| 1 | /* |
| 2 | * Copyright 2002-2005, Instant802 Networks, Inc. |
| 3 | * Copyright 2005-2006, Devicescape Software, Inc. |
| 4 | * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz> |
| 5 | * Copyright 2007 Johannes Berg <johannes@sipsolutions.net> |
| 6 | * |
| 7 | * This program is free software; you can redistribute it and/or modify |
| 8 | * it under the terms of the GNU General Public License version 2 as |
| 9 | * published by the Free Software Foundation. |
| 10 | * |
| 11 | * |
| 12 | * Transmit and frame generation functions. |
| 13 | */ |
| 14 | |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/slab.h> |
| 17 | #include <linux/skbuff.h> |
| 18 | #include <linux/etherdevice.h> |
| 19 | #include <linux/bitmap.h> |
| 20 | #include <linux/rcupdate.h> |
| 21 | #include <net/net_namespace.h> |
| 22 | #include <net/ieee80211_radiotap.h> |
| 23 | #include <net/cfg80211.h> |
| 24 | #include <net/mac80211.h> |
| 25 | #include <asm/unaligned.h> |
| 26 | |
| 27 | #include "ieee80211_i.h" |
| 28 | #include "driver-ops.h" |
| 29 | #include "led.h" |
| 30 | #include "mesh.h" |
| 31 | #include "wep.h" |
| 32 | #include "wpa.h" |
| 33 | #include "wme.h" |
| 34 | #include "rate.h" |
| 35 | |
| 36 | #define IEEE80211_TX_OK 0 |
| 37 | #define IEEE80211_TX_AGAIN 1 |
| 38 | #define IEEE80211_TX_PENDING 2 |
| 39 | |
| 40 | /* misc utils */ |
| 41 | |
| 42 | static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, int group_addr, |
| 43 | int next_frag_len) |
| 44 | { |
| 45 | int rate, mrate, erp, dur, i; |
| 46 | struct ieee80211_rate *txrate; |
| 47 | struct ieee80211_local *local = tx->local; |
| 48 | struct ieee80211_supported_band *sband; |
| 49 | struct ieee80211_hdr *hdr; |
| 50 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 51 | |
| 52 | /* assume HW handles this */ |
| 53 | if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS) |
| 54 | return 0; |
| 55 | |
| 56 | /* uh huh? */ |
| 57 | if (WARN_ON_ONCE(info->control.rates[0].idx < 0)) |
| 58 | return 0; |
| 59 | |
| 60 | sband = local->hw.wiphy->bands[tx->channel->band]; |
| 61 | txrate = &sband->bitrates[info->control.rates[0].idx]; |
| 62 | |
| 63 | erp = txrate->flags & IEEE80211_RATE_ERP_G; |
| 64 | |
| 65 | /* |
| 66 | * data and mgmt (except PS Poll): |
| 67 | * - during CFP: 32768 |
| 68 | * - during contention period: |
| 69 | * if addr1 is group address: 0 |
| 70 | * if more fragments = 0 and addr1 is individual address: time to |
| 71 | * transmit one ACK plus SIFS |
| 72 | * if more fragments = 1 and addr1 is individual address: time to |
| 73 | * transmit next fragment plus 2 x ACK plus 3 x SIFS |
| 74 | * |
| 75 | * IEEE 802.11, 9.6: |
| 76 | * - control response frame (CTS or ACK) shall be transmitted using the |
| 77 | * same rate as the immediately previous frame in the frame exchange |
| 78 | * sequence, if this rate belongs to the PHY mandatory rates, or else |
| 79 | * at the highest possible rate belonging to the PHY rates in the |
| 80 | * BSSBasicRateSet |
| 81 | */ |
| 82 | hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 83 | if (ieee80211_is_ctl(hdr->frame_control)) { |
| 84 | /* TODO: These control frames are not currently sent by |
| 85 | * mac80211, but should they be implemented, this function |
| 86 | * needs to be updated to support duration field calculation. |
| 87 | * |
