page *page,
1574 struct vm_area_struct *vma,
1575 unsigned long address)
1576{
1577 struct mm_struct *mm = vma->vm_mm;
1578 pmd_t *pmd;
1579 int ret = 0;
1580 /* For mmu_notifiers */
1581 const unsigned long mmun_start = address;
1582 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1583
1584 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1585 spin_lock(&mm->page_table_lock);
1586 pmd = page_check_address_pmd(page, mm, address,
1587 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1588 if (pmd) {
1589 /*
1590 * We can't temporarily set the pmd to null in order
1591 * to split it, the pmd must remain marked huge at all
1592 * times or the VM won't take the pmd_trans_huge paths
1593 * and it won't wait on the anon_vma->root->rwsem to
1594 * serialize against split_huge_page*.
1595 */
1596 pmdp_splitting_flush(vma, address, pmd);
1597 ret = 1;
1598 }
1599 spin_unlock(&mm->page_table_lock);
1600 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1601
1602 return ret;
1603}
1604
1605static void __split_huge_page_refcount(struct page *page,
1606 struct list_head *list)
1607{
1608 int i;
1609 struct zone *zone = page_zone(page);
1610 struct lruvec *lruvec;
1611 int tail_count = 0;
1612
1613 /* prevent PageLRU to go away from under us, and freeze lru stats */
1614 spin_lock_irq(&zone->lru_lock);
1615 lruvec = mem_cgroup_page_lruvec(page, zone);
1616
1617 compound_lock(page);
1618 /* complete memcg works before add pages to LRU */
1619 mem_cgroup_split_huge_fixup(page);
1620
1621 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1622 struct page *page_tail = page + i;
1623
1624 /* tail_page->_mapcount cannot change */
1625 BUG_ON(page_mapcount(page_tail) < 0);
1626 tail_count += page_mapcount(page_tail);
1627 /* check for overflow */
1628 BUG_ON(tail_count < 0);
1629 BUG_ON(atomic_read(&page_tail->_count) != 0);
1630 /*
1631 * tail_page->_count is zero and not changing from
1632 * under us. But get_page_unless_zero() may be running
1633 * from under us on the tail_page. If we used
1634 * atomic_set() below instead of atomic_add(), we
1635 * would then run atomic_set() concurrently with
1636 * get_page_unless_zero(), and atomic_set() is
1637 * implemented in C not using locked ops. spin_unlock
1638 * on x86 sometime uses locked ops because of PPro
1639 * errata 66, 92, so unless somebody can guarantee
1640 * atomic_set() here would be safe on all archs (and
1641 * not only on x86), it's safer to use atomic_add().
1642 */
1643 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1644 &page_tail->_count);
1645
1646 /* after clearing PageTail the gup refcount can be released */
1647 smp_mb();
1648
1649 /*
1650 * retain hwpoison flag of the poisoned tail page:
1651 * fix for the unsuitable process killed on Guest Machine(KVM)
1652 * by the memory-failure.
1653 */
1654 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1655 page_tail->flags |= (page->flags &
1656 ((1L << PG_referenced) |
1657 (1L << PG_swapbacked) |
1658 (1L << PG_mlocked) |
1659 (1L << PG_uptodate) |
1660 (1L << PG_active) |
1661 (1L << PG_unevictable)));
1662 page_tail->flags |= (1L << PG_dirty);
1663
1664 /* clear PageTail before overwriting first_page */
1665 smp_wmb();
1666
1667 /*
1668 * __split_huge_page_splitting() already set the
1669 * splitting bit in all pmd that could map this
1670 * hugepage, that will ensure no CPU can alter the
1671 * mapcount on the head page. The mapcount is only
1672 * accounted in the head page and it has to be
1673 * transferred to all tail pages in the below code. So
1674 * for this code to be safe, the split the mapcount
1675 * can't change. But that doesn't mean userland can't
1676 * keep changing and reading the page contents while
1677 * we transfer the mapcount, so the pmd splitting
1678 * status is achieved setting a reserved bit in the
1679 * pmd, not by clearing the present bit.
1680 */
1681 page_tail->_mapcount = page->_mapcount;
1682
1683 BUG_ON(page_tail->mapping);
1684 page_tail->mapping = page->mapping;
1685
1686 page_tail->index = page->index + i;
1687 page_nid_xchg_last(page_tail, page_nid_last(page));
1688
1689 BUG_ON(!PageAnon(page_tail));
1690 BUG_ON(!PageUptodate(page_tail));
1691 BUG_ON(!PageDirty(page_tail));
1692 BUG_ON(!PageSwapBacked(page_tail));
1693
1694 lru_add_page_tail(page, page_tail, lruvec, list);
1695 }
1696 atomic_sub(tail_count, &page->_count);
1697 BUG_ON(atomic_read(&page->_count) <= 0);
1698
1699 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1700
1701 ClearPageCompound(page);
1702 compound_unlock(page);
1703 spin_unlock_irq(&zone->lru_lock);
1704
1705 for (i = 1; i < HPAGE_PMD_NR; i++) {
1706 struct page *page_tail = page + i;
1707 BUG_ON(page_count(page_tail) <= 0);
1708 /*
1709 * Tail pages may be freed if there wasn't any mapping
1710 * like if add_to_swap() is running on a lru page that
1711 * had its mapping zapped. And freeing these pages
1712 * requires taking the lru_lock so we do the put_page
1713 * of the tail pages after the split is complete.
