rtl8187: use different ANAPARAM*_OFF values for 8187B
[deliverable/linux.git] / net / mac80211 / rx.c
... / ...
CommitLineData
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/jiffies.h>
13#include <linux/kernel.h>
14#include <linux/skbuff.h>
15#include <linux/netdevice.h>
16#include <linux/etherdevice.h>
17#include <linux/rcupdate.h>
18#include <net/mac80211.h>
19#include <net/ieee80211_radiotap.h>
20
21#include "ieee80211_i.h"
22#include "led.h"
23#include "mesh.h"
24#include "wep.h"
25#include "wpa.h"
26#include "tkip.h"
27#include "wme.h"
28
29u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
30 struct tid_ampdu_rx *tid_agg_rx,
31 struct sk_buff *skb, u16 mpdu_seq_num,
32 int bar_req);
33/*
34 * monitor mode reception
35 *
36 * This function cleans up the SKB, i.e. it removes all the stuff
37 * only useful for monitoring.
38 */
39static struct sk_buff *remove_monitor_info(struct ieee80211_local *local,
40 struct sk_buff *skb,
41 int rtap_len)
42{
43 skb_pull(skb, rtap_len);
44
45 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS) {
46 if (likely(skb->len > FCS_LEN))
47 skb_trim(skb, skb->len - FCS_LEN);
48 else {
49 /* driver bug */
50 WARN_ON(1);
51 dev_kfree_skb(skb);
52 skb = NULL;
53 }
54 }
55
56 return skb;
57}
58
59static inline int should_drop_frame(struct ieee80211_rx_status *status,
60 struct sk_buff *skb,
61 int present_fcs_len,
62 int radiotap_len)
63{
64 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
65
66 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
67 return 1;
68 if (unlikely(skb->len < 16 + present_fcs_len + radiotap_len))
69 return 1;
70 if (ieee80211_is_ctl(hdr->frame_control) &&
71 !ieee80211_is_pspoll(hdr->frame_control) &&
72 !ieee80211_is_back_req(hdr->frame_control))
73 return 1;
74 return 0;
75}
76
77static int
78ieee80211_rx_radiotap_len(struct ieee80211_local *local,
79 struct ieee80211_rx_status *status)
80{
81 int len;
82
83 /* always present fields */
84 len = sizeof(struct ieee80211_radiotap_header) + 9;
85
86 if (status->flag & RX_FLAG_TSFT)
87 len += 8;
88 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB ||
89 local->hw.flags & IEEE80211_HW_SIGNAL_DBM)
90 len += 1;
91 if (local->hw.flags & IEEE80211_HW_NOISE_DBM)
92 len += 1;
93
94 if (len & 1) /* padding for RX_FLAGS if necessary */
95 len++;
96
97 /* make sure radiotap starts at a naturally aligned address */
98 if (len % 8)
99 len = roundup(len, 8);
100
101 return len;
102}
103
104/**
105 * ieee80211_add_rx_radiotap_header - add radiotap header
106 *
107 * add a radiotap header containing all the fields which the hardware provided.
108 */
109static void
110ieee80211_add_rx_radiotap_header(struct ieee80211_local *local,
111 struct sk_buff *skb,
112 struct ieee80211_rx_status *status,
113 struct ieee80211_rate *rate,
114 int rtap_len)
115{
116 struct ieee80211_radiotap_header *rthdr;
117 unsigned char *pos;
118
119 rthdr = (struct ieee80211_radiotap_header *)skb_push(skb, rtap_len);
120 memset(rthdr, 0, rtap_len);
121
122 /* radiotap header, set always present flags */
123 rthdr->it_present =
124 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
125 (1 << IEEE80211_RADIOTAP_RATE) |
126 (1 << IEEE80211_RADIOTAP_CHANNEL) |
127 (1 << IEEE80211_RADIOTAP_ANTENNA) |
128 (1 << IEEE80211_RADIOTAP_RX_FLAGS));
129 rthdr->it_len = cpu_to_le16(rtap_len);
130
131 pos = (unsigned char *)(rthdr+1);
132
133 /* the order of the following fields is important */
134
135 /* IEEE80211_RADIOTAP_TSFT */
136 if (status->flag & RX_FLAG_TSFT) {
137 *(__le64 *)pos = cpu_to_le64(status->mactime);
138 rthdr->it_present |=
139 cpu_to_le32(1 << IEEE80211_RADIOTAP_TSFT);
140 pos += 8;
141 }
142
143 /* IEEE80211_RADIOTAP_FLAGS */
144 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
145 *pos |= IEEE80211_RADIOTAP_F_FCS;
146 pos++;
147
148 /* IEEE80211_RADIOTAP_RATE */
149 *pos = rate->bitrate / 5;
150 pos++;
151
152 /* IEEE80211_RADIOTAP_CHANNEL */
153 *(__le16 *)pos = cpu_to_le16(status->freq);
154 pos += 2;
155 if (status->band == IEEE80211_BAND_5GHZ)
156 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_OFDM |
157 IEEE80211_CHAN_5GHZ);
158 else
159 *(__le16 *)pos = cpu_to_le16(IEEE80211_CHAN_DYN |
160 IEEE80211_CHAN_2GHZ);
161 pos += 2;
162
163 /* IEEE80211_RADIOTAP_DBM_ANTSIGNAL */
164 if (local->hw.flags & IEEE80211_HW_SIGNAL_DBM) {
165 *pos = status->signal;
166 rthdr->it_present |=
167 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL);
168 pos++;
169 }
170
171 /* IEEE80211_RADIOTAP_DBM_ANTNOISE */
172 if (local->hw.flags & IEEE80211_HW_NOISE_DBM) {
173 *pos = status->noise;
174 rthdr->it_present |=
175 cpu_to_le32(1 << IEEE80211_RADIOTAP_DBM_ANTNOISE);
176 pos++;
177 }
178
179 /* IEEE80211_RADIOTAP_LOCK_QUALITY is missing */
180
181 /* IEEE80211_RADIOTAP_ANTENNA */
182 *pos = status->antenna;
183 pos++;
184
185 /* IEEE80211_RADIOTAP_DB_ANTSIGNAL */
186 if (local->hw.flags & IEEE80211_HW_SIGNAL_DB) {
187 *pos = status->signal;
188 rthdr->it_present |=
189 cpu_to_le32(1 << IEEE80211_RADIOTAP_DB_ANTSIGNAL);
190 pos++;
191 }
192
193 /* IEEE80211_RADIOTAP_DB_ANTNOISE is not used */
194
195 /* IEEE80211_RADIOTAP_RX_FLAGS */
196 /* ensure 2 byte alignment for the 2 byte field as required */
197 if ((pos - (unsigned char *)rthdr) & 1)
198 pos++;
199 /* FIXME: when radiotap gets a 'bad PLCP' flag use it here */
200 if (status->flag & (RX_FLAG_FAILED_FCS_CRC | RX_FLAG_FAILED_PLCP_CRC))
201 *(__le16 *)pos |= cpu_to_le16(IEEE80211_RADIOTAP_F_RX_BADFCS);
202 pos += 2;
203}
204
205/*
206 * This function copies a received frame to all monitor interfaces and
207 * returns a cleaned-up SKB that no longer includes the FCS nor the
208 * radiotap header the driver might have added.
209 */
210static struct sk_buff *
211ieee80211_rx_monitor(struct ieee80211_local *local, struct sk_buff *origskb,
212 struct ieee80211_rx_status *status,
213 struct ieee80211_rate *rate)
214{
215 struct ieee80211_sub_if_data *sdata;
216 int needed_headroom = 0;
217 struct sk_buff *skb, *skb2;
218 struct net_device *prev_dev = NULL;
219 int present_fcs_len = 0;
220 int rtap_len = 0;
221
222 /*
223 * First, we may need to make a copy of the skb because
224 * (1) we need to modify it for radiotap (if not present), and
225 * (2) the other RX handlers will modify the skb we got.
226 *
227 * We don't need to, of course, if we aren't going to return
228 * the SKB because it has a bad FCS/PLCP checksum.
229 */
230 if (status->flag & RX_FLAG_RADIOTAP)
231 rtap_len = ieee80211_get_radiotap_len(origskb->data);
232 else
233 /* room for the radiotap header based on driver features */
234 needed_headroom = ieee80211_rx_radiotap_len(local, status);
235
236 if (local->hw.flags & IEEE80211_HW_RX_INCLUDES_FCS)
237 present_fcs_len = FCS_LEN;
238
239 if (!local->monitors) {
240 if (should_drop_frame(status, origskb, present_fcs_len,
241 rtap_len)) {
242 dev_kfree_skb(origskb);
243 return NULL;
244 }
245
246 return remove_monitor_info(local, origskb, rtap_len);
247 }
248
249 if (should_drop_frame(status, origskb, present_fcs_len, rtap_len)) {
250 /* only need to expand headroom if necessary */
251 skb = origskb;
252 origskb = NULL;
253
254 /*
255 * This shouldn't trigger often because most devices have an
256 * RX header they pull before we get here, and that should
257 * be big enough for our radiotap information. We should
258 * probably export the length to drivers so that we can have
259 * them allocate enough headroom to start with.
260 */
261 if (skb_headroom(skb) < needed_headroom &&
262 pskb_expand_head(skb, needed_headroom, 0, GFP_ATOMIC)) {
263 dev_kfree_skb(skb);
264 return NULL;
265 }
266 } else {
267 /*
268 * Need to make a copy and possibly remove radiotap header
269 * and FCS from the original.
