ipv4: fix TCP early demux
[deliverable/linux.git] / net / ipv4 / tcp_minisocks.c
... / ...
CommitLineData
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/slab.h>
24#include <linux/sysctl.h>
25#include <linux/workqueue.h>
26#include <net/tcp.h>
27#include <net/inet_common.h>
28#include <net/xfrm.h>
29
30int sysctl_tcp_syncookies __read_mostly = 1;
31EXPORT_SYMBOL(sysctl_tcp_syncookies);
32
33int sysctl_tcp_abort_on_overflow __read_mostly;
34
35struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 .hashinfo = &tcp_hashinfo,
40 .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 (unsigned long)&tcp_death_row),
42 .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 inet_twdr_twkill_work),
44/* Short-time timewait calendar */
45
46 .twcal_hand = -1,
47 .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 (unsigned long)&tcp_death_row),
49};
50EXPORT_SYMBOL_GPL(tcp_death_row);
51
52static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53{
54 if (seq == s_win)
55 return true;
56 if (after(end_seq, s_win) && before(seq, e_win))
57 return true;
58 return seq == e_win && seq == end_seq;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 * (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 * lifetime in the internet, which results in wrong conclusion, that
67 * it is set to catch "old duplicate segments" wandering out of their path.
68 * It is not quite correct. This timeout is calculated so that it exceeds
69 * maximal retransmission timeout enough to allow to lose one (or more)
70 * segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 * finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc. --ANK
88 */
89enum tcp_tw_status
90tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
91 const struct tcphdr *th)
92{
93 struct tcp_options_received tmp_opt;
94 const u8 *hash_location;
95 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
96 bool paws_reject = false;
97
98 tmp_opt.saw_tstamp = 0;
99 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
100 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
101
102 if (tmp_opt.saw_tstamp) {
103 tmp_opt.ts_recent = tcptw->tw_ts_recent;
104 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
105 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
106 }
107 }
108
109 if (tw->tw_substate == TCP_FIN_WAIT2) {
110 /* Just repeat all the checks of tcp_rcv_state_process() */
111
112 /* Out of window, send ACK */
113 if (paws_reject ||
114 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
115 tcptw->tw_rcv_nxt,
116 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
117 return TCP_TW_ACK;
118
119 if (th->rst)
120 goto kill;
121
122 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
123 goto kill_with_rst;
124
125 /* Dup ACK? */
126 if (!th->ack ||
127 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
128 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
129 inet_twsk_put(tw);
130 return TCP_TW_SUCCESS;
131 }
132
133 /* New data or FIN. If new data arrive after half-duplex close,
134 * reset.
135 */
136 if (!th->fin ||
137 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
138kill_with_rst:
139 inet_twsk_deschedule(tw, &tcp_death_row);
140 inet_twsk_put(tw);
141 return TCP_TW_RST;
142 }
143
144 /* FIN arrived, enter true time-wait state. */
145 tw->tw_substate = TCP_TIME_WAIT;
146 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 if (tmp_opt.saw_tstamp) {
148 tcptw->tw_ts_recent_stamp = get_seconds();
149 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
150 }
151
152 if (tcp_death_row.sysctl_tw_recycle &&
153 tcptw->tw_ts_recent_stamp &&
154 tcp_tw_remember_stamp(tw))
155 inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
156 TCP_TIMEWAIT_LEN);
157 else
158 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
159 TCP_TIMEWAIT_LEN);
160 return TCP_TW_ACK;
161 }
162
163 /*
164 * Now real TIME-WAIT state.
165 *
166 * RFC 1122:
167 * "When a connection is [...] on TIME-WAIT state [...]
168 * [a TCP] MAY accept a new SYN from the remote TCP to
169 * reopen the connection directly, if it:
170 *
171 * (1) assigns its initial sequence number for the new
172 * connection to be larger than the largest sequence
173 * number it used on the previous connection incarnation,
174 * and
175 *
176 * (2) returns to TIME-WAIT state if the SYN turns out
177 * to be an old duplicate".
178 */
179
180 if (!paws_reject &&
181 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
182 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
183 /* In window segment, it may be only reset or bare ack. */
184
185 if (th->rst) {
186 /* This is TIME_WAIT assassination, in two flavors.
187 * Oh well... nobody has a sufficient solution to this
188 * protocol bug yet.