| 88 | * RTS: time needed to transmit pending data/mgmt frame plus |
| 89 | * one CTS frame plus one ACK frame plus 3 x SIFS |
| 90 | * CTS: duration of immediately previous RTS minus time |
| 91 | * required to transmit CTS and its SIFS |
| 92 | * ACK: 0 if immediately previous directed data/mgmt had |
| 93 | * more=0, with more=1 duration in ACK frame is duration |
| 94 | * from previous frame minus time needed to transmit ACK |
| 95 | * and its SIFS |
| 96 | * PS Poll: BIT(15) | BIT(14) | aid |
| 97 | */ |
| 98 | return 0; |
| 99 | } |
| 100 | |
| 101 | /* data/mgmt */ |
| 102 | if (0 /* FIX: data/mgmt during CFP */) |
| 103 | return cpu_to_le16(32768); |
| 104 | |
| 105 | if (group_addr) /* Group address as the destination - no ACK */ |
| 106 | return 0; |
| 107 | |
| 108 | /* Individual destination address: |
| 109 | * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) |
| 110 | * CTS and ACK frames shall be transmitted using the highest rate in |
| 111 | * basic rate set that is less than or equal to the rate of the |
| 112 | * immediately previous frame and that is using the same modulation |
| 113 | * (CCK or OFDM). If no basic rate set matches with these requirements, |
| 114 | * the highest mandatory rate of the PHY that is less than or equal to |
| 115 | * the rate of the previous frame is used. |
| 116 | * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps |
| 117 | */ |
| 118 | rate = -1; |
| 119 | /* use lowest available if everything fails */ |
| 120 | mrate = sband->bitrates[0].bitrate; |
| 121 | for (i = 0; i < sband->n_bitrates; i++) { |
| 122 | struct ieee80211_rate *r = &sband->bitrates[i]; |
| 123 | |
| 124 | if (r->bitrate > txrate->bitrate) |
| 125 | break; |
| 126 | |
| 127 | if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) |
| 128 | rate = r->bitrate; |
| 129 | |
| 130 | switch (sband->band) { |
| 131 | case IEEE80211_BAND_2GHZ: { |
| 132 | u32 flag; |
| 133 | if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) |
| 134 | flag = IEEE80211_RATE_MANDATORY_G; |
| 135 | else |
| 136 | flag = IEEE80211_RATE_MANDATORY_B; |
| 137 | if (r->flags & flag) |
| 138 | mrate = r->bitrate; |
| 139 | break; |
| 140 | } |
| 141 | case IEEE80211_BAND_5GHZ: |
| 142 | if (r->flags & IEEE80211_RATE_MANDATORY_A) |
| 143 | mrate = r->bitrate; |
| 144 | break; |
| 145 | case IEEE80211_NUM_BANDS: |
| 146 | WARN_ON(1); |
| 147 | break; |
| 148 | } |
| 149 | } |
| 150 | if (rate == -1) { |
| 151 | /* No matching basic rate found; use highest suitable mandatory |
| 152 | * PHY rate */ |
| 153 | rate = mrate; |
| 154 | } |
| 155 | |
| 156 | /* Time needed to transmit ACK |
| 157 | * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up |
| 158 | * to closest integer */ |
| 159 | |
| 160 | dur = ieee80211_frame_duration(local, 10, rate, erp, |
| 161 | tx->sdata->vif.bss_conf.use_short_preamble); |
| 162 | |
| 163 | if (next_frag_len) { |
| 164 | /* Frame is fragmented: duration increases with time needed to |
| 165 | * transmit next fragment plus ACK and 2 x SIFS. */ |
| 166 | dur *= 2; /* ACK + SIFS */ |
| 167 | /* next fragment */ |
| 168 | dur += ieee80211_frame_duration(local, next_frag_len, |
| 169 | txrate->bitrate, erp, |
| 170 | tx->sdata->vif.bss_conf.use_short_preamble); |
| 171 | } |
| 172 | |
| 173 | return cpu_to_le16(dur); |
| 174 | } |
| 175 | |