270 */
271 skb = skb_copy_expand(origskb, needed_headroom, 0, GFP_ATOMIC);
272
273 origskb = remove_monitor_info(local, origskb, rtap_len);
274
275 if (!skb)
276 return origskb;
277 }
278
279 /* if necessary, prepend radiotap information */
280 if (!(status->flag & RX_FLAG_RADIOTAP))
281 ieee80211_add_rx_radiotap_header(local, skb, status, rate,
282 needed_headroom);
283
284 skb_reset_mac_header(skb);
285 skb->ip_summed = CHECKSUM_UNNECESSARY;
286 skb->pkt_type = PACKET_OTHERHOST;
287 skb->protocol = htons(ETH_P_802_2);
288
289 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
290 if (!netif_running(sdata->dev))
291 continue;
292
293 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR)
294 continue;
295
296 if (sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES)
297 continue;
298
299 if (prev_dev) {
300 skb2 = skb_clone(skb, GFP_ATOMIC);
301 if (skb2) {
302 skb2->dev = prev_dev;
303 netif_rx(skb2);
304 }
305 }
306
307 prev_dev = sdata->dev;
308 sdata->dev->stats.rx_packets++;
309 sdata->dev->stats.rx_bytes += skb->len;
310 }
311
312 if (prev_dev) {
313 skb->dev = prev_dev;
314 netif_rx(skb);
315 } else
316 dev_kfree_skb(skb);
317
318 return origskb;
319}
320
321
322static void ieee80211_parse_qos(struct ieee80211_rx_data *rx)
323{
324 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
325 int tid;
326
327 /* does the frame have a qos control field? */
328 if (ieee80211_is_data_qos(hdr->frame_control)) {
329 u8 *qc = ieee80211_get_qos_ctl(hdr);
330 /* frame has qos control */
331 tid = *qc & IEEE80211_QOS_CTL_TID_MASK;
332 if (*qc & IEEE80211_QOS_CONTROL_A_MSDU_PRESENT)
333 rx->flags |= IEEE80211_RX_AMSDU;
334 else
335 rx->flags &= ~IEEE80211_RX_AMSDU;
336 } else {
337 if (unlikely(ieee80211_is_mgmt(hdr->frame_control))) {
338 /* Separate TID for management frames */
339 tid = NUM_RX_DATA_QUEUES - 1;
340 } else {
341 /* no qos control present */
342 tid = 0; /* 802.1d - Best Effort */
343 }
344 }
345
346 rx->queue = tid;
347 /* Set skb->priority to 1d tag if highest order bit of TID is not set.
348 * For now, set skb->priority to 0 for other cases. */
349 rx->skb->priority = (tid > 7) ? 0 : tid;
350}
351
352static void ieee80211_verify_ip_alignment(struct ieee80211_rx_data *rx)
353{
354#ifdef CONFIG_MAC80211_DEBUG_PACKET_ALIGNMENT
355 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
356 int hdrlen;
357
358 if (!ieee80211_is_data_present(hdr->frame_control))
359 return;
360
361 /*
362 * Drivers are required to align the payload data in a way that
363 * guarantees that the contained IP header is aligned to a four-
364 * byte boundary. In the case of regular frames, this simply means
365 * aligning the payload to a four-byte boundary (because either
366 * the IP header is directly contained, or IV/RFC1042 headers that
367 * have a length divisible by four are in front of it.
368 *
369 * With A-MSDU frames, however, the payload data address must
370 * yield two modulo four because there are 14-byte 802.3 headers
371 * within the A-MSDU frames that push the IP header further back
372 * to a multiple of four again. Thankfully, the specs were sane
373 * enough this time around to require padding each A-MSDU subframe
374 * to a length that is a multiple of four.
375 *
376 * Padding like atheros hardware adds which is inbetween the 802.11
377 * header and the payload is not supported, the driver is required
378 * to move the 802.11 header further back in that case.
379 */
380 hdrlen = ieee80211_hdrlen(hdr->frame_control);
381 if (rx->flags & IEEE80211_RX_AMSDU)
382 hdrlen += ETH_HLEN;
383 WARN_ON_ONCE(((unsigned long)(rx->skb->data + hdrlen)) & 3);
384#endif
385}
386
387
388/* rx handlers */
389
390static ieee80211_rx_result debug_noinline
391ieee80211_rx_h_passive_scan(struct ieee80211_rx_data *rx)
392{
393 struct ieee80211_local *local = rx->local;
394 struct sk_buff *skb = rx->skb;
395
396 if (unlikely(local->sta_hw_scanning))
397 return ieee80211_sta_rx_scan(rx->dev, skb, rx->status);
398
399 if (unlikely(local->sta_sw_scanning)) {
400 /* drop all the other packets during a software scan anyway */
401 if (ieee80211_sta_rx_scan(rx->dev, skb, rx->status)
402 != RX_QUEUED)
403 dev_kfree_skb(skb);
404 return RX_QUEUED;
405 }
406
407 if (unlikely(rx->flags & IEEE80211_RX_IN_SCAN)) {
408 /* scanning finished during invoking of handlers */
409 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
410 return RX_DROP_UNUSABLE;
411 }
412
413 return RX_CONTINUE;
414}
415
416static ieee80211_rx_result
417ieee80211_rx_mesh_check(struct ieee80211_rx_data *rx)
418{
419 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
420 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
421
422 if (ieee80211_is_data(hdr->frame_control)) {
423 if (!ieee80211_has_a4(hdr->frame_control))
424 return RX_DROP_MONITOR;
425 if (memcmp(hdr->addr4, rx->dev->dev_addr, ETH_ALEN) == 0)
426 return RX_DROP_MONITOR;
427 }
428
429 /* If there is not an established peer link and this is not a peer link
430 * establisment frame, beacon or probe, drop the frame.
431 */
432
433 if (!rx->sta || sta_plink_state(rx->sta) != PLINK_ESTAB) {
434 struct ieee80211_mgmt *mgmt;
435
436 if (!ieee80211_is_mgmt(hdr->frame_control))
437 return RX_DROP_MONITOR;
438
439 if (ieee80211_is_action(hdr->frame_control)) {
440 mgmt = (struct ieee80211_mgmt *)hdr;
441 if (mgmt->u.action.category != PLINK_CATEGORY)
442 return RX_DROP_MONITOR;
443 return RX_CONTINUE;
444 }
445
446 if (ieee80211_is_probe_req(hdr->frame_control) ||
447 ieee80211_is_probe_resp(hdr->frame_control) ||
448 ieee80211_is_beacon(hdr->frame_control))
449 return RX_CONTINUE;
450
451 return RX_DROP_MONITOR;
452
453 }
454
455#define msh_h_get(h, l) ((struct ieee80211s_hdr *) ((u8 *)h + l))
456
457 if (ieee80211_is_data(hdr->frame_control) &&
458 is_multicast_ether_addr(hdr->addr1) &&
459 mesh_rmc_check(hdr->addr4, msh_h_get(hdr, hdrlen), rx->dev))
460 return RX_DROP_MONITOR;
461#undef msh_h_get
462
463 return RX_CONTINUE;
464}
465
466
467static ieee80211_rx_result debug_noinline
468ieee80211_rx_h_check(struct ieee80211_rx_data *rx)
469{
470 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
471
472 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
473 if (rx->sta && !is_multicast_ether_addr(hdr->addr1)) {
474 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
475 rx->sta->last_seq_ctrl[rx->queue] ==
476 hdr->seq_ctrl)) {
477 if (rx->flags & IEEE80211_RX_RA_MATCH) {
478 rx->local->dot11FrameDuplicateCount++;
479 rx->sta->num_duplicates++;
480 }
481 return RX_DROP_MONITOR;
482 } else
483 rx->sta->last_seq_ctrl[rx->queue] = hdr->seq_ctrl;
484 }
485
486 if (unlikely(rx->skb->len < 16)) {
487 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
488 return RX_DROP_MONITOR;
489 }
490
491 /* Drop disallowed frame classes based on STA auth/assoc state;
492 * IEEE 802.11, Chap 5.5.
493 *
494 * 80211.o does filtering only based on association state, i.e., it
495 * drops Class 3 frames from not associated stations. hostapd sends
496 * deauth/disassoc frames when needed. In addition, hostapd is
497 * responsible for filtering on both auth and assoc states.
498 */
499
500 if (ieee80211_vif_is_mesh(&rx->sdata->vif))
501 return ieee80211_rx_mesh_check(rx);
502
503 if (unlikely((ieee80211_is_data(hdr->frame_control) ||
504 ieee80211_is_pspoll(hdr->frame_control)) &&
505 rx->sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
506 (!rx->sta || !test_sta_flags(rx->sta, WLAN_STA_ASSOC)))) {
507 if ((!ieee80211_has_fromds(hdr->frame_control) &&
508 !ieee80211_has_tods(hdr->frame_control) &&
509 ieee80211_is_data(hdr->frame_control)) ||
510 !(rx->flags & IEEE80211_RX_RA_MATCH)) {
511 /* Drop IBSS frames and frames for other hosts
512 * silently. */
513 return RX_DROP_MONITOR;
514 }
515
516 return RX_DROP_MONITOR;
517 }
518
519 return RX_CONTINUE;
520}
521
522
523static ieee80211_rx_result debug_noinline
524ieee80211_rx_h_decrypt(struct ieee80211_rx_data *rx)
525{
526 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
527 int keyidx;
528 int hdrlen;
529 ieee80211_rx_result result = RX_DROP_UNUSABLE;
530 struct ieee80211_key *stakey = NULL;
531
532 /*
533 * Key selection 101
534 *
535 * There are three types of keys:
536 * - GTK (group keys)
537 * - PTK (pairwise keys)
538 * - STK (station-to-station pairwise keys)
539 *
540 * When selecting a key, we have to distinguish between multicast
541 * (including broadcast) and unicast frames, the latter can only
542 * use PTKs and STKs while the former always use GTKs. Unless, of
543 * course, actual WEP keys ("pre-RSNA") are used, then unicast
544 * frames can also use key indizes like GTKs. Hence, if we don't
545 * have a PTK/STK we check the key index for a WEP key.
546 *
547 * Note that in a regular BSS, multicast frames are sent by the
548 * AP only, associated stations unicast the frame to the AP first
549 * which then multicasts it on their behalf.
550 *
551 * There is also a slight problem in IBSS mode: GTKs are negotiated
552 * with each station, that is something we don't currently handle.
553 * The spec seems to expect that one negotiates the same key with
554 * every station but there's no such requirement; VLANs could be
555 * possible.
556 */
557
558 if (!ieee80211_has_protected(hdr->frame_control))
559 return RX_CONTINUE;
560
561 /*
562 * No point in finding a key and decrypting if the frame is neither
563 * addressed to us nor a multicast frame.