189 */
190 if (sysctl_tcp_rfc1337 == 0) {
191kill:
192 inet_twsk_deschedule(tw, &tcp_death_row);
193 inet_twsk_put(tw);
194 return TCP_TW_SUCCESS;
195 }
196 }
197 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
198 TCP_TIMEWAIT_LEN);
199
200 if (tmp_opt.saw_tstamp) {
201 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
202 tcptw->tw_ts_recent_stamp = get_seconds();
203 }
204
205 inet_twsk_put(tw);
206 return TCP_TW_SUCCESS;
207 }
208
209 /* Out of window segment.
210
211 All the segments are ACKed immediately.
212
213 The only exception is new SYN. We accept it, if it is
214 not old duplicate and we are not in danger to be killed
215 by delayed old duplicates. RFC check is that it has
216 newer sequence number works at rates <40Mbit/sec.
217 However, if paws works, it is reliable AND even more,
218 we even may relax silly seq space cutoff.
219
220 RED-PEN: we violate main RFC requirement, if this SYN will appear
221 old duplicate (i.e. we receive RST in reply to SYN-ACK),
222 we must return socket to time-wait state. It is not good,
223 but not fatal yet.
224 */
225
226 if (th->syn && !th->rst && !th->ack && !paws_reject &&
227 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228 (tmp_opt.saw_tstamp &&
229 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231 if (isn == 0)
232 isn++;
233 TCP_SKB_CB(skb)->when = isn;
234 return TCP_TW_SYN;
235 }
236
237 if (paws_reject)
238 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240 if (!th->rst) {
241 /* In this case we must reset the TIMEWAIT timer.
242 *
243 * If it is ACKless SYN it may be both old duplicate
244 * and new good SYN with random sequence number <rcv_nxt.
245 * Do not reschedule in the last case.
246 */
247 if (paws_reject || th->ack)
248 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
249 TCP_TIMEWAIT_LEN);
250
251 /* Send ACK. Note, we do not put the bucket,
252 * it will be released by caller.
253 */
254 return TCP_TW_ACK;
255 }
256 inet_twsk_put(tw);
257 return TCP_TW_SUCCESS;
258}
259EXPORT_SYMBOL(tcp_timewait_state_process);
260
261/*
262 * Move a socket to time-wait or dead fin-wait-2 state.
263 */
264void tcp_time_wait(struct sock *sk, int state, int timeo)
265{
266 struct inet_timewait_sock *tw = NULL;
267 const struct inet_connection_sock *icsk = inet_csk(sk);
268 const struct tcp_sock *tp = tcp_sk(sk);
269 bool recycle_ok = false;
270
271 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
272 recycle_ok = tcp_remember_stamp(sk);
273
274 if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
275 tw = inet_twsk_alloc(sk, state);
276
277 if (tw != NULL) {
278 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
279 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
280 struct inet_sock *inet = inet_sk(sk);
281
282 tw->tw_transparent = inet->transparent;
283 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
284 tcptw->tw_rcv_nxt = tp->rcv_nxt;
285 tcptw->tw_snd_nxt = tp->snd_nxt;
286 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
287 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
288 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
289
290#if IS_ENABLED(CONFIG_IPV6)
291 if (tw->tw_family == PF_INET6) {
292 struct ipv6_pinfo *np = inet6_sk(sk);
293 struct inet6_timewait_sock *tw6;
294
295 tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
296 tw6 = inet6_twsk((struct sock *)tw);
297 tw6->tw_v6_daddr = np->daddr;
298 tw6->tw_v6_rcv_saddr = np->rcv_saddr;
299 tw->tw_tclass = np->tclass;
300 tw->tw_ipv6only = np->ipv6only;
301 }
302#endif
303
304#ifdef CONFIG_TCP_MD5SIG
305 /*
306 * The timewait bucket does not have the key DB from the
307 * sock structure. We just make a quick copy of the
308 * md5 key being used (if indeed we are using one)
309 * so the timewait ack generating code has the key.
310 */
311 do {
312 struct tcp_md5sig_key *key;
313 tcptw->tw_md5_key = NULL;
314 key = tp->af_specific->md5_lookup(sk, sk);
315 if (key != NULL) {
316 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
317 if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
318 BUG();
319 }
320 } while (0);
321#endif
322
323 /* Linkage updates. */
324 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
325
326 /* Get the TIME_WAIT timeout firing. */
327 if (timeo < rto)
328 timeo = rto;
329
330 if (recycle_ok) {
331 tw->tw_timeout = rto;
332 } else {
333 tw->tw_timeout = TCP_TIMEWAIT_LEN;
334 if (state == TCP_TIME_WAIT)
335 timeo = TCP_TIMEWAIT_LEN;
336 }
337
338 inet_twsk_schedule(tw, &tcp_death_row, timeo,
339 TCP_TIMEWAIT_LEN);
340 inet_twsk_put(tw);
341 } else {
342 /* Sorry, if we're out of memory, just CLOSE this
343 * socket up. We've got bigger problems than
344 * non-graceful socket closings.