| 176 | static int inline is_ieee80211_device(struct ieee80211_local *local, |
| 177 | struct net_device *dev) |
| 178 | { |
| 179 | return local == wdev_priv(dev->ieee80211_ptr); |
| 180 | } |
| 181 | |
| 182 | /* tx handlers */ |
| 183 | static ieee80211_tx_result debug_noinline |
| 184 | ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) |
| 185 | { |
| 186 | struct ieee80211_local *local = tx->local; |
| 187 | struct ieee80211_if_managed *ifmgd; |
| 188 | |
| 189 | /* driver doesn't support power save */ |
| 190 | if (!(local->hw.flags & IEEE80211_HW_SUPPORTS_PS)) |
| 191 | return TX_CONTINUE; |
| 192 | |
| 193 | /* hardware does dynamic power save */ |
| 194 | if (local->hw.flags & IEEE80211_HW_SUPPORTS_DYNAMIC_PS) |
| 195 | return TX_CONTINUE; |
| 196 | |
| 197 | /* dynamic power save disabled */ |
| 198 | if (local->hw.conf.dynamic_ps_timeout <= 0) |
| 199 | return TX_CONTINUE; |
| 200 | |
| 201 | /* we are scanning, don't enable power save */ |
| 202 | if (local->scanning) |
| 203 | return TX_CONTINUE; |
| 204 | |
| 205 | if (!local->ps_sdata) |
| 206 | return TX_CONTINUE; |
| 207 | |
| 208 | /* No point if we're going to suspend */ |
| 209 | if (local->quiescing) |
| 210 | return TX_CONTINUE; |
| 211 | |
| 212 | /* dynamic ps is supported only in managed mode */ |
| 213 | if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) |
| 214 | return TX_CONTINUE; |
| 215 | |
| 216 | ifmgd = &tx->sdata->u.mgd; |
| 217 | |
| 218 | /* |
| 219 | * Don't wakeup from power save if u-apsd is enabled, voip ac has |
| 220 | * u-apsd enabled and the frame is in voip class. This effectively |
| 221 | * means that even if all access categories have u-apsd enabled, in |
| 222 | * practise u-apsd is only used with the voip ac. This is a |
| 223 | * workaround for the case when received voip class packets do not |
| 224 | * have correct qos tag for some reason, due the network or the |
| 225 | * peer application. |
| 226 | * |
| 227 | * Note: local->uapsd_queues access is racy here. If the value is |
| 228 | * changed via debugfs, user needs to reassociate manually to have |
| 229 | * everything in sync. |
| 230 | */ |
| 231 | if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) |
| 232 | && (local->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) |
| 233 | && skb_get_queue_mapping(tx->skb) == 0) |
| 234 | return TX_CONTINUE; |
| 235 | |
| 236 | if (local->hw.conf.flags & IEEE80211_CONF_PS) { |
| 237 | ieee80211_stop_queues_by_reason(&local->hw, |
| 238 | IEEE80211_QUEUE_STOP_REASON_PS); |
| 239 | ieee80211_queue_work(&local->hw, |
| 240 | &local->dynamic_ps_disable_work); |
| 241 | } |
| 242 | |
| 243 | mod_timer(&local->dynamic_ps_timer, jiffies + |
| 244 | msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); |
| 245 | |
| 246 | return TX_CONTINUE; |
| 247 | } |
| 248 | |
| 249 | static ieee80211_tx_result debug_noinline |
| 250 | ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) |
| 251 | { |
| 252 | |
| 253 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 254 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 255 | u32 sta_flags; |
| 256 | |
| 257 | if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) |
| 258 | return TX_CONTINUE; |
| 259 | |
| 260 | if (unlikely(test_bit(SCAN_OFF_CHANNEL, &tx->local->scanning)) && |
| 261 | !ieee80211_is_probe_req(hdr->frame_control) && |