564 */
565 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
566 return RX_CONTINUE;
567
568 if (rx->sta)
569 stakey = rcu_dereference(rx->sta->key);
570
571 if (!is_multicast_ether_addr(hdr->addr1) && stakey) {
572 rx->key = stakey;
573 } else {
574 /*
575 * The device doesn't give us the IV so we won't be
576 * able to look up the key. That's ok though, we
577 * don't need to decrypt the frame, we just won't
578 * be able to keep statistics accurate.
579 * Except for key threshold notifications, should
580 * we somehow allow the driver to tell us which key
581 * the hardware used if this flag is set?
582 */
583 if ((rx->status->flag & RX_FLAG_DECRYPTED) &&
584 (rx->status->flag & RX_FLAG_IV_STRIPPED))
585 return RX_CONTINUE;
586
587 hdrlen = ieee80211_hdrlen(hdr->frame_control);
588
589 if (rx->skb->len < 8 + hdrlen)
590 return RX_DROP_UNUSABLE; /* TODO: count this? */
591
592 /*
593 * no need to call ieee80211_wep_get_keyidx,
594 * it verifies a bunch of things we've done already
595 */
596 keyidx = rx->skb->data[hdrlen + 3] >> 6;
597
598 rx->key = rcu_dereference(rx->sdata->keys[keyidx]);
599
600 /*
601 * RSNA-protected unicast frames should always be sent with
602 * pairwise or station-to-station keys, but for WEP we allow
603 * using a key index as well.
604 */
605 if (rx->key && rx->key->conf.alg != ALG_WEP &&
606 !is_multicast_ether_addr(hdr->addr1))
607 rx->key = NULL;
608 }
609
610 if (rx->key) {
611 rx->key->tx_rx_count++;
612 /* TODO: add threshold stuff again */
613 } else {
614 return RX_DROP_MONITOR;
615 }
616
617 /* Check for weak IVs if possible */
618 if (rx->sta && rx->key->conf.alg == ALG_WEP &&
619 ieee80211_is_data(hdr->frame_control) &&
620 (!(rx->status->flag & RX_FLAG_IV_STRIPPED) ||
621 !(rx->status->flag & RX_FLAG_DECRYPTED)) &&
622 ieee80211_wep_is_weak_iv(rx->skb, rx->key))
623 rx->sta->wep_weak_iv_count++;
624
625 switch (rx->key->conf.alg) {
626 case ALG_WEP:
627 result = ieee80211_crypto_wep_decrypt(rx);
628 break;
629 case ALG_TKIP:
630 result = ieee80211_crypto_tkip_decrypt(rx);
631 break;
632 case ALG_CCMP:
633 result = ieee80211_crypto_ccmp_decrypt(rx);
634 break;
635 }
636
637 /* either the frame has been decrypted or will be dropped */
638 rx->status->flag |= RX_FLAG_DECRYPTED;
639
640 return result;
641}
642
643static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
644{
645 struct ieee80211_sub_if_data *sdata;
646 DECLARE_MAC_BUF(mac);
647
648 sdata = sta->sdata;
649
650 atomic_inc(&sdata->bss->num_sta_ps);
651 set_and_clear_sta_flags(sta, WLAN_STA_PS, WLAN_STA_PSPOLL);
652#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
653 printk(KERN_DEBUG "%s: STA %s aid %d enters power save mode\n",
654 dev->name, print_mac(mac, sta->addr), sta->aid);
655#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
656}
657
658static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
659{
660 struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
661 struct sk_buff *skb;
662 int sent = 0;
663 struct ieee80211_sub_if_data *sdata;
664 struct ieee80211_tx_info *info;
665 DECLARE_MAC_BUF(mac);
666
667 sdata = sta->sdata;
668
669 atomic_dec(&sdata->bss->num_sta_ps);
670
671 clear_sta_flags(sta, WLAN_STA_PS | WLAN_STA_PSPOLL);
672
673 if (!skb_queue_empty(&sta->ps_tx_buf))
674 sta_info_clear_tim_bit(sta);
675
676#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
677 printk(KERN_DEBUG "%s: STA %s aid %d exits power save mode\n",
678 dev->name, print_mac(mac, sta->addr), sta->aid);
679#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
680
681 /* Send all buffered frames to the station */
682 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
683 info = IEEE80211_SKB_CB(skb);
684 sent++;
685 info->flags |= IEEE80211_TX_CTL_REQUEUE;
686 dev_queue_xmit(skb);
687 }
688 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
689 info = IEEE80211_SKB_CB(skb);
690 local->total_ps_buffered--;
691 sent++;
692#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
693 printk(KERN_DEBUG "%s: STA %s aid %d send PS frame "
694 "since STA not sleeping anymore\n", dev->name,
695 print_mac(mac, sta->addr), sta->aid);
696#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
697 info->flags |= IEEE80211_TX_CTL_REQUEUE;
698 dev_queue_xmit(skb);
699 }
700
701 return sent;
702}
703
704static ieee80211_rx_result debug_noinline
705ieee80211_rx_h_sta_process(struct ieee80211_rx_data *rx)
706{
707 struct sta_info *sta = rx->sta;
708 struct net_device *dev = rx->dev;
709 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)rx->skb->data;
710
711 if (!sta)
712 return RX_CONTINUE;
713
714 /* Update last_rx only for IBSS packets which are for the current
715 * BSSID to avoid keeping the current IBSS network alive in cases where
716 * other STAs are using different BSSID. */
717 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
718 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len,
719 IEEE80211_IF_TYPE_IBSS);
720 if (compare_ether_addr(bssid, rx->sdata->u.sta.bssid) == 0)
721 sta->last_rx = jiffies;
722 } else
723 if (!is_multicast_ether_addr(hdr->addr1) ||
724 rx->sdata->vif.type == IEEE80211_IF_TYPE_STA) {
725 /* Update last_rx only for unicast frames in order to prevent
726 * the Probe Request frames (the only broadcast frames from a
727 * STA in infrastructure mode) from keeping a connection alive.
728 * Mesh beacons will update last_rx when if they are found to
729 * match the current local configuration when processed.
730 */
731 sta->last_rx = jiffies;
732 }
733
734 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
735 return RX_CONTINUE;
736
737 sta->rx_fragments++;
738 sta->rx_bytes += rx->skb->len;
739 sta->last_signal = rx->status->signal;
740 sta->last_qual = rx->status->qual;
741 sta->last_noise = rx->status->noise;
742
743 if (!ieee80211_has_morefrags(hdr->frame_control) &&
744 (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP ||
745 rx->sdata->vif.type == IEEE80211_IF_TYPE_VLAN)) {
746 /* Change STA power saving mode only in the end of a frame
747 * exchange sequence */
748 if (test_sta_flags(sta, WLAN_STA_PS) &&
749 !ieee80211_has_pm(hdr->frame_control))
750 rx->sent_ps_buffered += ap_sta_ps_end(dev, sta);
751 else if (!test_sta_flags(sta, WLAN_STA_PS) &&
752 ieee80211_has_pm(hdr->frame_control))
753 ap_sta_ps_start(dev, sta);
754 }
755
756 /* Drop data::nullfunc frames silently, since they are used only to
757 * control station power saving mode. */
758 if (ieee80211_is_nullfunc(hdr->frame_control)) {
759 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
760 /* Update counter and free packet here to avoid counting this
761 * as a dropped packed. */
762 sta->rx_packets++;
763 dev_kfree_skb(rx->skb);
764 return RX_QUEUED;
765 }
766
767 return RX_CONTINUE;
768} /* ieee80211_rx_h_sta_process */
769
770static inline struct ieee80211_fragment_entry *
771ieee80211_reassemble_add(struct ieee80211_sub_if_data *sdata,
772 unsigned int frag, unsigned int seq, int rx_queue,
773 struct sk_buff **skb)
774{
775 struct ieee80211_fragment_entry *entry;
776 int idx;
777
778 idx = sdata->fragment_next;
779 entry = &sdata->fragments[sdata->fragment_next++];
780 if (sdata->fragment_next >= IEEE80211_FRAGMENT_MAX)
781 sdata->fragment_next = 0;
782
783 if (!skb_queue_empty(&entry->skb_list)) {
784#ifdef CONFIG_MAC80211_VERBOSE_DEBUG
785 struct ieee80211_hdr *hdr =
786 (struct ieee80211_hdr *) entry->skb_list.next->data;
787 DECLARE_MAC_BUF(mac);
788 DECLARE_MAC_BUF(mac2);
789 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
790 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
791 "addr1=%s addr2=%s\n",
792 sdata->dev->name, idx,
793 jiffies - entry->first_frag_time, entry->seq,
794 entry->last_frag, print_mac(mac, hdr->addr1),
795 print_mac(mac2, hdr->addr2));
796#endif
797 __skb_queue_purge(&entry->skb_list);
798 }
799
800 __skb_queue_tail(&entry->skb_list, *skb); /* no need for locking */
801 *skb = NULL;
802 entry->first_frag_time = jiffies;
803 entry->seq = seq;
804 entry->rx_queue = rx_queue;
805 entry->last_frag = frag;
806 entry->ccmp = 0;
807 entry->extra_len = 0;
808
809 return entry;
810}
811
812static inline struct ieee80211_fragment_entry *
813ieee80211_reassemble_find(struct ieee80211_sub_if_data *sdata,
814 u16 fc, unsigned int frag, unsigned int seq,
815 int rx_queue, struct ieee80211_hdr *hdr)
816{
817 struct ieee80211_fragment_entry *entry;
818 int i, idx;
819
820 idx = sdata->fragment_next;
821 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
822 struct ieee80211_hdr *f_hdr;
823 u16 f_fc;
824
825 idx--;
826 if (idx < 0)
827 idx = IEEE80211_FRAGMENT_MAX - 1;
828
829 entry = &sdata->fragments[idx];
830 if (skb_queue_empty(&entry->skb_list) || entry->seq != seq ||
831 entry->rx_queue != rx_queue ||
832 entry->last_frag + 1 != frag)
833 continue;
834
835 f_hdr = (struct ieee80211_hdr *) entry->skb_list.next->data;
836 f_fc = le16_to_cpu(f_hdr->frame_control);
837
838 if ((fc & IEEE80211_FCTL_FTYPE) != (f_fc & IEEE80211_FCTL_FTYPE) ||
839 compare_ether_addr(hdr->addr1, f_hdr->addr1) != 0 ||
840 compare_ether_addr(hdr->addr2, f_hdr->addr2) != 0)
841 continue;
842
843 if (time_after(jiffies, entry->first_frag_time + 2 * HZ)) {
844 __skb_queue_purge(&entry->skb_list);
845 continue;
846 }
847 return entry;
848 }
849
850 return NULL;
851}
852
853static ieee80211_rx_result debug_noinline
854ieee80211_rx_h_defragment(struct ieee80211_rx_data *rx)
855{
856 struct ieee80211_hdr *hdr;
857 u16 sc;
858 unsigned int frag, seq;
859 struct ieee80211_fragment_entry *entry;
860 struct sk_buff *skb;
861 DECLARE_MAC_BUF(mac);
862
863 hdr = (struct ieee80211_hdr *) rx->skb->data;
864 sc = le16_to_cpu(hdr->seq_ctrl);
865 frag = sc & IEEE80211_SCTL_FRAG;
866
867 if (likely((!(rx->fc & IEEE80211_FCTL_MOREFRAGS) && frag == 0) ||
868 (rx->skb)->len < 24 ||
869 is_multicast_ether_addr(hdr->addr1))) {
870 /* not fragmented */
871 goto out;
872 }
873 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
874
875 seq = (sc & IEEE80211_SCTL_SEQ) >> 4;
876
877 if (frag == 0) {
878 /* This is the first fragment of a new frame. */
879 entry = ieee80211_reassemble_add(rx->sdata, frag, seq,
880 rx->queue, &(rx->skb));
881 if (rx->key && rx->key->conf.alg == ALG_CCMP &&
882 (rx->fc & IEEE80211_FCTL_PROTECTED)) {
883 /* Store CCMP PN so that we can verify that the next
884 * fragment has a sequential PN value. */
885 entry->ccmp = 1;
886 memcpy(entry->last_pn,
887 rx->key->u.ccmp.rx_pn[rx->queue],
888 CCMP_PN_LEN);
889 }
890 return RX_QUEUED;
891 }
892
893 /* This is a fragment for a frame that should already be pending in
894 * fragment cache. Add this fragment to the end of the pending entry.