1714 */
1715 put_page(page_tail);
1716 }
1717
1718 /*
1719 * Only the head page (now become a regular page) is required
1720 * to be pinned by the caller.
1721 */
1722 BUG_ON(page_count(page) <= 0);
1723}
1724
1725static int __split_huge_page_map(struct page *page,
1726 struct vm_area_struct *vma,
1727 unsigned long address)
1728{
1729 struct mm_struct *mm = vma->vm_mm;
1730 pmd_t *pmd, _pmd;
1731 int ret = 0, i;
1732 pgtable_t pgtable;
1733 unsigned long haddr;
1734
1735 spin_lock(&mm->page_table_lock);
1736 pmd = page_check_address_pmd(page, mm, address,
1737 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1738 if (pmd) {
1739 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1740 pmd_populate(mm, &_pmd, pgtable);
1741
1742 haddr = address;
1743 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1744 pte_t *pte, entry;
1745 BUG_ON(PageCompound(page+i));
1746 entry = mk_pte(page + i, vma->vm_page_prot);
1747 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1748 if (!pmd_write(*pmd))
1749 entry = pte_wrprotect(entry);
1750 else
1751 BUG_ON(page_mapcount(page) != 1);
1752 if (!pmd_young(*pmd))
1753 entry = pte_mkold(entry);
1754 if (pmd_numa(*pmd))
1755 entry = pte_mknuma(entry);
1756 pte = pte_offset_map(&_pmd, haddr);
1757 BUG_ON(!pte_none(*pte));
1758 set_pte_at(mm, haddr, pte, entry);
1759 pte_unmap(pte);
1760 }
1761
1762 smp_wmb(); /* make pte visible before pmd */
1763 /*
1764 * Up to this point the pmd is present and huge and
1765 * userland has the whole access to the hugepage
1766 * during the split (which happens in place). If we
1767 * overwrite the pmd with the not-huge version
1768 * pointing to the pte here (which of course we could
1769 * if all CPUs were bug free), userland could trigger
1770 * a small page size TLB miss on the small sized TLB
1771 * while the hugepage TLB entry is still established
1772 * in the huge TLB. Some CPU doesn't like that. See
1773 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1774 * Erratum 383 on page 93. Intel should be safe but is
1775 * also warns that it's only safe if the permission
1776 * and cache attributes of the two entries loaded in
1777 * the two TLB is identical (which should be the case
1778 * here). But it is generally safer to never allow
1779 * small and huge TLB entries for the same virtual
1780 * address to be loaded simultaneously. So instead of
1781 * doing "pmd_populate(); flush_tlb_range();" we first
1782 * mark the current pmd notpresent (atomically because
1783 * here the pmd_trans_huge and pmd_trans_splitting
1784 * must remain set at all times on the pmd until the
1785 * split is complete for this pmd), then we flush the
1786 * SMP TLB and finally we write the non-huge version
1787 * of the pmd entry with pmd_populate.
1788 */
1789 pmdp_invalidate(vma, address, pmd);
1790 pmd_populate(mm, pmd, pgtable);
1791 ret = 1;
1792 }
1793 spin_unlock(&mm->page_table_lock);
1794
1795 return ret;
1796}
1797
1798/* must be called with anon_vma->root->rwsem held */
1799static void __split_huge_page(struct page *page,
1800 struct anon_vma *anon_vma,
1801 struct list_head *list)
1802{
1803 int mapcount, mapcount2;
1804 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1805 struct anon_vma_chain *avc;
1806
1807 BUG_ON(!PageHead(page));
1808 BUG_ON(PageTail(page));
1809
1810 mapcount = 0;
1811 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1812 struct vm_area_struct *vma = avc->vma;
1813 unsigned long addr = vma_address(page, vma);
1814 BUG_ON(is_vma_temporary_stack(vma));
1815 mapcount += __split_huge_page_splitting(page, vma, addr);
1816 }
1817 /*
1818 * It is critical that new vmas are added to the tail of the
1819 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1820 * and establishes a child pmd before
1821 * __split_huge_page_splitting() freezes the parent pmd (so if
1822 * we fail to prevent copy_huge_pmd() from running until the
1823 * whole __split_huge_page() is complete), we will still see
1824 * the newly established pmd of the child later during the
1825 * walk, to be able to set it as pmd_trans_splitting too.
1826 */
1827 if (mapcount != page_mapcount(page))
1828 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1829 mapcount, page_mapcount(page));
1830 BUG_ON(mapcount != page_mapcount(page));
1831
1832 __split_huge_page_refcount(page, list);
1833
1834 mapcount2 = 0;
1835 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1836 struct vm_area_struct *vma = avc->vma;
1837 unsigned long addr = vma_address(page, vma);
1838 BUG_ON(is_vma_temporary_stack(vma));
1839 mapcount2 += __split_huge_page_map(page, vma, addr);
1840 }
1841 if (mapcount != mapcount2)
1842 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1843 mapcount, mapcount2, page_mapcount(page));
1844 BUG_ON(mapcount != mapcount2);
1845}
1846
1847/*
1848 * Split a hugepage into normal pages. This doesn't change the position of head
1849 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1850 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1851 * from the hugepage.