| 262 | !ieee80211_is_nullfunc(hdr->frame_control)) |
| 263 | /* |
| 264 | * When software scanning only nullfunc frames (to notify |
| 265 | * the sleep state to the AP) and probe requests (for the |
| 266 | * active scan) are allowed, all other frames should not be |
| 267 | * sent and we should not get here, but if we do |
| 268 | * nonetheless, drop them to avoid sending them |
| 269 | * off-channel. See the link below and |
| 270 | * ieee80211_start_scan() for more. |
| 271 | * |
| 272 | * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 |
| 273 | */ |
| 274 | return TX_DROP; |
| 275 | |
| 276 | if (tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT) |
| 277 | return TX_CONTINUE; |
| 278 | |
| 279 | if (tx->flags & IEEE80211_TX_PS_BUFFERED) |
| 280 | return TX_CONTINUE; |
| 281 | |
| 282 | sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; |
| 283 | |
| 284 | if (likely(tx->flags & IEEE80211_TX_UNICAST)) { |
| 285 | if (unlikely(!(sta_flags & WLAN_STA_ASSOC) && |
| 286 | tx->sdata->vif.type != NL80211_IFTYPE_ADHOC && |
| 287 | ieee80211_is_data(hdr->frame_control))) { |
| 288 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 289 | printk(KERN_DEBUG "%s: dropped data frame to not " |
| 290 | "associated station %pM\n", |
| 291 | tx->sdata->name, hdr->addr1); |
| 292 | #endif /* CONFIG_MAC80211_VERBOSE_DEBUG */ |
| 293 | I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); |
| 294 | return TX_DROP; |
| 295 | } |
| 296 | } else { |
| 297 | if (unlikely(ieee80211_is_data(hdr->frame_control) && |
| 298 | tx->local->num_sta == 0 && |
| 299 | tx->sdata->vif.type != NL80211_IFTYPE_ADHOC)) { |
| 300 | /* |
| 301 | * No associated STAs - no need to send multicast |
| 302 | * frames. |
| 303 | */ |
| 304 | return TX_DROP; |
| 305 | } |
| 306 | return TX_CONTINUE; |
| 307 | } |
| 308 | |
| 309 | return TX_CONTINUE; |
| 310 | } |
| 311 | |
| 312 | /* This function is called whenever the AP is about to exceed the maximum limit |
| 313 | * of buffered frames for power saving STAs. This situation should not really |
| 314 | * happen often during normal operation, so dropping the oldest buffered packet |
| 315 | * from each queue should be OK to make some room for new frames. */ |
| 316 | static void purge_old_ps_buffers(struct ieee80211_local *local) |
| 317 | { |
| 318 | int total = 0, purged = 0; |
| 319 | struct sk_buff *skb; |
| 320 | struct ieee80211_sub_if_data *sdata; |
| 321 | struct sta_info *sta; |
| 322 | |
| 323 | /* |
| 324 | * virtual interfaces are protected by RCU |
| 325 | */ |
| 326 | rcu_read_lock(); |
| 327 | |
| 328 | list_for_each_entry_rcu(sdata, &local->interfaces, list) { |
| 329 | struct ieee80211_if_ap *ap; |
| 330 | if (sdata->vif.type != NL80211_IFTYPE_AP) |
| 331 | continue; |
| 332 | ap = &sdata->u.ap; |
| 333 | skb = skb_dequeue(&ap->ps_bc_buf); |
| 334 | if (skb) { |
| 335 | purged++; |
| 336 | dev_kfree_skb(skb); |
| 337 | } |
| 338 | total += skb_queue_len(&ap->ps_bc_buf); |
| 339 | } |
| 340 | |
| 341 | list_for_each_entry_rcu(sta, &local->sta_list, list) { |
| 342 | skb = skb_dequeue(&sta->ps_tx_buf); |
| 343 | if (skb) { |
| 344 | purged++; |
| 345 | dev_kfree_skb(skb); |
| 346 | } |
| 347 | total += skb_queue_len(&sta->ps_tx_buf); |
| 348 | } |
| 349 | |
| 350 | rcu_read_unlock(); |
| 351 | |
| 352 | local->total_ps_buffered = total; |