895 */
896 entry = ieee80211_reassemble_find(rx->sdata, rx->fc, frag, seq,
897 rx->queue, hdr);
898 if (!entry) {
899 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
900 return RX_DROP_MONITOR;
901 }
902
903 /* Verify that MPDUs within one MSDU have sequential PN values.
904 * (IEEE 802.11i, 8.3.3.4.5) */
905 if (entry->ccmp) {
906 int i;
907 u8 pn[CCMP_PN_LEN], *rpn;
908 if (!rx->key || rx->key->conf.alg != ALG_CCMP)
909 return RX_DROP_UNUSABLE;
910 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
911 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
912 pn[i]++;
913 if (pn[i])
914 break;
915 }
916 rpn = rx->key->u.ccmp.rx_pn[rx->queue];
917 if (memcmp(pn, rpn, CCMP_PN_LEN))
918 return RX_DROP_UNUSABLE;
919 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
920 }
921
922 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
923 __skb_queue_tail(&entry->skb_list, rx->skb);
924 entry->last_frag = frag;
925 entry->extra_len += rx->skb->len;
926 if (rx->fc & IEEE80211_FCTL_MOREFRAGS) {
927 rx->skb = NULL;
928 return RX_QUEUED;
929 }
930
931 rx->skb = __skb_dequeue(&entry->skb_list);
932 if (skb_tailroom(rx->skb) < entry->extra_len) {
933 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
934 if (unlikely(pskb_expand_head(rx->skb, 0, entry->extra_len,
935 GFP_ATOMIC))) {
936 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
937 __skb_queue_purge(&entry->skb_list);
938 return RX_DROP_UNUSABLE;
939 }
940 }
941 while ((skb = __skb_dequeue(&entry->skb_list))) {
942 memcpy(skb_put(rx->skb, skb->len), skb->data, skb->len);
943 dev_kfree_skb(skb);
944 }
945
946 /* Complete frame has been reassembled - process it now */
947 rx->flags |= IEEE80211_RX_FRAGMENTED;
948
949 out:
950 if (rx->sta)
951 rx->sta->rx_packets++;
952 if (is_multicast_ether_addr(hdr->addr1))
953 rx->local->dot11MulticastReceivedFrameCount++;
954 else
955 ieee80211_led_rx(rx->local);
956 return RX_CONTINUE;
957}
958
959static ieee80211_rx_result debug_noinline
960ieee80211_rx_h_ps_poll(struct ieee80211_rx_data *rx)
961{
962 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
963 struct sk_buff *skb;
964 int no_pending_pkts;
965 DECLARE_MAC_BUF(mac);
966
967 if (likely(!rx->sta ||
968 (rx->fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_CTL ||
969 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_PSPOLL ||
970 !(rx->flags & IEEE80211_RX_RA_MATCH)))
971 return RX_CONTINUE;
972
973 if ((sdata->vif.type != IEEE80211_IF_TYPE_AP) &&
974 (sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
975 return RX_DROP_UNUSABLE;
976
977 skb = skb_dequeue(&rx->sta->tx_filtered);
978 if (!skb) {
979 skb = skb_dequeue(&rx->sta->ps_tx_buf);
980 if (skb)
981 rx->local->total_ps_buffered--;
982 }
983 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
984 skb_queue_empty(&rx->sta->ps_tx_buf);
985
986 if (skb) {
987 struct ieee80211_hdr *hdr =
988 (struct ieee80211_hdr *) skb->data;
989
990 /*
991 * Tell TX path to send one frame even though the STA may
992 * still remain is PS mode after this frame exchange.
993 */
994 set_sta_flags(rx->sta, WLAN_STA_PSPOLL);
995
996#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
997 printk(KERN_DEBUG "STA %s aid %d: PS Poll (entries after %d)\n",
998 print_mac(mac, rx->sta->addr), rx->sta->aid,
999 skb_queue_len(&rx->sta->ps_tx_buf));
1000#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1001
1002 /* Use MoreData flag to indicate whether there are more
1003 * buffered frames for this STA */
1004 if (no_pending_pkts)
1005 hdr->frame_control &= cpu_to_le16(~IEEE80211_FCTL_MOREDATA);
1006 else
1007 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1008
1009 dev_queue_xmit(skb);
1010
1011 if (no_pending_pkts)
1012 sta_info_clear_tim_bit(rx->sta);
1013#ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG
1014 } else if (!rx->sent_ps_buffered) {
1015 /*
1016 * FIXME: This can be the result of a race condition between
1017 * us expiring a frame and the station polling for it.
1018 * Should we send it a null-func frame indicating we
1019 * have nothing buffered for it?
1020 */
1021 printk(KERN_DEBUG "%s: STA %s sent PS Poll even "
1022 "though there are no buffered frames for it\n",
1023 rx->dev->name, print_mac(mac, rx->sta->addr));
1024#endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */
1025 }
1026
1027 /* Free PS Poll skb here instead of returning RX_DROP that would
1028 * count as an dropped frame. */
1029 dev_kfree_skb(rx->skb);
1030
1031 return RX_QUEUED;
1032}
1033
1034static ieee80211_rx_result debug_noinline
1035ieee80211_rx_h_remove_qos_control(struct ieee80211_rx_data *rx)
1036{
1037 u8 *data = rx->skb->data;
1038 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
1039
1040 if (!ieee80211_is_data_qos(hdr->frame_control))
1041 return RX_CONTINUE;
1042
1043 /* remove the qos control field, update frame type and meta-data */
1044 memmove(data + IEEE80211_QOS_CTL_LEN, data,
1045 ieee80211_hdrlen(hdr->frame_control) - IEEE80211_QOS_CTL_LEN);
1046 hdr = (struct ieee80211_hdr *)skb_pull(rx->skb, IEEE80211_QOS_CTL_LEN);
1047 /* change frame type to non QOS */
1048 rx->fc &= ~IEEE80211_STYPE_QOS_DATA;
1049 hdr->frame_control &= ~cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
1050
1051 return RX_CONTINUE;
1052}
1053
1054static int
1055ieee80211_802_1x_port_control(struct ieee80211_rx_data *rx)
1056{
1057 if (unlikely(!rx->sta ||
1058 !test_sta_flags(rx->sta, WLAN_STA_AUTHORIZED)))
1059 return -EACCES;
1060
1061 return 0;
1062}
1063
1064static int
1065ieee80211_drop_unencrypted(struct ieee80211_rx_data *rx)
1066{
1067 /*
1068 * Pass through unencrypted frames if the hardware has
1069 * decrypted them already.
1070 */
1071 if (rx->status->flag & RX_FLAG_DECRYPTED)
1072 return 0;
1073
1074 /* Drop unencrypted frames if key is set. */
1075 if (unlikely(!(rx->fc & IEEE80211_FCTL_PROTECTED) &&
1076 (rx->fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA &&
1077 (rx->fc & IEEE80211_FCTL_STYPE) != IEEE80211_STYPE_NULLFUNC &&
1078 (rx->key || rx->sdata->drop_unencrypted)))
1079 return -EACCES;
1080
1081 return 0;
1082}
1083
1084static int
1085ieee80211_data_to_8023(struct ieee80211_rx_data *rx)
1086{
1087 struct net_device *dev = rx->dev;
1088 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
1089 u16 fc, hdrlen, ethertype;
1090 u8 *payload;
1091 u8 dst[ETH_ALEN];
1092 u8 src[ETH_ALEN] __aligned(2);
1093 struct sk_buff *skb = rx->skb;
1094 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1095 DECLARE_MAC_BUF(mac);
1096 DECLARE_MAC_BUF(mac2);
1097 DECLARE_MAC_BUF(mac3);
1098 DECLARE_MAC_BUF(mac4);
1099
1100 fc = rx->fc;
1101
1102 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1103 return -1;
1104
1105 hdrlen = ieee80211_get_hdrlen(fc);
1106
1107 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1108 int meshhdrlen = ieee80211_get_mesh_hdrlen(
1109 (struct ieee80211s_hdr *) (skb->data + hdrlen));
1110 /* Copy on cb:
1111 * - mesh header: to be used for mesh forwarding
1112 * decision. It will also be used as mesh header template at
1113 * tx.c:ieee80211_subif_start_xmit() if interface
1114 * type is mesh and skb->pkt_type == PACKET_OTHERHOST
1115 * - ta: to be used if a RERR needs to be sent.