1852 * Return 0 if the hugepage is split successfully otherwise return 1.
1853 */
1854int split_huge_page_to_list(struct page *page, struct list_head *list)
1855{
1856 struct anon_vma *anon_vma;
1857 int ret = 1;
1858
1859 BUG_ON(is_huge_zero_page(page));
1860 BUG_ON(!PageAnon(page));
1861
1862 /*
1863 * The caller does not necessarily hold an mmap_sem that would prevent
1864 * the anon_vma disappearing so we first we take a reference to it
1865 * and then lock the anon_vma for write. This is similar to
1866 * page_lock_anon_vma_read except the write lock is taken to serialise
1867 * against parallel split or collapse operations.
1868 */
1869 anon_vma = page_get_anon_vma(page);
1870 if (!anon_vma)
1871 goto out;
1872 anon_vma_lock_write(anon_vma);
1873
1874 ret = 0;
1875 if (!PageCompound(page))
1876 goto out_unlock;
1877
1878 BUG_ON(!PageSwapBacked(page));
1879 __split_huge_page(page, anon_vma, list);
1880 count_vm_event(THP_SPLIT);
1881
1882 BUG_ON(PageCompound(page));
1883out_unlock:
1884 anon_vma_unlock_write(anon_vma);
1885 put_anon_vma(anon_vma);
1886out:
1887 return ret;
1888}
1889
1890#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1891
1892int hugepage_madvise(struct vm_area_struct *vma,
1893 unsigned long *vm_flags, int advice)
1894{
1895 struct mm_struct *mm = vma->vm_mm;
1896
1897 switch (advice) {
1898 case MADV_HUGEPAGE:
1899 /*
1900 * Be somewhat over-protective like KSM for now!
1901 */
1902 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1903 return -EINVAL;
1904 if (mm->def_flags & VM_NOHUGEPAGE)
1905 return -EINVAL;
1906 *vm_flags &= ~VM_NOHUGEPAGE;
1907 *vm_flags |= VM_HUGEPAGE;
1908 /*
1909 * If the vma become good for khugepaged to scan,
1910 * register it here without waiting a page fault that
1911 * may not happen any time soon.
1912 */
1913 if (unlikely(khugepaged_enter_vma_merge(vma)))
1914 return -ENOMEM;
1915 break;
1916 case MADV_NOHUGEPAGE:
1917 /*
1918 * Be somewhat over-protective like KSM for now!
1919 */
1920 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1921 return -EINVAL;
1922 *vm_flags &= ~VM_HUGEPAGE;
1923 *vm_flags |= VM_NOHUGEPAGE;
1924 /*
1925 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1926 * this vma even if we leave the mm registered in khugepaged if
1927 * it got registered before VM_NOHUGEPAGE was set.
1928 */
1929 break;
1930 }
1931
1932 return 0;
1933}
1934
1935static int __init khugepaged_slab_init(void)
1936{
1937 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1938 sizeof(struct mm_slot),
1939 __alignof__(struct mm_slot), 0, NULL);
1940 if (!mm_slot_cache)
1941 return -ENOMEM;
1942
1943 return 0;
1944}
1945
1946static inline struct mm_slot *alloc_mm_slot(void)
1947{
1948 if (!mm_slot_cache) /* initialization failed */
1949 return NULL;
1950 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1951}
1952
1953static inline void free_mm_slot(struct mm_slot *mm_slot)
1954{
1955 kmem_cache_free(mm_slot_cache, mm_slot);
1956}
1957
1958static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1959{
1960 struct mm_slot *mm_slot;
1961
1962 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1963 if (mm == mm_slot->mm)
1964 return mm_slot;
1965
1966 return NULL;
1967}
1968
1969static void insert_to_mm_slots_hash(struct mm_struct *mm,
1970 struct mm_slot *mm_slot)
1971{
1972 mm_slot->mm = mm;
1973 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1974}
1975
1976static inline int khugepaged_test_exit(struct mm_struct *mm)
1977{
1978 return atomic_read(&mm->mm_users) == 0;
1979}
1980
1981int __khugepaged_enter(struct mm_struct *mm)
1982{
1983 struct mm_slot *mm_slot;
1984 int wakeup;
1985
1986 mm_slot = alloc_mm_slot();
1987 if (!mm_slot)
1988 return -ENOMEM;
1989
1990 /* __khugepaged_exit() must not run from under us */
1991 VM_BUG_ON(khugepaged_test_exit(mm));
1992 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1993 free_mm_slot(mm_slot);
1994 return 0;
1995 }
1996
1997 spin_lock(&khugepaged_mm_lock);
1998 insert_to_mm_slots_hash(mm, mm_slot);
1999 /*
2000 * Insert just behind the scanning cursor, to let the area settle
2001 * down a little.
2002 */
2003 wakeup = list_empty(&khugepaged_scan.mm_head);
2004 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2005 spin_unlock(&khugepaged_mm_lock);
2006
2007 atomic_inc(&mm->mm_count);
2008 if (wakeup)
2009 wake_up_interruptible(&khugepaged_wait);
2010
2011 return 0;
2012}
2013
2014int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2015{
2016 unsigned long hstart, hend;
2017 if (!vma->anon_vma)
2018 /*
2019 * Not yet faulted in so we will register later in the
2020 * page fault if needed.