| 353 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 354 | wiphy_debug(local->hw.wiphy, "PS buffers full - purged %d frames\n", |
| 355 | purged); |
| 356 | #endif |
| 357 | } |
| 358 | |
| 359 | static ieee80211_tx_result |
| 360 | ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) |
| 361 | { |
| 362 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 363 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 364 | |
| 365 | /* |
| 366 | * broadcast/multicast frame |
| 367 | * |
| 368 | * If any of the associated stations is in power save mode, |
| 369 | * the frame is buffered to be sent after DTIM beacon frame. |
| 370 | * This is done either by the hardware or us. |
| 371 | */ |
| 372 | |
| 373 | /* powersaving STAs only in AP/VLAN mode */ |
| 374 | if (!tx->sdata->bss) |
| 375 | return TX_CONTINUE; |
| 376 | |
| 377 | /* no buffering for ordered frames */ |
| 378 | if (ieee80211_has_order(hdr->frame_control)) |
| 379 | return TX_CONTINUE; |
| 380 | |
| 381 | /* no stations in PS mode */ |
| 382 | if (!atomic_read(&tx->sdata->bss->num_sta_ps)) |
| 383 | return TX_CONTINUE; |
| 384 | |
| 385 | info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; |
| 386 | |
| 387 | /* device releases frame after DTIM beacon */ |
| 388 | if (!(tx->local->hw.flags & IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING)) |
| 389 | return TX_CONTINUE; |
| 390 | |
| 391 | /* buffered in mac80211 */ |
| 392 | if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| 393 | purge_old_ps_buffers(tx->local); |
| 394 | |
| 395 | if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >= AP_MAX_BC_BUFFER) { |
| 396 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 397 | if (net_ratelimit()) |
| 398 | printk(KERN_DEBUG "%s: BC TX buffer full - dropping the oldest frame\n", |
| 399 | tx->sdata->name); |
| 400 | #endif |
| 401 | dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf)); |
| 402 | } else |
| 403 | tx->local->total_ps_buffered++; |
| 404 | |
| 405 | skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb); |
| 406 | |
| 407 | return TX_QUEUED; |
| 408 | } |
| 409 | |
| 410 | static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, |
| 411 | struct sk_buff *skb) |
| 412 | { |
| 413 | if (!ieee80211_is_mgmt(fc)) |
| 414 | return 0; |
| 415 | |
| 416 | if (sta == NULL || !test_sta_flags(sta, WLAN_STA_MFP)) |
| 417 | return 0; |
| 418 | |
| 419 | if (!ieee80211_is_robust_mgmt_frame((struct ieee80211_hdr *) |
| 420 | skb->data)) |
| 421 | return 0; |
| 422 | |
| 423 | return 1; |
| 424 | } |
| 425 | |
| 426 | static ieee80211_tx_result |
| 427 | ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) |
| 428 | { |
| 429 | struct sta_info *sta = tx->sta; |
| 430 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 431 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 432 | struct ieee80211_local *local = tx->local; |
| 433 | u32 staflags; |
| 434 | |
| 435 | if (unlikely(!sta || |
| 436 | ieee80211_is_probe_resp(hdr->frame_control) || |
| 437 | ieee80211_is_auth(hdr->frame_control) || |
| 438 | ieee80211_is_assoc_resp(hdr->frame_control) || |
| 439 | ieee80211_is_reassoc_resp(hdr->frame_control))) |
| 440 | return TX_CONTINUE; |
| 441 | |
| 442 | staflags = get_sta_flags(sta); |
| 443 | |
| 444 | if (unlikely((staflags & (WLAN_STA_PS_STA | WLAN_STA_PS_DRIVER)) && |