1116 */
1117 memcpy(skb->cb, skb->data + hdrlen, meshhdrlen);
1118 memcpy(MESH_PREQ(skb), hdr->addr2, ETH_ALEN);
1119 hdrlen += meshhdrlen;
1120 }
1121
1122 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
1123 * header
1124 * IEEE 802.11 address fields:
1125 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
1126 * 0 0 DA SA BSSID n/a
1127 * 0 1 DA BSSID SA n/a
1128 * 1 0 BSSID SA DA n/a
1129 * 1 1 RA TA DA SA
1130 */
1131
1132 switch (fc & (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
1133 case IEEE80211_FCTL_TODS:
1134 /* BSSID SA DA */
1135 memcpy(dst, hdr->addr3, ETH_ALEN);
1136 memcpy(src, hdr->addr2, ETH_ALEN);
1137
1138 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_AP &&
1139 sdata->vif.type != IEEE80211_IF_TYPE_VLAN))
1140 return -1;
1141 break;
1142 case (IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
1143 /* RA TA DA SA */
1144 memcpy(dst, hdr->addr3, ETH_ALEN);
1145 memcpy(src, hdr->addr4, ETH_ALEN);
1146
1147 if (unlikely(sdata->vif.type != IEEE80211_IF_TYPE_WDS &&
1148 sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT))
1149 return -1;
1150 break;
1151 case IEEE80211_FCTL_FROMDS:
1152 /* DA BSSID SA */
1153 memcpy(dst, hdr->addr1, ETH_ALEN);
1154 memcpy(src, hdr->addr3, ETH_ALEN);
1155
1156 if (sdata->vif.type != IEEE80211_IF_TYPE_STA ||
1157 (is_multicast_ether_addr(dst) &&
1158 !compare_ether_addr(src, dev->dev_addr)))
1159 return -1;
1160 break;
1161 case 0:
1162 /* DA SA BSSID */
1163 memcpy(dst, hdr->addr1, ETH_ALEN);
1164 memcpy(src, hdr->addr2, ETH_ALEN);
1165
1166 if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
1167 return -1;
1168 break;
1169 }
1170
1171 if (unlikely(skb->len - hdrlen < 8))
1172 return -1;
1173
1174 payload = skb->data + hdrlen;
1175 ethertype = (payload[6] << 8) | payload[7];
1176
1177 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1178 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1179 compare_ether_addr(payload, bridge_tunnel_header) == 0)) {
1180 /* remove RFC1042 or Bridge-Tunnel encapsulation and
1181 * replace EtherType */
1182 skb_pull(skb, hdrlen + 6);
1183 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
1184 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
1185 } else {
1186 struct ethhdr *ehdr;
1187 __be16 len;
1188
1189 skb_pull(skb, hdrlen);
1190 len = htons(skb->len);
1191 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
1192 memcpy(ehdr->h_dest, dst, ETH_ALEN);
1193 memcpy(ehdr->h_source, src, ETH_ALEN);
1194 ehdr->h_proto = len;
1195 }
1196 return 0;
1197}
1198
1199/*
1200 * requires that rx->skb is a frame with ethernet header
1201 */
1202static bool ieee80211_frame_allowed(struct ieee80211_rx_data *rx)
1203{
1204 static const u8 pae_group_addr[ETH_ALEN] __aligned(2)
1205 = { 0x01, 0x80, 0xC2, 0x00, 0x00, 0x03 };
1206 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1207
1208 /*
1209 * Allow EAPOL frames to us/the PAE group address regardless
1210 * of whether the frame was encrypted or not.
1211 */
1212 if (ehdr->h_proto == htons(ETH_P_PAE) &&
1213 (compare_ether_addr(ehdr->h_dest, rx->dev->dev_addr) == 0 ||
1214 compare_ether_addr(ehdr->h_dest, pae_group_addr) == 0))
1215 return true;
1216
1217 if (ieee80211_802_1x_port_control(rx) ||
1218 ieee80211_drop_unencrypted(rx))
1219 return false;
1220
1221 return true;
1222}
1223
1224/*
1225 * requires that rx->skb is a frame with ethernet header
1226 */
1227static void
1228ieee80211_deliver_skb(struct ieee80211_rx_data *rx)
1229{
1230 struct net_device *dev = rx->dev;
1231 struct ieee80211_local *local = rx->local;
1232 struct sk_buff *skb, *xmit_skb;
1233 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1234 struct ethhdr *ehdr = (struct ethhdr *) rx->skb->data;
1235 struct sta_info *dsta;
1236
1237 skb = rx->skb;
1238 xmit_skb = NULL;
1239
1240 if (local->bridge_packets && (sdata->vif.type == IEEE80211_IF_TYPE_AP ||
1241 sdata->vif.type == IEEE80211_IF_TYPE_VLAN) &&
1242 (rx->flags & IEEE80211_RX_RA_MATCH)) {
1243 if (is_multicast_ether_addr(ehdr->h_dest)) {
1244 /*
1245 * send multicast frames both to higher layers in
1246 * local net stack and back to the wireless medium
1247 */
1248 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1249 if (!xmit_skb && net_ratelimit())
1250 printk(KERN_DEBUG "%s: failed to clone "
1251 "multicast frame\n", dev->name);
1252 } else {
1253 dsta = sta_info_get(local, skb->data);
1254 if (dsta && dsta->sdata->dev == dev) {
1255 /*
1256 * The destination station is associated to
1257 * this AP (in this VLAN), so send the frame
1258 * directly to it and do not pass it to local
1259 * net stack.
1260 */
1261 xmit_skb = skb;
1262 skb = NULL;
1263 }
1264 }
1265 }
1266
1267 /* Mesh forwarding */
1268 if (ieee80211_vif_is_mesh(&sdata->vif)) {
1269 u8 *mesh_ttl = &((struct ieee80211s_hdr *)skb->cb)->ttl;
1270 (*mesh_ttl)--;
1271
1272 if (is_multicast_ether_addr(skb->data)) {
1273 if (*mesh_ttl > 0) {
1274 xmit_skb = skb_copy(skb, GFP_ATOMIC);
1275 if (xmit_skb)
1276 xmit_skb->pkt_type = PACKET_OTHERHOST;
1277 else if (net_ratelimit())
1278 printk(KERN_DEBUG "%s: failed to clone "
1279 "multicast frame\n", dev->name);
1280 } else
1281 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1282 dropped_frames_ttl);
1283 } else if (skb->pkt_type != PACKET_OTHERHOST &&
1284 compare_ether_addr(dev->dev_addr, skb->data) != 0) {
1285 if (*mesh_ttl == 0) {
1286 IEEE80211_IFSTA_MESH_CTR_INC(&sdata->u.sta,
1287 dropped_frames_ttl);
1288 dev_kfree_skb(skb);
1289 skb = NULL;
1290 } else {
1291 xmit_skb = skb;
1292 xmit_skb->pkt_type = PACKET_OTHERHOST;
1293 if (!(dev->flags & IFF_PROMISC))
1294 skb = NULL;
1295 }
1296 }
1297 }
1298
1299 if (skb) {
1300 /* deliver to local stack */
1301 skb->protocol = eth_type_trans(skb, dev);
1302 memset(skb->cb, 0, sizeof(skb->cb));
1303 netif_rx(skb);
1304 }
1305
1306 if (xmit_skb) {
1307 /* send to wireless media */
1308 xmit_skb->protocol = htons(ETH_P_802_3);
1309 skb_reset_network_header(xmit_skb);
1310 skb_reset_mac_header(xmit_skb);
1311 dev_queue_xmit(xmit_skb);
1312 }
1313}
1314
1315static ieee80211_rx_result debug_noinline
1316ieee80211_rx_h_amsdu(struct ieee80211_rx_data *rx)
1317{
1318 struct net_device *dev = rx->dev;
1319 struct ieee80211_local *local = rx->local;
1320 u16 fc, ethertype;
1321 u8 *payload;
1322 struct sk_buff *skb = rx->skb, *frame = NULL;
1323 const struct ethhdr *eth;
1324 int remaining, err;
1325 u8 dst[ETH_ALEN];
1326 u8 src[ETH_ALEN];
1327 DECLARE_MAC_BUF(mac);
1328
1329 fc = rx->fc;
1330 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1331 return RX_CONTINUE;
1332
1333 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1334 return RX_DROP_MONITOR;
1335
1336 if (!(rx->flags & IEEE80211_RX_AMSDU))
1337 return RX_CONTINUE;
1338
1339 err = ieee80211_data_to_8023(rx);
1340 if (unlikely(err))
1341 return RX_DROP_UNUSABLE;
1342
1343 skb->dev = dev;
1344
1345 dev->stats.rx_packets++;
1346 dev->stats.rx_bytes += skb->len;
1347
1348 /* skip the wrapping header */
1349 eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
1350 if (!eth)
1351 return RX_DROP_UNUSABLE;
1352
1353 while (skb != frame) {
1354 u8 padding;
1355 __be16 len = eth->h_proto;
1356 unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
1357
1358 remaining = skb->len;
1359 memcpy(dst, eth->h_dest, ETH_ALEN);
1360 memcpy(src, eth->h_source, ETH_ALEN);
1361
1362 padding = ((4 - subframe_len) & 0x3);
1363 /* the last MSDU has no padding */
1364 if (subframe_len > remaining)
1365 return RX_DROP_UNUSABLE;
1366
1367 skb_pull(skb, sizeof(struct ethhdr));
1368 /* if last subframe reuse skb */
1369 if (remaining <= subframe_len + padding)
1370 frame = skb;
1371 else {
1372 frame = dev_alloc_skb(local->hw.extra_tx_headroom +