2021 */
2022 return 0;
2023 if (vma->vm_ops)
2024 /* khugepaged not yet working on file or special mappings */
2025 return 0;
2026 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2027 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2028 hend = vma->vm_end & HPAGE_PMD_MASK;
2029 if (hstart < hend)
2030 return khugepaged_enter(vma);
2031 return 0;
2032}
2033
2034void __khugepaged_exit(struct mm_struct *mm)
2035{
2036 struct mm_slot *mm_slot;
2037 int free = 0;
2038
2039 spin_lock(&khugepaged_mm_lock);
2040 mm_slot = get_mm_slot(mm);
2041 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2042 hash_del(&mm_slot->hash);
2043 list_del(&mm_slot->mm_node);
2044 free = 1;
2045 }
2046 spin_unlock(&khugepaged_mm_lock);
2047
2048 if (free) {
2049 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2050 free_mm_slot(mm_slot);
2051 mmdrop(mm);
2052 } else if (mm_slot) {
2053 /*
2054 * This is required to serialize against
2055 * khugepaged_test_exit() (which is guaranteed to run
2056 * under mmap sem read mode). Stop here (after we
2057 * return all pagetables will be destroyed) until
2058 * khugepaged has finished working on the pagetables
2059 * under the mmap_sem.
2060 */
2061 down_write(&mm->mmap_sem);
2062 up_write(&mm->mmap_sem);
2063 }
2064}
2065
2066static void release_pte_page(struct page *page)
2067{
2068 /* 0 stands for page_is_file_cache(page) == false */
2069 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2070 unlock_page(page);
2071 putback_lru_page(page);
2072}
2073
2074static void release_pte_pages(pte_t *pte, pte_t *_pte)
2075{
2076 while (--_pte >= pte) {
2077 pte_t pteval = *_pte;
2078 if (!pte_none(pteval))
2079 release_pte_page(pte_page(pteval));
2080 }
2081}
2082
2083static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2084 unsigned long address,
2085 pte_t *pte)
2086{
2087 struct page *page;
2088 pte_t *_pte;
2089 int referenced = 0, none = 0;
2090 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2091 _pte++, address += PAGE_SIZE) {
2092 pte_t pteval = *_pte;
2093 if (pte_none(pteval)) {
2094 if (++none <= khugepaged_max_ptes_none)
2095 continue;
2096 else
2097 goto out;
2098 }
2099 if (!pte_present(pteval) || !pte_write(pteval))
2100 goto out;
2101 page = vm_normal_page(vma, address, pteval);
2102 if (unlikely(!page))
2103 goto out;
2104
2105 VM_BUG_ON(PageCompound(page));
2106 BUG_ON(!PageAnon(page));
2107 VM_BUG_ON(!PageSwapBacked(page));
2108
2109 /* cannot use mapcount: can't collapse if there's a gup pin */
2110 if (page_count(page) != 1)
2111 goto out;
2112 /*
2113 * We can do it before isolate_lru_page because the
2114 * page can't be freed from under us. NOTE: PG_lock
2115 * is needed to serialize against split_huge_page
2116 * when invoked from the VM.
2117 */
2118 if (!trylock_page(page))
2119 goto out;
2120 /*
2121 * Isolate the page to avoid collapsing an hugepage
2122 * currently in use by the VM.
2123 */
2124 if (isolate_lru_page(page)) {
2125 unlock_page(page);
2126 goto out;
2127 }
2128 /* 0 stands for page_is_file_cache(page) == false */
2129 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2130 VM_BUG_ON(!PageLocked(page));
2131 VM_BUG_ON(PageLRU(page));
2132
2133 /* If there is no mapped pte young don't collapse the page */
2134 if (pte_young(pteval) || PageReferenced(page) ||
2135 mmu_notifier_test_young(vma->vm_mm, address))
2136 referenced = 1;
2137 }
2138 if (likely(referenced))
2139 return 1;
2140out:
2141 release_pte_pages(pte, _pte);
2142 return 0;
2143}
2144
2145static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2146 struct vm_area_struct *vma,
2147 unsigned long address,
2148 spinlock_t *ptl)
2149{
2150 pte_t *_pte;
2151 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2152 pte_t pteval = *_pte;
2153 struct page *src_page;
2154
2155 if (pte_none(pteval)) {
2156 clear_user_highpage(page, address);
2157 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2158 } else {
2159 src_page = pte_page(pteval);
2160 copy_user_highpage(page, src_page, address, vma);
2161 VM_BUG_ON(page_mapcount(src_page) != 1);
2162 release_pte_page(src_page);
2163 /*
2164 * ptl mostly unnecessary, but preempt has to
2165 * be disabled to update the per-cpu stats
2166 * inside page_remove_rmap().
2167 */
2168 spin_lock(ptl);
2169 /*
2170 * paravirt calls inside pte_clear here are
2171 * superfluous.