345 */
346 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
347 }
348
349 tcp_update_metrics(sk);
350 tcp_done(sk);
351}
352
353void tcp_twsk_destructor(struct sock *sk)
354{
355#ifdef CONFIG_TCP_MD5SIG
356 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358 if (twsk->tw_md5_key) {
359 tcp_free_md5sig_pool();
360 kfree_rcu(twsk->tw_md5_key, rcu);
361 }
362#endif
363}
364EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
365
366static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
367 struct request_sock *req)
368{
369 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
370}
371
372/* This is not only more efficient than what we used to do, it eliminates
373 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
374 *
375 * Actually, we could lots of memory writes here. tp of listening
376 * socket contains all necessary default parameters.
377 */
378struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
379{
380 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
381
382 if (newsk != NULL) {
383 const struct inet_request_sock *ireq = inet_rsk(req);
384 struct tcp_request_sock *treq = tcp_rsk(req);
385 struct inet_connection_sock *newicsk = inet_csk(newsk);
386 struct tcp_sock *newtp = tcp_sk(newsk);
387 struct tcp_sock *oldtp = tcp_sk(sk);
388 struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
389
390 newsk->sk_rx_dst = dst_clone(skb_dst(skb));
391 inet_sk(newsk)->rx_dst_ifindex = skb->skb_iif;
392
393 /* TCP Cookie Transactions require space for the cookie pair,
394 * as it differs for each connection. There is no need to
395 * copy any s_data_payload stored at the original socket.
396 * Failure will prevent resuming the connection.
397 *
398 * Presumed copied, in order of appearance:
399 * cookie_in_always, cookie_out_never
400 */
401 if (oldcvp != NULL) {
402 struct tcp_cookie_values *newcvp =
403 kzalloc(sizeof(*newtp->cookie_values),
404 GFP_ATOMIC);
405
406 if (newcvp != NULL) {
407 kref_init(&newcvp->kref);
408 newcvp->cookie_desired =
409 oldcvp->cookie_desired;
410 newtp->cookie_values = newcvp;
411 } else {
412 /* Not Yet Implemented */
413 newtp->cookie_values = NULL;
414 }
415 }
416
417 /* Now setup tcp_sock */
418 newtp->pred_flags = 0;
419
420 newtp->rcv_wup = newtp->copied_seq =
421 newtp->rcv_nxt = treq->rcv_isn + 1;
422
423 newtp->snd_sml = newtp->snd_una =
424 newtp->snd_nxt = newtp->snd_up =
425 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
426
427 tcp_prequeue_init(newtp);
428 INIT_LIST_HEAD(&newtp->tsq_node);
429
430 tcp_init_wl(newtp, treq->rcv_isn);
431
432 newtp->srtt = 0;
433 newtp->mdev = TCP_TIMEOUT_INIT;
434 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
435
436 newtp->packets_out = 0;
437 newtp->retrans_out = 0;
438 newtp->sacked_out = 0;
439 newtp->fackets_out = 0;
440 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 tcp_enable_early_retrans(newtp);
442
443 /* So many TCP implementations out there (incorrectly) count the
444 * initial SYN frame in their delayed-ACK and congestion control
445 * algorithms that we must have the following bandaid to talk
446 * efficiently to them. -DaveM
447 */
448 newtp->snd_cwnd = TCP_INIT_CWND;
449 newtp->snd_cwnd_cnt = 0;
450 newtp->bytes_acked = 0;
451
452 newtp->frto_counter = 0;
453 newtp->frto_highmark = 0;
454
455 if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
456 !try_module_get(newicsk->icsk_ca_ops->owner))
457 newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
458
459 tcp_set_ca_state(newsk, TCP_CA_Open);
460 tcp_init_xmit_timers(newsk);
461 skb_queue_head_init(&newtp->out_of_order_queue);
462 newtp->write_seq = newtp->pushed_seq =
463 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
464
465 newtp->rx_opt.saw_tstamp = 0;
466
467 newtp->rx_opt.dsack = 0;
468 newtp->rx_opt.num_sacks = 0;
469
470 newtp->urg_data = 0;
471
472 if (sock_flag(newsk, SOCK_KEEPOPEN))
473 inet_csk_reset_keepalive_timer(newsk,
474 keepalive_time_when(newtp));
475
476 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
477 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
478 if (sysctl_tcp_fack)
479 tcp_enable_fack(newtp);
480 }
481 newtp->window_clamp = req->window_clamp;
482 newtp->rcv_ssthresh = req->rcv_wnd;
483 newtp->rcv_wnd = req->rcv_wnd;