1373 subframe_len);
1374
1375 if (frame == NULL)
1376 return RX_DROP_UNUSABLE;
1377
1378 skb_reserve(frame, local->hw.extra_tx_headroom +
1379 sizeof(struct ethhdr));
1380 memcpy(skb_put(frame, ntohs(len)), skb->data,
1381 ntohs(len));
1382
1383 eth = (struct ethhdr *) skb_pull(skb, ntohs(len) +
1384 padding);
1385 if (!eth) {
1386 dev_kfree_skb(frame);
1387 return RX_DROP_UNUSABLE;
1388 }
1389 }
1390
1391 skb_reset_network_header(frame);
1392 frame->dev = dev;
1393 frame->priority = skb->priority;
1394 rx->skb = frame;
1395
1396 payload = frame->data;
1397 ethertype = (payload[6] << 8) | payload[7];
1398
1399 if (likely((compare_ether_addr(payload, rfc1042_header) == 0 &&
1400 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
1401 compare_ether_addr(payload,
1402 bridge_tunnel_header) == 0)) {
1403 /* remove RFC1042 or Bridge-Tunnel
1404 * encapsulation and replace EtherType */
1405 skb_pull(frame, 6);
1406 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1407 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1408 } else {
1409 memcpy(skb_push(frame, sizeof(__be16)),
1410 &len, sizeof(__be16));
1411 memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
1412 memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
1413 }
1414
1415 if (!ieee80211_frame_allowed(rx)) {
1416 if (skb == frame) /* last frame */
1417 return RX_DROP_UNUSABLE;
1418 dev_kfree_skb(frame);
1419 continue;
1420 }
1421
1422 ieee80211_deliver_skb(rx);
1423 }
1424
1425 return RX_QUEUED;
1426}
1427
1428static ieee80211_rx_result debug_noinline
1429ieee80211_rx_h_data(struct ieee80211_rx_data *rx)
1430{
1431 struct net_device *dev = rx->dev;
1432 u16 fc;
1433 int err;
1434
1435 fc = rx->fc;
1436 if (unlikely((fc & IEEE80211_FCTL_FTYPE) != IEEE80211_FTYPE_DATA))
1437 return RX_CONTINUE;
1438
1439 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
1440 return RX_DROP_MONITOR;
1441
1442 err = ieee80211_data_to_8023(rx);
1443 if (unlikely(err))
1444 return RX_DROP_UNUSABLE;
1445
1446 if (!ieee80211_frame_allowed(rx))
1447 return RX_DROP_MONITOR;
1448
1449 rx->skb->dev = dev;
1450
1451 dev->stats.rx_packets++;
1452 dev->stats.rx_bytes += rx->skb->len;
1453
1454 ieee80211_deliver_skb(rx);
1455
1456 return RX_QUEUED;
1457}
1458
1459static ieee80211_rx_result debug_noinline
1460ieee80211_rx_h_ctrl(struct ieee80211_rx_data *rx)
1461{
1462 struct ieee80211_local *local = rx->local;
1463 struct ieee80211_hw *hw = &local->hw;
1464 struct sk_buff *skb = rx->skb;
1465 struct ieee80211_bar *bar = (struct ieee80211_bar *)skb->data;
1466 struct tid_ampdu_rx *tid_agg_rx;
1467 u16 start_seq_num;
1468 u16 tid;
1469
1470 if (likely(!ieee80211_is_ctl(bar->frame_control)))
1471 return RX_CONTINUE;
1472
1473 if (ieee80211_is_back_req(bar->frame_control)) {
1474 if (!rx->sta)
1475 return RX_CONTINUE;
1476 tid = le16_to_cpu(bar->control) >> 12;
1477 if (rx->sta->ampdu_mlme.tid_state_rx[tid]
1478 != HT_AGG_STATE_OPERATIONAL)
1479 return RX_CONTINUE;
1480 tid_agg_rx = rx->sta->ampdu_mlme.tid_rx[tid];
1481
1482 start_seq_num = le16_to_cpu(bar->start_seq_num) >> 4;
1483
1484 /* reset session timer */
1485 if (tid_agg_rx->timeout) {
1486 unsigned long expires =
1487 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
1488 mod_timer(&tid_agg_rx->session_timer, expires);
1489 }
1490
1491 /* manage reordering buffer according to requested */
1492 /* sequence number */
1493 rcu_read_lock();
1494 ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, NULL,
1495 start_seq_num, 1);
1496 rcu_read_unlock();
1497 return RX_DROP_UNUSABLE;
1498 }
1499
1500 return RX_CONTINUE;
1501}
1502
1503static ieee80211_rx_result debug_noinline
1504ieee80211_rx_h_mgmt(struct ieee80211_rx_data *rx)
1505{
1506 struct ieee80211_sub_if_data *sdata;
1507
1508 if (!(rx->flags & IEEE80211_RX_RA_MATCH))
1509 return RX_DROP_MONITOR;
1510
1511 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
1512 if ((sdata->vif.type == IEEE80211_IF_TYPE_STA ||
1513 sdata->vif.type == IEEE80211_IF_TYPE_IBSS ||
1514 sdata->vif.type == IEEE80211_IF_TYPE_MESH_POINT) &&
1515 !(sdata->flags & IEEE80211_SDATA_USERSPACE_MLME))
1516 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->status);
1517 else
1518 return RX_DROP_MONITOR;
1519
1520 return RX_QUEUED;
1521}
1522
1523static void ieee80211_rx_michael_mic_report(struct net_device *dev,
1524 struct ieee80211_hdr *hdr,
1525 struct ieee80211_rx_data *rx)
1526{
1527 int keyidx;
1528 unsigned int hdrlen;
1529 DECLARE_MAC_BUF(mac);
1530 DECLARE_MAC_BUF(mac2);
1531
1532 hdrlen = ieee80211_hdrlen(hdr->frame_control);
1533 if (rx->skb->len >= hdrlen + 4)
1534 keyidx = rx->skb->data[hdrlen + 3] >> 6;
1535 else
1536 keyidx = -1;
1537
1538 if (!rx->sta) {
1539 /*
1540 * Some hardware seem to generate incorrect Michael MIC
1541 * reports; ignore them to avoid triggering countermeasures.
1542 */
1543 goto ignore;
1544 }
1545
1546 if (!ieee80211_has_protected(hdr->frame_control))
1547 goto ignore;
1548
1549 if (rx->sdata->vif.type == IEEE80211_IF_TYPE_AP && keyidx) {
1550 /*
1551 * APs with pairwise keys should never receive Michael MIC
1552 * errors for non-zero keyidx because these are reserved for
1553 * group keys and only the AP is sending real multicast
1554 * frames in the BSS.
1555 */
1556 goto ignore;
1557 }
1558
1559 if (!ieee80211_is_data(hdr->frame_control) &&
1560 !ieee80211_is_auth(hdr->frame_control))
1561 goto ignore;
1562
1563 mac80211_ev_michael_mic_failure(rx->dev, keyidx, hdr);
1564 ignore:
1565 dev_kfree_skb(rx->skb);
1566 rx->skb = NULL;
1567}
1568
1569/* TODO: use IEEE80211_RX_FRAGMENTED */
1570static void ieee80211_rx_cooked_monitor(struct ieee80211_rx_data *rx)
1571{
1572 struct ieee80211_sub_if_data *sdata;
1573 struct ieee80211_local *local = rx->local;
1574 struct ieee80211_rtap_hdr {
1575 struct ieee80211_radiotap_header hdr;
1576 u8 flags;
1577 u8 rate;
1578 __le16 chan_freq;
1579 __le16 chan_flags;
1580 } __attribute__ ((packed)) *rthdr;
1581 struct sk_buff *skb = rx->skb, *skb2;
1582 struct net_device *prev_dev = NULL;
1583 struct ieee80211_rx_status *status = rx->status;
1584
1585 if (rx->flags & IEEE80211_RX_CMNTR_REPORTED)
1586 goto out_free_skb;
1587
1588 if (skb_headroom(skb) < sizeof(*rthdr) &&
1589 pskb_expand_head(skb, sizeof(*rthdr), 0, GFP_ATOMIC))
1590 goto out_free_skb;
1591
1592 rthdr = (void *)skb_push(skb, sizeof(*rthdr));
1593 memset(rthdr, 0, sizeof(*rthdr));
1594 rthdr->hdr.it_len = cpu_to_le16(sizeof(*rthdr));
1595 rthdr->hdr.it_present =
1596 cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
1597 (1 << IEEE80211_RADIOTAP_RATE) |
1598 (1 << IEEE80211_RADIOTAP_CHANNEL));
1599
1600 rthdr->rate = rx->rate->bitrate / 5;
1601 rthdr->chan_freq = cpu_to_le16(status->freq);
1602
1603 if (status->band == IEEE80211_BAND_5GHZ)
1604 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_OFDM |
1605 IEEE80211_CHAN_5GHZ);
1606 else
1607 rthdr->chan_flags = cpu_to_le16(IEEE80211_CHAN_DYN |
1608 IEEE80211_CHAN_2GHZ);
1609
1610 skb_set_mac_header(skb, 0);
1611 skb->ip_summed = CHECKSUM_UNNECESSARY;
1612 skb->pkt_type = PACKET_OTHERHOST;
1613 skb->protocol = htons(ETH_P_802_2);
1614
1615 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1616 if (!netif_running(sdata->dev))
1617 continue;
1618
1619 if (sdata->vif.type != IEEE80211_IF_TYPE_MNTR ||
1620 !(sdata->u.mntr_flags & MONITOR_FLAG_COOK_FRAMES))
1621 continue;
1622
1623 if (prev_dev) {
1624 skb2 = skb_clone(skb, GFP_ATOMIC);
1625 if (skb2) {
1626 skb2->dev = prev_dev;
1627 netif_rx(skb2);
1628 }
1629 }
1630
1631 prev_dev = sdata->dev;
1632 sdata->dev->stats.rx_packets++;
1633 sdata->dev->stats.rx_bytes += skb->len;
1634 }
1635
1636 if (prev_dev) {
1637 skb->dev = prev_dev;
1638 netif_rx(skb);