2172 */
2173 pte_clear(vma->vm_mm, address, _pte);
2174 page_remove_rmap(src_page);
2175 spin_unlock(ptl);
2176 free_page_and_swap_cache(src_page);
2177 }
2178
2179 address += PAGE_SIZE;
2180 page++;
2181 }
2182}
2183
2184static void khugepaged_alloc_sleep(void)
2185{
2186 wait_event_freezable_timeout(khugepaged_wait, false,
2187 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2188}
2189
2190#ifdef CONFIG_NUMA
2191static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2192{
2193 if (IS_ERR(*hpage)) {
2194 if (!*wait)
2195 return false;
2196
2197 *wait = false;
2198 *hpage = NULL;
2199 khugepaged_alloc_sleep();
2200 } else if (*hpage) {
2201 put_page(*hpage);
2202 *hpage = NULL;
2203 }
2204
2205 return true;
2206}
2207
2208static struct page
2209*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2210 struct vm_area_struct *vma, unsigned long address,
2211 int node)
2212{
2213 VM_BUG_ON(*hpage);
2214 /*
2215 * Allocate the page while the vma is still valid and under
2216 * the mmap_sem read mode so there is no memory allocation
2217 * later when we take the mmap_sem in write mode. This is more
2218 * friendly behavior (OTOH it may actually hide bugs) to
2219 * filesystems in userland with daemons allocating memory in
2220 * the userland I/O paths. Allocating memory with the
2221 * mmap_sem in read mode is good idea also to allow greater
2222 * scalability.
2223 */
2224 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2225 node, __GFP_OTHER_NODE);
2226
2227 /*
2228 * After allocating the hugepage, release the mmap_sem read lock in
2229 * preparation for taking it in write mode.
2230 */
2231 up_read(&mm->mmap_sem);
2232 if (unlikely(!*hpage)) {
2233 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2234 *hpage = ERR_PTR(-ENOMEM);
2235 return NULL;
2236 }
2237
2238 count_vm_event(THP_COLLAPSE_ALLOC);
2239 return *hpage;
2240}
2241#else
2242static struct page *khugepaged_alloc_hugepage(bool *wait)
2243{
2244 struct page *hpage;
2245
2246 do {
2247 hpage = alloc_hugepage(khugepaged_defrag());
2248 if (!hpage) {
2249 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2250 if (!*wait)
2251 return NULL;
2252
2253 *wait = false;
2254 khugepaged_alloc_sleep();
2255 } else
2256 count_vm_event(THP_COLLAPSE_ALLOC);
2257 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2258
2259 return hpage;
2260}
2261
2262static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2263{
2264 if (!*hpage)
2265 *hpage = khugepaged_alloc_hugepage(wait);
2266
2267 if (unlikely(!*hpage))
2268 return false;
2269
2270 return true;
2271}
2272
2273static struct page
2274*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2275 struct vm_area_struct *vma, unsigned long address,
2276 int node)
2277{
2278 up_read(&mm->mmap_sem);
2279 VM_BUG_ON(!*hpage);
2280 return *hpage;
2281}
2282#endif
2283
2284static bool hugepage_vma_check(struct vm_area_struct *vma)
2285{
2286 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2287 (vma->vm_flags & VM_NOHUGEPAGE))
2288 return false;
2289
2290 if (!vma->anon_vma || vma->vm_ops)
2291 return false;
2292 if (is_vma_temporary_stack(vma))
2293 return false;
2294 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2295 return true;
2296}
2297
2298static void collapse_huge_page(struct mm_struct *mm,
2299 unsigned long address,
2300 struct page **hpage,
2301 struct vm_area_struct *vma,
2302 int node)
2303{
2304 pmd_t *pmd, _pmd;
2305 pte_t *pte;
2306 pgtable_t pgtable;
2307 struct page *new_page;
2308 spinlock_t *ptl;
2309 int isolated;
2310 unsigned long hstart, hend;
2311 unsigned long mmun_start; /* For mmu_notifiers */
2312 unsigned long mmun_end; /* For mmu_notifiers */
2313
2314 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2315
2316 /* release the mmap_sem read lock. */
2317 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2318 if (!new_page)
2319 return;
2320
2321 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2322 return;
2323
2324 /*
2325 * Prevent all access to pagetables with the exception of
2326 * gup_fast later hanlded by the ptep_clear_flush and the VM
2327 * handled by the anon_vma lock + PG_lock.
2328 */
2329 down_write(&mm->mmap_sem);
2330 if (unlikely(khugepaged_test_exit(mm)))
2331 goto out;
2332
2333 vma = find_vma(mm, address);
2334 if (!vma)
2335 goto out;
2336 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2337 hend = vma->vm_end & HPAGE_PMD_MASK;
2338 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2339 goto out;
2340 if (!hugepage_vma_check(vma))
2341 goto out;
2342 pmd = mm_find_pmd(mm, address);
2343 if (!pmd)
2344 goto out;
2345 if (pmd_trans_huge(*pmd))
2346 goto out;
2347
2348 anon_vma_lock_write(vma->anon_vma);
2349
2350 pte = pte_offset_map(pmd, address);
2351 ptl = pte_lockptr(mm, pmd);
2352
2353 mmun_start = address;
2354 mmun_end = address + HPAGE_PMD_SIZE;
2355 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2356 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2357 /*
2358 * After this gup_fast can't run anymore. This also removes
2359 * any huge TLB entry from the CPU so we won't allow
2360 * huge and small TLB entries for the same virtual address
2361 * to avoid the risk of CPU bugs in that area.