484 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
485 if (newtp->rx_opt.wscale_ok) {
486 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
487 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
488 } else {
489 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
490 newtp->window_clamp = min(newtp->window_clamp, 65535U);
491 }
492 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
493 newtp->rx_opt.snd_wscale);
494 newtp->max_window = newtp->snd_wnd;
495
496 if (newtp->rx_opt.tstamp_ok) {
497 newtp->rx_opt.ts_recent = req->ts_recent;
498 newtp->rx_opt.ts_recent_stamp = get_seconds();
499 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
500 } else {
501 newtp->rx_opt.ts_recent_stamp = 0;
502 newtp->tcp_header_len = sizeof(struct tcphdr);
503 }
504#ifdef CONFIG_TCP_MD5SIG
505 newtp->md5sig_info = NULL; /*XXX*/
506 if (newtp->af_specific->md5_lookup(sk, newsk))
507 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
508#endif
509 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
510 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
511 newtp->rx_opt.mss_clamp = req->mss;
512 TCP_ECN_openreq_child(newtp, req);
513
514 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
515 }
516 return newsk;
517}
518EXPORT_SYMBOL(tcp_create_openreq_child);
519
520/*
521 * Process an incoming packet for SYN_RECV sockets represented
522 * as a request_sock.
523 */
524
525struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
526 struct request_sock *req,
527 struct request_sock **prev)
528{
529 struct tcp_options_received tmp_opt;
530 const u8 *hash_location;
531 struct sock *child;
532 const struct tcphdr *th = tcp_hdr(skb);
533 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
534 bool paws_reject = false;
535
536 tmp_opt.saw_tstamp = 0;
537 if (th->doff > (sizeof(struct tcphdr)>>2)) {
538 tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
539
540 if (tmp_opt.saw_tstamp) {
541 tmp_opt.ts_recent = req->ts_recent;
542 /* We do not store true stamp, but it is not required,
543 * it can be estimated (approximately)
544 * from another data.
545 */
546 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
547 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
548 }
549 }
550
551 /* Check for pure retransmitted SYN. */
552 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
553 flg == TCP_FLAG_SYN &&
554 !paws_reject) {
555 /*
556 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
557 * this case on figure 6 and figure 8, but formal
558 * protocol description says NOTHING.
559 * To be more exact, it says that we should send ACK,
560 * because this segment (at least, if it has no data)
561 * is out of window.
562 *
563 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
564 * describe SYN-RECV state. All the description
565 * is wrong, we cannot believe to it and should
566 * rely only on common sense and implementation
567 * experience.
568 *
569 * Enforce "SYN-ACK" according to figure 8, figure 6
570 * of RFC793, fixed by RFC1122.
571 */
572 req->rsk_ops->rtx_syn_ack(sk, req, NULL);
573 return NULL;
574 }
575
576 /* Further reproduces section "SEGMENT ARRIVES"
577 for state SYN-RECEIVED of RFC793.
578 It is broken, however, it does not work only
579 when SYNs are crossed.
580
581 You would think that SYN crossing is impossible here, since
582 we should have a SYN_SENT socket (from connect()) on our end,
583 but this is not true if the crossed SYNs were sent to both
584 ends by a malicious third party. We must defend against this,
585 and to do that we first verify the ACK (as per RFC793, page
586 36) and reset if it is invalid. Is this a true full defense?
587 To convince ourselves, let us consider a way in which the ACK
588 test can still pass in this 'malicious crossed SYNs' case.
589 Malicious sender sends identical SYNs (and thus identical sequence
590 numbers) to both A and B:
591
592 A: gets SYN, seq=7
593 B: gets SYN, seq=7
594
595 By our good fortune, both A and B select the same initial
596 send sequence number of seven :-)
597
598 A: sends SYN|ACK, seq=7, ack_seq=8
599 B: sends SYN|ACK, seq=7, ack_seq=8
600
601 So we are now A eating this SYN|ACK, ACK test passes. So
602 does sequence test, SYN is truncated, and thus we consider
603 it a bare ACK.