1639 skb = NULL;
1640 } else
1641 goto out_free_skb;
1642
1643 rx->flags |= IEEE80211_RX_CMNTR_REPORTED;
1644 return;
1645
1646 out_free_skb:
1647 dev_kfree_skb(skb);
1648}
1649
1650
1651static void ieee80211_invoke_rx_handlers(struct ieee80211_sub_if_data *sdata,
1652 struct ieee80211_rx_data *rx,
1653 struct sk_buff *skb)
1654{
1655 ieee80211_rx_result res = RX_DROP_MONITOR;
1656
1657 rx->skb = skb;
1658 rx->sdata = sdata;
1659 rx->dev = sdata->dev;
1660
1661#define CALL_RXH(rxh) \
1662 res = rxh(rx); \
1663 if (res != RX_CONTINUE) \
1664 goto rxh_done;
1665
1666 CALL_RXH(ieee80211_rx_h_passive_scan)
1667 CALL_RXH(ieee80211_rx_h_check)
1668 CALL_RXH(ieee80211_rx_h_decrypt)
1669 CALL_RXH(ieee80211_rx_h_sta_process)
1670 CALL_RXH(ieee80211_rx_h_defragment)
1671 CALL_RXH(ieee80211_rx_h_ps_poll)
1672 CALL_RXH(ieee80211_rx_h_michael_mic_verify)
1673 /* must be after MMIC verify so header is counted in MPDU mic */
1674 CALL_RXH(ieee80211_rx_h_remove_qos_control)
1675 CALL_RXH(ieee80211_rx_h_amsdu)
1676 CALL_RXH(ieee80211_rx_h_data)
1677 CALL_RXH(ieee80211_rx_h_ctrl)
1678 CALL_RXH(ieee80211_rx_h_mgmt)
1679
1680#undef CALL_RXH
1681
1682 rxh_done:
1683 switch (res) {
1684 case RX_DROP_MONITOR:
1685 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1686 if (rx->sta)
1687 rx->sta->rx_dropped++;
1688 /* fall through */
1689 case RX_CONTINUE:
1690 ieee80211_rx_cooked_monitor(rx);
1691 break;
1692 case RX_DROP_UNUSABLE:
1693 I802_DEBUG_INC(sdata->local->rx_handlers_drop);
1694 if (rx->sta)
1695 rx->sta->rx_dropped++;
1696 dev_kfree_skb(rx->skb);
1697 break;
1698 case RX_QUEUED:
1699 I802_DEBUG_INC(sdata->local->rx_handlers_queued);
1700 break;
1701 }
1702}
1703
1704/* main receive path */
1705
1706static int prepare_for_handlers(struct ieee80211_sub_if_data *sdata,
1707 u8 *bssid, struct ieee80211_rx_data *rx,
1708 struct ieee80211_hdr *hdr)
1709{
1710 int multicast = is_multicast_ether_addr(hdr->addr1);
1711
1712 switch (sdata->vif.type) {
1713 case IEEE80211_IF_TYPE_STA:
1714 if (!bssid)
1715 return 0;
1716 if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1717 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1718 return 0;
1719 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1720 } else if (!multicast &&
1721 compare_ether_addr(sdata->dev->dev_addr,
1722 hdr->addr1) != 0) {
1723 if (!(sdata->dev->flags & IFF_PROMISC))
1724 return 0;
1725 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1726 }
1727 break;
1728 case IEEE80211_IF_TYPE_IBSS:
1729 if (!bssid)
1730 return 0;
1731 if (ieee80211_is_beacon(hdr->frame_control)) {
1732 if (!rx->sta)
1733 rx->sta = ieee80211_ibss_add_sta(sdata->dev,
1734 rx->skb, bssid, hdr->addr2,
1735 BIT(rx->status->rate_idx));
1736 return 1;
1737 }
1738 else if (!ieee80211_bssid_match(bssid, sdata->u.sta.bssid)) {
1739 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1740 return 0;
1741 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1742 } else if (!multicast &&
1743 compare_ether_addr(sdata->dev->dev_addr,
1744 hdr->addr1) != 0) {
1745 if (!(sdata->dev->flags & IFF_PROMISC))
1746 return 0;
1747 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1748 } else if (!rx->sta)
1749 rx->sta = ieee80211_ibss_add_sta(sdata->dev, rx->skb,
1750 bssid, hdr->addr2,
1751 BIT(rx->status->rate_idx));
1752 break;
1753 case IEEE80211_IF_TYPE_MESH_POINT:
1754 if (!multicast &&
1755 compare_ether_addr(sdata->dev->dev_addr,
1756 hdr->addr1) != 0) {
1757 if (!(sdata->dev->flags & IFF_PROMISC))
1758 return 0;
1759
1760 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1761 }
1762 break;
1763 case IEEE80211_IF_TYPE_VLAN:
1764 case IEEE80211_IF_TYPE_AP:
1765 if (!bssid) {
1766 if (compare_ether_addr(sdata->dev->dev_addr,
1767 hdr->addr1))
1768 return 0;
1769 } else if (!ieee80211_bssid_match(bssid,
1770 sdata->dev->dev_addr)) {
1771 if (!(rx->flags & IEEE80211_RX_IN_SCAN))
1772 return 0;
1773 rx->flags &= ~IEEE80211_RX_RA_MATCH;
1774 }
1775 break;
1776 case IEEE80211_IF_TYPE_WDS:
1777 if (bssid || !ieee80211_is_data(hdr->frame_control))
1778 return 0;
1779 if (compare_ether_addr(sdata->u.wds.remote_addr, hdr->addr2))
1780 return 0;
1781 break;
1782 case IEEE80211_IF_TYPE_MNTR:
1783 /* take everything */
1784 break;
1785 case IEEE80211_IF_TYPE_INVALID:
1786 /* should never get here */
1787 WARN_ON(1);
1788 break;
1789 }
1790
1791 return 1;
1792}
1793
1794/*
1795 * This is the actual Rx frames handler. as it blongs to Rx path it must
1796 * be called with rcu_read_lock protection.
1797 */
1798static void __ieee80211_rx_handle_packet(struct ieee80211_hw *hw,
1799 struct sk_buff *skb,
1800 struct ieee80211_rx_status *status,
1801 struct ieee80211_rate *rate)
1802{
1803 struct ieee80211_local *local = hw_to_local(hw);
1804 struct ieee80211_sub_if_data *sdata;
1805 struct ieee80211_hdr *hdr;
1806 struct ieee80211_rx_data rx;
1807 u16 type;
1808 int prepares;
1809 struct ieee80211_sub_if_data *prev = NULL;
1810 struct sk_buff *skb_new;
1811 u8 *bssid;
1812
1813 hdr = (struct ieee80211_hdr *) skb->data;
1814 memset(&rx, 0, sizeof(rx));
1815 rx.skb = skb;
1816 rx.local = local;
1817
1818 rx.status = status;
1819 rx.rate = rate;
1820 rx.fc = le16_to_cpu(hdr->frame_control);
1821 type = rx.fc & IEEE80211_FCTL_FTYPE;
1822
1823 if (type == IEEE80211_FTYPE_DATA || type == IEEE80211_FTYPE_MGMT)
1824 local->dot11ReceivedFragmentCount++;
1825
1826 rx.sta = sta_info_get(local, hdr->addr2);
1827 if (rx.sta) {
1828 rx.sdata = rx.sta->sdata;
1829 rx.dev = rx.sta->sdata->dev;
1830 }
1831
1832 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
1833 ieee80211_rx_michael_mic_report(local->mdev, hdr, &rx);
1834 return;
1835 }
1836
1837 if (unlikely(local->sta_sw_scanning || local->sta_hw_scanning))
1838 rx.flags |= IEEE80211_RX_IN_SCAN;
1839
1840 ieee80211_parse_qos(&rx);
1841 ieee80211_verify_ip_alignment(&rx);
1842
1843 skb = rx.skb;
1844
1845 list_for_each_entry_rcu(sdata, &local->interfaces, list) {
1846 if (!netif_running(sdata->dev))
1847 continue;
1848
1849 if (sdata->vif.type == IEEE80211_IF_TYPE_MNTR)
1850 continue;
1851
1852 bssid = ieee80211_get_bssid(hdr, skb->len, sdata->vif.type);
1853 rx.flags |= IEEE80211_RX_RA_MATCH;
1854 prepares = prepare_for_handlers(sdata, bssid, &rx, hdr);
1855
1856 if (!prepares)
1857 continue;
1858
1859 /*
1860 * frame is destined for this interface, but if it's not
1861 * also for the previous one we handle that after the
1862 * loop to avoid copying the SKB once too much
1863 */
1864
1865 if (!prev) {
1866 prev = sdata;
1867 continue;
1868 }
1869
1870 /*
1871 * frame was destined for the previous interface
1872 * so invoke RX handlers for it
1873 */
1874
1875 skb_new = skb_copy(skb, GFP_ATOMIC);
1876 if (!skb_new) {
1877 if (net_ratelimit())
1878 printk(KERN_DEBUG "%s: failed to copy "
1879 "multicast frame for %s\n",
1880 wiphy_name(local->hw.wiphy),
1881 prev->dev->name);
1882 continue;
1883 }
1884 rx.fc = le16_to_cpu(hdr->frame_control);
1885 ieee80211_invoke_rx_handlers(prev, &rx, skb_new);
1886 prev = sdata;
1887 }
1888 if (prev) {
1889 rx.fc = le16_to_cpu(hdr->frame_control);
1890 ieee80211_invoke_rx_handlers(prev, &rx, skb);
1891 } else
1892 dev_kfree_skb(skb);
1893}
1894
1895#define SEQ_MODULO 0x1000
1896#define SEQ_MASK 0xfff
1897
1898static inline int seq_less(u16 sq1, u16 sq2)
1899{
1900 return (((sq1 - sq2) & SEQ_MASK) > (SEQ_MODULO >> 1));
1901}
1902
1903static inline u16 seq_inc(u16 sq)
1904{
1905 return ((sq + 1) & SEQ_MASK);
1906}
1907
1908static inline u16 seq_sub(u16 sq1, u16 sq2)
1909{
1910 return ((sq1 - sq2) & SEQ_MASK);
1911}
1912
1913
1914/*
1915 * As it function blongs to Rx path it must be called with
1916 * the proper rcu_read_lock protection for its flow.