2362 */
2363 _pmd = pmdp_clear_flush(vma, address, pmd);
2364 spin_unlock(&mm->page_table_lock);
2365 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2366
2367 spin_lock(ptl);
2368 isolated = __collapse_huge_page_isolate(vma, address, pte);
2369 spin_unlock(ptl);
2370
2371 if (unlikely(!isolated)) {
2372 pte_unmap(pte);
2373 spin_lock(&mm->page_table_lock);
2374 BUG_ON(!pmd_none(*pmd));
2375 /*
2376 * We can only use set_pmd_at when establishing
2377 * hugepmds and never for establishing regular pmds that
2378 * points to regular pagetables. Use pmd_populate for that
2379 */
2380 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2381 spin_unlock(&mm->page_table_lock);
2382 anon_vma_unlock_write(vma->anon_vma);
2383 goto out;
2384 }
2385
2386 /*
2387 * All pages are isolated and locked so anon_vma rmap
2388 * can't run anymore.
2389 */
2390 anon_vma_unlock_write(vma->anon_vma);
2391
2392 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2393 pte_unmap(pte);
2394 __SetPageUptodate(new_page);
2395 pgtable = pmd_pgtable(_pmd);
2396
2397 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2398 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2399
2400 /*
2401 * spin_lock() below is not the equivalent of smp_wmb(), so
2402 * this is needed to avoid the copy_huge_page writes to become
2403 * visible after the set_pmd_at() write.
2404 */
2405 smp_wmb();
2406
2407 spin_lock(&mm->page_table_lock);
2408 BUG_ON(!pmd_none(*pmd));
2409 page_add_new_anon_rmap(new_page, vma, address);
2410 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2411 set_pmd_at(mm, address, pmd, _pmd);
2412 update_mmu_cache_pmd(vma, address, pmd);
2413 spin_unlock(&mm->page_table_lock);
2414
2415 *hpage = NULL;
2416
2417 khugepaged_pages_collapsed++;
2418out_up_write:
2419 up_write(&mm->mmap_sem);
2420 return;
2421
2422out:
2423 mem_cgroup_uncharge_page(new_page);
2424 goto out_up_write;
2425}
2426
2427static int khugepaged_scan_pmd(struct mm_struct *mm,
2428 struct vm_area_struct *vma,
2429 unsigned long address,
2430 struct page **hpage)
2431{
2432 pmd_t *pmd;
2433 pte_t *pte, *_pte;
2434 int ret = 0, referenced = 0, none = 0;
2435 struct page *page;
2436 unsigned long _address;
2437 spinlock_t *ptl;
2438 int node = NUMA_NO_NODE;
2439
2440 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2441
2442 pmd = mm_find_pmd(mm, address);
2443 if (!pmd)
2444 goto out;
2445 if (pmd_trans_huge(*pmd))
2446 goto out;
2447
2448 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2449 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2450 _pte++, _address += PAGE_SIZE) {
2451 pte_t pteval = *_pte;
2452 if (pte_none(pteval)) {
2453 if (++none <= khugepaged_max_ptes_none)
2454 continue;
2455 else
2456 goto out_unmap;
2457 }
2458 if (!pte_present(pteval) || !pte_write(pteval))
2459 goto out_unmap;
2460 page = vm_normal_page(vma, _address, pteval);
2461 if (unlikely(!page))
2462 goto out_unmap;
2463 /*
2464 * Chose the node of the first page. This could
2465 * be more sophisticated and look at more pages,
2466 * but isn't for now.
2467 */
2468 if (node == NUMA_NO_NODE)
2469 node = page_to_nid(page);
2470 VM_BUG_ON(PageCompound(page));
2471 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2472 goto out_unmap;
2473 /* cannot use mapcount: can't collapse if there's a gup pin */
2474 if (page_count(page) != 1)
2475 goto out_unmap;
2476 if (pte_young(pteval) || PageReferenced(page) ||
2477 mmu_notifier_test_young(vma->vm_mm, address))
2478 referenced = 1;
2479 }
2480 if (referenced)
2481 ret = 1;
2482out_unmap:
2483 pte_unmap_unlock(pte, ptl);
2484 if (ret)
2485 /* collapse_huge_page will return with the mmap_sem released */
2486 collapse_huge_page(mm, address, hpage, vma, node);
2487out:
2488 return ret;
2489}
2490
2491static void collect_mm_slot(struct mm_slot *mm_slot)
2492{
2493 struct mm_struct *mm = mm_slot->mm;
2494
2495 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2496
2497 if (khugepaged_test_exit(mm)) {
2498 /* free mm_slot */
2499 hash_del(&mm_slot->hash);
2500 list_del(&mm_slot->mm_node);
2501
2502 /*
2503 * Not strictly needed because the mm exited already.