604
605 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
606 bare ACK. Otherwise, we create an established connection. Both
607 ends (listening sockets) accept the new incoming connection and try
608 to talk to each other. 8-)
609
610 Note: This case is both harmless, and rare. Possibility is about the
611 same as us discovering intelligent life on another plant tomorrow.
612
613 But generally, we should (RFC lies!) to accept ACK
614 from SYNACK both here and in tcp_rcv_state_process().
615 tcp_rcv_state_process() does not, hence, we do not too.
616
617 Note that the case is absolutely generic:
618 we cannot optimize anything here without
619 violating protocol. All the checks must be made
620 before attempt to create socket.
621 */
622
623 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
624 * and the incoming segment acknowledges something not yet
625 * sent (the segment carries an unacceptable ACK) ...
626 * a reset is sent."
627 *
628 * Invalid ACK: reset will be sent by listening socket
629 */
630 if ((flg & TCP_FLAG_ACK) &&
631 (TCP_SKB_CB(skb)->ack_seq !=
632 tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
633 return sk;
634
635 /* Also, it would be not so bad idea to check rcv_tsecr, which
636 * is essentially ACK extension and too early or too late values
637 * should cause reset in unsynchronized states.
638 */
639
640 /* RFC793: "first check sequence number". */
641
642 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
643 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
644 /* Out of window: send ACK and drop. */
645 if (!(flg & TCP_FLAG_RST))
646 req->rsk_ops->send_ack(sk, skb, req);
647 if (paws_reject)
648 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
649 return NULL;
650 }
651
652 /* In sequence, PAWS is OK. */
653
654 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
655 req->ts_recent = tmp_opt.rcv_tsval;
656
657 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
658 /* Truncate SYN, it is out of window starting
659 at tcp_rsk(req)->rcv_isn + 1. */
660 flg &= ~TCP_FLAG_SYN;
661 }
662
663 /* RFC793: "second check the RST bit" and
664 * "fourth, check the SYN bit"
665 */
666 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
667 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
668 goto embryonic_reset;
669 }
670
671 /* ACK sequence verified above, just make sure ACK is
672 * set. If ACK not set, just silently drop the packet.
673 */
674 if (!(flg & TCP_FLAG_ACK))
675 return NULL;
676
677 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
678 if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
679 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
680 inet_rsk(req)->acked = 1;
681 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
682 return NULL;
683 }
684 if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
685 tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
686 else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
687 tcp_rsk(req)->snt_synack = 0;
688
689 /* OK, ACK is valid, create big socket and
690 * feed this segment to it. It will repeat all
691 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
692 * ESTABLISHED STATE. If it will be dropped after
693 * socket is created, wait for troubles.
694 */
695 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
696 if (child == NULL)
697 goto listen_overflow;
698
699 inet_csk_reqsk_queue_unlink(sk, req, prev);
700 inet_csk_reqsk_queue_removed(sk, req);
701
702 inet_csk_reqsk_queue_add(sk, req, child);
703 return child;
704
705listen_overflow:
706 if (!sysctl_tcp_abort_on_overflow) {
707 inet_rsk(req)->acked = 1;
708 return NULL;
709 }
710
711embryonic_reset:
712 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
713 if (!(flg & TCP_FLAG_RST))
714 req->rsk_ops->send_reset(sk, skb);
715
716 inet_csk_reqsk_queue_drop(sk, req, prev);
717 return NULL;
718}
719EXPORT_SYMBOL(tcp_check_req);
720
721/*
722 * Queue segment on the new socket if the new socket is active,
723 * otherwise we just shortcircuit this and continue with
724 * the new socket.
725 */
726
727int tcp_child_process(struct sock *parent, struct sock *child,
728 struct sk_buff *skb)
729{
730 int ret = 0;
731 int state = child->sk_state;
732
733 if (!sock_owned_by_user(child)) {
734 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
735 skb->len);
736 /* Wakeup parent, send SIGIO */
737 if (state == TCP_SYN_RECV && child->sk_state != state)
738 parent->sk_data_ready(parent, 0);
739 } else {
740 /* Alas, it is possible again, because we do lookup
741 * in main socket hash table and lock on listening
742 * socket does not protect us more.
743 */
744 __sk_add_backlog(child, skb);
745 }
746
747 bh_unlock_sock(child);
748 sock_put(child);
749 return ret;
750}
751EXPORT_SYMBOL(tcp_child_process);
This page took 0.026275 seconds and 5 git commands to generate.