| 445 | !(info->flags & IEEE80211_TX_CTL_PSPOLL_RESPONSE))) { |
| 446 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 447 | printk(KERN_DEBUG "STA %pM aid %d: PS buffer (entries " |
| 448 | "before %d)\n", |
| 449 | sta->sta.addr, sta->sta.aid, |
| 450 | skb_queue_len(&sta->ps_tx_buf)); |
| 451 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 452 | if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) |
| 453 | purge_old_ps_buffers(tx->local); |
| 454 | if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) { |
| 455 | struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf); |
| 456 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 457 | if (net_ratelimit()) { |
| 458 | printk(KERN_DEBUG "%s: STA %pM TX " |
| 459 | "buffer full - dropping oldest frame\n", |
| 460 | tx->sdata->name, sta->sta.addr); |
| 461 | } |
| 462 | #endif |
| 463 | dev_kfree_skb(old); |
| 464 | } else |
| 465 | tx->local->total_ps_buffered++; |
| 466 | |
| 467 | /* |
| 468 | * Queue frame to be sent after STA wakes up/polls, |
| 469 | * but don't set the TIM bit if the driver is blocking |
| 470 | * wakeup or poll response transmissions anyway. |
| 471 | */ |
| 472 | if (skb_queue_empty(&sta->ps_tx_buf) && |
| 473 | !(staflags & WLAN_STA_PS_DRIVER)) |
| 474 | sta_info_set_tim_bit(sta); |
| 475 | |
| 476 | info->control.jiffies = jiffies; |
| 477 | info->control.vif = &tx->sdata->vif; |
| 478 | info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| 479 | skb_queue_tail(&sta->ps_tx_buf, tx->skb); |
| 480 | |
| 481 | if (!timer_pending(&local->sta_cleanup)) |
| 482 | mod_timer(&local->sta_cleanup, |
| 483 | round_jiffies(jiffies + |
| 484 | STA_INFO_CLEANUP_INTERVAL)); |
| 485 | |
| 486 | return TX_QUEUED; |
| 487 | } |
| 488 | #ifdef CONFIG_MAC80211_VERBOSE_PS_DEBUG |
| 489 | else if (unlikely(staflags & WLAN_STA_PS_STA)) { |
| 490 | printk(KERN_DEBUG "%s: STA %pM in PS mode, but pspoll " |
| 491 | "set -> send frame\n", tx->sdata->name, |
| 492 | sta->sta.addr); |
| 493 | } |
| 494 | #endif /* CONFIG_MAC80211_VERBOSE_PS_DEBUG */ |
| 495 | |
| 496 | return TX_CONTINUE; |
| 497 | } |
| 498 | |
| 499 | static ieee80211_tx_result debug_noinline |
| 500 | ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) |
| 501 | { |
| 502 | if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) |
| 503 | return TX_CONTINUE; |
| 504 | |
| 505 | if (tx->flags & IEEE80211_TX_UNICAST) |
| 506 | return ieee80211_tx_h_unicast_ps_buf(tx); |
| 507 | else |
| 508 | return ieee80211_tx_h_multicast_ps_buf(tx); |
| 509 | } |
| 510 | |
| 511 | static ieee80211_tx_result debug_noinline |
| 512 | ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) |
| 513 | { |
| 514 | struct ieee80211_key *key = NULL; |
| 515 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 516 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 517 | |
| 518 | if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) |
| 519 | tx->key = NULL; |
| 520 | else if (tx->sta && (key = rcu_dereference(tx->sta->key))) |
| 521 | tx->key = key; |
| 522 | else if (ieee80211_is_mgmt(hdr->frame_control) && |
| 523 | is_multicast_ether_addr(hdr->addr1) && |
| 524 | ieee80211_is_robust_mgmt_frame(hdr) && |
| 525 | (key = rcu_dereference(tx->sdata->default_mgmt_key))) |
| 526 | tx->key = key; |
| 527 | else if ((key = rcu_dereference(tx->sdata->default_key))) |