2504 *
2505 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2506 */
2507
2508 /* khugepaged_mm_lock actually not necessary for the below */
2509 free_mm_slot(mm_slot);
2510 mmdrop(mm);
2511 }
2512}
2513
2514static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2515 struct page **hpage)
2516 __releases(&khugepaged_mm_lock)
2517 __acquires(&khugepaged_mm_lock)
2518{
2519 struct mm_slot *mm_slot;
2520 struct mm_struct *mm;
2521 struct vm_area_struct *vma;
2522 int progress = 0;
2523
2524 VM_BUG_ON(!pages);
2525 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2526
2527 if (khugepaged_scan.mm_slot)
2528 mm_slot = khugepaged_scan.mm_slot;
2529 else {
2530 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2531 struct mm_slot, mm_node);
2532 khugepaged_scan.address = 0;
2533 khugepaged_scan.mm_slot = mm_slot;
2534 }
2535 spin_unlock(&khugepaged_mm_lock);
2536
2537 mm = mm_slot->mm;
2538 down_read(&mm->mmap_sem);
2539 if (unlikely(khugepaged_test_exit(mm)))
2540 vma = NULL;
2541 else
2542 vma = find_vma(mm, khugepaged_scan.address);
2543
2544 progress++;
2545 for (; vma; vma = vma->vm_next) {
2546 unsigned long hstart, hend;
2547
2548 cond_resched();
2549 if (unlikely(khugepaged_test_exit(mm))) {
2550 progress++;
2551 break;
2552 }
2553 if (!hugepage_vma_check(vma)) {
2554skip:
2555 progress++;
2556 continue;
2557 }
2558 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2559 hend = vma->vm_end & HPAGE_PMD_MASK;
2560 if (hstart >= hend)
2561 goto skip;
2562 if (khugepaged_scan.address > hend)
2563 goto skip;
2564 if (khugepaged_scan.address < hstart)
2565 khugepaged_scan.address = hstart;
2566 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2567
2568 while (khugepaged_scan.address < hend) {
2569 int ret;
2570 cond_resched();
2571 if (unlikely(khugepaged_test_exit(mm)))
2572 goto breakouterloop;
2573
2574 VM_BUG_ON(khugepaged_scan.address < hstart ||
2575 khugepaged_scan.address + HPAGE_PMD_SIZE >
2576 hend);
2577 ret = khugepaged_scan_pmd(mm, vma,
2578 khugepaged_scan.address,
2579 hpage);
2580 /* move to next address */
2581 khugepaged_scan.address += HPAGE_PMD_SIZE;
2582 progress += HPAGE_PMD_NR;
2583 if (ret)
2584 /* we released mmap_sem so break loop */
2585 goto breakouterloop_mmap_sem;
2586 if (progress >= pages)
2587 goto breakouterloop;
2588 }
2589 }
2590breakouterloop:
2591 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2592breakouterloop_mmap_sem:
2593
2594 spin_lock(&khugepaged_mm_lock);
2595 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2596 /*
2597 * Release the current mm_slot if this mm is about to die, or
2598 * if we scanned all vmas of this mm.
2599 */
2600 if (khugepaged_test_exit(mm) || !vma) {
2601 /*
2602 * Make sure that if mm_users is reaching zero while
2603 * khugepaged runs here, khugepaged_exit will find
2604 * mm_slot not pointing to the exiting mm.
2605 */
2606 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2607 khugepaged_scan.mm_slot = list_entry(
2608 mm_slot->mm_node.next,
2609 struct mm_slot, mm_node);
2610 khugepaged_scan.address = 0;
2611 } else {
2612 khugepaged_scan.mm_slot = NULL;
2613 khugepaged_full_scans++;
2614 }
2615
2616 collect_mm_slot(mm_slot);
2617 }
2618
2619 return progress;
2620}
2621
2622static int khugepaged_has_work(void)
2623{
2624 return !list_empty(&khugepaged_scan.mm_head) &&
2625 khugepaged_enabled();
2626}
2627
2628static int khugepaged_wait_event(void)
2629{
2630 return !list_empty(&khugepaged_scan.mm_head) ||
2631 kthread_should_stop();
2632}
2633
2634static void khugepaged_do_scan(void)
2635{
2636 struct page *hpage = NULL;
2637 unsigned int progress = 0, pass_through_head = 0;
2638 unsigned int pages = khugepaged_pages_to_scan;
2639 bool wait = true;
2640
2641 barrier(); /* write khugepaged_pages_to_scan to local stack */
2642
2643 while (progress < pages) {
2644 if (!khugepaged_prealloc_page(&hpage, &wait))
2645 break;
2646
2647 cond_resched();
2648
2649 if (unlikely(kthread_should_stop() || freezing(current)))
2650 break;
2651
2652 spin_lock(&khugepaged_mm_lock);
2653 if (!khugepaged_scan.mm_slot)
2654 pass_through_head++;
2655 if (khugepaged_has_work() &&
2656 pass_through_head < 2)
2657 progress += khugepaged_scan_mm_slot(pages - progress,
2658 &hpage);
2659 else
2660 progress = pages;
2661 spin_unlock(&khugepaged_mm_lock);
2662 }
2663
2664 if (!IS_ERR_OR_NULL(hpage))
2665 put_page(hpage);
2666}
2667
2668static void khugepaged_wait_work(void)
2669{
2670 try_to_freeze();
2671
2672 if (khugepaged_has_work()) {
2673 if (!khugepaged_scan_sleep_millisecs)
2674 return;
2675
2676 wait_event_freezable_timeout(khugepaged_wait,
2677 kthread_should_stop(),
2678 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2679 return;
2680 }
2681
2682 if (khugepaged_enabled())