1917 */
1918u8 ieee80211_sta_manage_reorder_buf(struct ieee80211_hw *hw,
1919 struct tid_ampdu_rx *tid_agg_rx,
1920 struct sk_buff *skb, u16 mpdu_seq_num,
1921 int bar_req)
1922{
1923 struct ieee80211_local *local = hw_to_local(hw);
1924 struct ieee80211_rx_status status;
1925 u16 head_seq_num, buf_size;
1926 int index;
1927 struct ieee80211_supported_band *sband;
1928 struct ieee80211_rate *rate;
1929
1930 buf_size = tid_agg_rx->buf_size;
1931 head_seq_num = tid_agg_rx->head_seq_num;
1932
1933 /* frame with out of date sequence number */
1934 if (seq_less(mpdu_seq_num, head_seq_num)) {
1935 dev_kfree_skb(skb);
1936 return 1;
1937 }
1938
1939 /* if frame sequence number exceeds our buffering window size or
1940 * block Ack Request arrived - release stored frames */
1941 if ((!seq_less(mpdu_seq_num, head_seq_num + buf_size)) || (bar_req)) {
1942 /* new head to the ordering buffer */
1943 if (bar_req)
1944 head_seq_num = mpdu_seq_num;
1945 else
1946 head_seq_num =
1947 seq_inc(seq_sub(mpdu_seq_num, buf_size));
1948 /* release stored frames up to new head to stack */
1949 while (seq_less(tid_agg_rx->head_seq_num, head_seq_num)) {
1950 index = seq_sub(tid_agg_rx->head_seq_num,
1951 tid_agg_rx->ssn)
1952 % tid_agg_rx->buf_size;
1953
1954 if (tid_agg_rx->reorder_buf[index]) {
1955 /* release the reordered frames to stack */
1956 memcpy(&status,
1957 tid_agg_rx->reorder_buf[index]->cb,
1958 sizeof(status));
1959 sband = local->hw.wiphy->bands[status.band];
1960 rate = &sband->bitrates[status.rate_idx];
1961 __ieee80211_rx_handle_packet(hw,
1962 tid_agg_rx->reorder_buf[index],
1963 &status, rate);
1964 tid_agg_rx->stored_mpdu_num--;
1965 tid_agg_rx->reorder_buf[index] = NULL;
1966 }
1967 tid_agg_rx->head_seq_num =
1968 seq_inc(tid_agg_rx->head_seq_num);
1969 }
1970 if (bar_req)
1971 return 1;
1972 }
1973
1974 /* now the new frame is always in the range of the reordering */
1975 /* buffer window */
1976 index = seq_sub(mpdu_seq_num, tid_agg_rx->ssn)
1977 % tid_agg_rx->buf_size;
1978 /* check if we already stored this frame */
1979 if (tid_agg_rx->reorder_buf[index]) {
1980 dev_kfree_skb(skb);
1981 return 1;
1982 }
1983
1984 /* if arrived mpdu is in the right order and nothing else stored */
1985 /* release it immediately */
1986 if (mpdu_seq_num == tid_agg_rx->head_seq_num &&
1987 tid_agg_rx->stored_mpdu_num == 0) {
1988 tid_agg_rx->head_seq_num =
1989 seq_inc(tid_agg_rx->head_seq_num);
1990 return 0;
1991 }
1992
1993 /* put the frame in the reordering buffer */
1994 tid_agg_rx->reorder_buf[index] = skb;
1995 tid_agg_rx->stored_mpdu_num++;
1996 /* release the buffer until next missing frame */
1997 index = seq_sub(tid_agg_rx->head_seq_num, tid_agg_rx->ssn)
1998 % tid_agg_rx->buf_size;
1999 while (tid_agg_rx->reorder_buf[index]) {
2000 /* release the reordered frame back to stack */
2001 memcpy(&status, tid_agg_rx->reorder_buf[index]->cb,
2002 sizeof(status));
2003 sband = local->hw.wiphy->bands[status.band];
2004 rate = &sband->bitrates[status.rate_idx];
2005 __ieee80211_rx_handle_packet(hw, tid_agg_rx->reorder_buf[index],
2006 &status, rate);
2007 tid_agg_rx->stored_mpdu_num--;
2008 tid_agg_rx->reorder_buf[index] = NULL;
2009 tid_agg_rx->head_seq_num = seq_inc(tid_agg_rx->head_seq_num);
2010 index = seq_sub(tid_agg_rx->head_seq_num,
2011 tid_agg_rx->ssn) % tid_agg_rx->buf_size;
2012 }
2013 return 1;
2014}
2015
2016static u8 ieee80211_rx_reorder_ampdu(struct ieee80211_local *local,
2017 struct sk_buff *skb)
2018{
2019 struct ieee80211_hw *hw = &local->hw;
2020 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2021 struct sta_info *sta;
2022 struct tid_ampdu_rx *tid_agg_rx;
2023 u16 sc;
2024 u16 mpdu_seq_num;
2025 u8 ret = 0;
2026 int tid;
2027
2028 sta = sta_info_get(local, hdr->addr2);
2029 if (!sta)
2030 return ret;
2031
2032 /* filter the QoS data rx stream according to
2033 * STA/TID and check if this STA/TID is on aggregation */
2034 if (!ieee80211_is_data_qos(hdr->frame_control))
2035 goto end_reorder;
2036
2037 tid = *ieee80211_get_qos_ctl(hdr) & IEEE80211_QOS_CTL_TID_MASK;
2038
2039 if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_OPERATIONAL)
2040 goto end_reorder;
2041
2042 tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
2043
2044 /* null data frames are excluded */
2045 if (unlikely(ieee80211_is_nullfunc(hdr->frame_control)))
2046 goto end_reorder;
2047
2048 /* new un-ordered ampdu frame - process it */
2049
2050 /* reset session timer */
2051 if (tid_agg_rx->timeout) {
2052 unsigned long expires =
2053 jiffies + (tid_agg_rx->timeout / 1000) * HZ;
2054 mod_timer(&tid_agg_rx->session_timer, expires);
2055 }
2056
2057 /* if this mpdu is fragmented - terminate rx aggregation session */
2058 sc = le16_to_cpu(hdr->seq_ctrl);
2059 if (sc & IEEE80211_SCTL_FRAG) {
2060 ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
2061 tid, 0, WLAN_REASON_QSTA_REQUIRE_SETUP);
2062 ret = 1;
2063 goto end_reorder;
2064 }
2065
2066 /* according to mpdu sequence number deal with reordering buffer */
2067 mpdu_seq_num = (sc & IEEE80211_SCTL_SEQ) >> 4;
2068 ret = ieee80211_sta_manage_reorder_buf(hw, tid_agg_rx, skb,
2069 mpdu_seq_num, 0);
2070 end_reorder:
2071 return ret;
2072}
2073
2074/*
2075 * This is the receive path handler. It is called by a low level driver when an
2076 * 802.11 MPDU is received from the hardware.
2077 */
2078void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
2079 struct ieee80211_rx_status *status)
2080{
2081 struct ieee80211_local *local = hw_to_local(hw);
2082 struct ieee80211_rate *rate = NULL;
2083 struct ieee80211_supported_band *sband;
2084
2085 if (status->band < 0 ||
2086 status->band >= IEEE80211_NUM_BANDS) {
2087 WARN_ON(1);
2088 return;
2089 }
2090
2091 sband = local->hw.wiphy->bands[status->band];
2092
2093 if (!sband ||
2094 status->rate_idx < 0 ||
2095 status->rate_idx >= sband->n_bitrates) {
2096 WARN_ON(1);
2097 return;
2098 }
2099
2100 rate = &sband->bitrates[status->rate_idx];
2101
2102 /*
2103 * key references and virtual interfaces are protected using RCU
2104 * and this requires that we are in a read-side RCU section during
2105 * receive processing
2106 */
2107 rcu_read_lock();
2108
2109 /*
2110 * Frames with failed FCS/PLCP checksum are not returned,
2111 * all other frames are returned without radiotap header
2112 * if it was previously present.
2113 * Also, frames with less than 16 bytes are dropped.
2114 */
2115 skb = ieee80211_rx_monitor(local, skb, status, rate);
2116 if (!skb) {
2117 rcu_read_unlock();
2118 return;
2119 }
2120
2121 if (!ieee80211_rx_reorder_ampdu(local, skb))
2122 __ieee80211_rx_handle_packet(hw, skb, status, rate);
2123
2124 rcu_read_unlock();
2125}
2126EXPORT_SYMBOL(__ieee80211_rx);
2127
2128/* This is a version of the rx handler that can be called from hard irq
2129 * context. Post the skb on the queue and schedule the tasklet */
2130void ieee80211_rx_irqsafe(struct ieee80211_hw *hw, struct sk_buff *skb,
2131 struct ieee80211_rx_status *status)
2132{
2133 struct ieee80211_local *local = hw_to_local(hw);
2134
2135 BUILD_BUG_ON(sizeof(struct ieee80211_rx_status) > sizeof(skb->cb));
2136
2137 skb->dev = local->mdev;
2138 /* copy status into skb->cb for use by tasklet */
2139 memcpy(skb->cb, status, sizeof(*status));
2140 skb->pkt_type = IEEE80211_RX_MSG;
2141 skb_queue_tail(&local->skb_queue, skb);
2142 tasklet_schedule(&local->tasklet);
2143}
2144EXPORT_SYMBOL(ieee80211_rx_irqsafe);
This page took 0.030724 seconds and 5 git commands to generate.