2683 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2684}
2685
2686static int khugepaged(void *none)
2687{
2688 struct mm_slot *mm_slot;
2689
2690 set_freezable();
2691 set_user_nice(current, 19);
2692
2693 while (!kthread_should_stop()) {
2694 khugepaged_do_scan();
2695 khugepaged_wait_work();
2696 }
2697
2698 spin_lock(&khugepaged_mm_lock);
2699 mm_slot = khugepaged_scan.mm_slot;
2700 khugepaged_scan.mm_slot = NULL;
2701 if (mm_slot)
2702 collect_mm_slot(mm_slot);
2703 spin_unlock(&khugepaged_mm_lock);
2704 return 0;
2705}
2706
2707static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2708 unsigned long haddr, pmd_t *pmd)
2709{
2710 struct mm_struct *mm = vma->vm_mm;
2711 pgtable_t pgtable;
2712 pmd_t _pmd;
2713 int i;
2714
2715 pmdp_clear_flush(vma, haddr, pmd);
2716 /* leave pmd empty until pte is filled */
2717
2718 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2719 pmd_populate(mm, &_pmd, pgtable);
2720
2721 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2722 pte_t *pte, entry;
2723 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2724 entry = pte_mkspecial(entry);
2725 pte = pte_offset_map(&_pmd, haddr);
2726 VM_BUG_ON(!pte_none(*pte));
2727 set_pte_at(mm, haddr, pte, entry);
2728 pte_unmap(pte);
2729 }
2730 smp_wmb(); /* make pte visible before pmd */
2731 pmd_populate(mm, pmd, pgtable);
2732 put_huge_zero_page();
2733}
2734
2735void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2736 pmd_t *pmd)
2737{
2738 struct page *page;
2739 struct mm_struct *mm = vma->vm_mm;
2740 unsigned long haddr = address & HPAGE_PMD_MASK;
2741 unsigned long mmun_start; /* For mmu_notifiers */
2742 unsigned long mmun_end; /* For mmu_notifiers */
2743
2744 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2745
2746 mmun_start = haddr;
2747 mmun_end = haddr + HPAGE_PMD_SIZE;
2748 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2749 spin_lock(&mm->page_table_lock);
2750 if (unlikely(!pmd_trans_huge(*pmd))) {
2751 spin_unlock(&mm->page_table_lock);
2752 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2753 return;
2754 }
2755 if (is_huge_zero_pmd(*pmd)) {
2756 __split_huge_zero_page_pmd(vma, haddr, pmd);
2757 spin_unlock(&mm->page_table_lock);
2758 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2759 return;
2760 }
2761 page = pmd_page(*pmd);
2762 VM_BUG_ON(!page_count(page));
2763 get_page(page);
2764 spin_unlock(&mm->page_table_lock);
2765 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2766
2767 split_huge_page(page);
2768
2769 put_page(page);
2770 BUG_ON(pmd_trans_huge(*pmd));
2771}
2772
2773void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2774 pmd_t *pmd)
2775{
2776 struct vm_area_struct *vma;
2777
2778 vma = find_vma(mm, address);
2779 BUG_ON(vma == NULL);
2780 split_huge_page_pmd(vma, address, pmd);
2781}
2782
2783static void split_huge_page_address(struct mm_struct *mm,
2784 unsigned long address)
2785{
2786 pmd_t *pmd;
2787
2788 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2789
2790 pmd = mm_find_pmd(mm, address);
2791 if (!pmd)
2792 return;
2793 /*
2794 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2795 * materialize from under us.
2796 */
2797 split_huge_page_pmd_mm(mm, address, pmd);
2798}
2799
2800void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2801 unsigned long start,
2802 unsigned long end,
2803 long adjust_next)
2804{
2805 /*
2806 * If the new start address isn't hpage aligned and it could
2807 * previously contain an hugepage: check if we need to split
2808 * an huge pmd.
2809 */
2810 if (start & ~HPAGE_PMD_MASK &&
2811 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2812 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2813 split_huge_page_address(vma->vm_mm, start);
2814
2815 /*
2816 * If the new end address isn't hpage aligned and it could
2817 * previously contain an hugepage: check if we need to split
2818 * an huge pmd.
2819 */
2820 if (end & ~HPAGE_PMD_MASK &&
2821 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2822 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2823 split_huge_page_address(vma->vm_mm, end);
2824
2825 /*
2826 * If we're also updating the vma->vm_next->vm_start, if the new
2827 * vm_next->vm_start isn't page aligned and it could previously
2828 * contain an hugepage: check if we need to split an huge pmd.
2829 */
2830 if (adjust_next > 0) {
2831 struct vm_area_struct *next = vma->vm_next;
2832 unsigned long nstart = next->vm_start;
2833 nstart += adjust_next << PAGE_SHIFT;
2834 if (nstart & ~HPAGE_PMD_MASK &&
2835 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2836 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2837 split_huge_page_address(next->vm_mm, nstart);
2838 }
2839}
This page took 0.032364 seconds and 5 git commands to generate.