| 528 | tx->key = key; |
| 529 | else if (tx->sdata->drop_unencrypted && |
| 530 | (tx->skb->protocol != cpu_to_be16(ETH_P_PAE)) && |
| 531 | !(info->flags & IEEE80211_TX_CTL_INJECTED) && |
| 532 | (!ieee80211_is_robust_mgmt_frame(hdr) || |
| 533 | (ieee80211_is_action(hdr->frame_control) && |
| 534 | tx->sta && test_sta_flags(tx->sta, WLAN_STA_MFP)))) { |
| 535 | I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted); |
| 536 | return TX_DROP; |
| 537 | } else |
| 538 | tx->key = NULL; |
| 539 | |
| 540 | if (tx->key) { |
| 541 | bool skip_hw = false; |
| 542 | |
| 543 | tx->key->tx_rx_count++; |
| 544 | /* TODO: add threshold stuff again */ |
| 545 | |
| 546 | switch (tx->key->conf.cipher) { |
| 547 | case WLAN_CIPHER_SUITE_WEP40: |
| 548 | case WLAN_CIPHER_SUITE_WEP104: |
| 549 | if (ieee80211_is_auth(hdr->frame_control)) |
| 550 | break; |
| 551 | case WLAN_CIPHER_SUITE_TKIP: |
| 552 | if (!ieee80211_is_data_present(hdr->frame_control)) |
| 553 | tx->key = NULL; |
| 554 | break; |
| 555 | case WLAN_CIPHER_SUITE_CCMP: |
| 556 | if (!ieee80211_is_data_present(hdr->frame_control) && |
| 557 | !ieee80211_use_mfp(hdr->frame_control, tx->sta, |
| 558 | tx->skb)) |
| 559 | tx->key = NULL; |
| 560 | else |
| 561 | skip_hw = (tx->key->conf.flags & |
| 562 | IEEE80211_KEY_FLAG_SW_MGMT) && |
| 563 | ieee80211_is_mgmt(hdr->frame_control); |
| 564 | break; |
| 565 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 566 | if (!ieee80211_is_mgmt(hdr->frame_control)) |
| 567 | tx->key = NULL; |
| 568 | break; |
| 569 | } |
| 570 | |
| 571 | if (!skip_hw && tx->key && |
| 572 | tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) |
| 573 | info->control.hw_key = &tx->key->conf; |
| 574 | } |
| 575 | |
| 576 | return TX_CONTINUE; |
| 577 | } |
| 578 | |
| 579 | static ieee80211_tx_result debug_noinline |
| 580 | ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) |
| 581 | { |
| 582 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 583 | struct ieee80211_hdr *hdr = (void *)tx->skb->data; |
| 584 | struct ieee80211_supported_band *sband; |
| 585 | struct ieee80211_rate *rate; |
| 586 | int i; |
| 587 | u32 len; |
| 588 | bool inval = false, rts = false, short_preamble = false; |
| 589 | struct ieee80211_tx_rate_control txrc; |
| 590 | u32 sta_flags; |
| 591 | |
| 592 | memset(&txrc, 0, sizeof(txrc)); |
| 593 | |
| 594 | sband = tx->local->hw.wiphy->bands[tx->channel->band]; |
| 595 | |
| 596 | len = min_t(u32, tx->skb->len + FCS_LEN, |
| 597 | tx->local->hw.wiphy->frag_threshold); |
| 598 | |
| 599 | /* set up the tx rate control struct we give the RC algo */ |
| 600 | txrc.hw = local_to_hw(tx->local); |
| 601 | txrc.sband = sband; |
| 602 | txrc.bss_conf = &tx->sdata->vif.bss_conf; |
| 603 | txrc.skb = tx->skb; |
| 604 | txrc.reported_rate.idx = -1; |
| 605 | txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[tx->channel->band]; |
| 606 | if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) |
| 607 | txrc.max_rate_idx = -1; |
| 608 | else |
| 609 | txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; |
| 610 | txrc.ap = tx->sdata->vif.type == NL80211_IFTYPE_AP; |
| 611 | |
| 612 | /* set up RTS protection if desired */ |
| 613 | if (len > tx->local->hw.wiphy->rts_threshold) { |
| 614 | txrc.rts = rts = true; |
| 615 | } |
| 616 | |
| 617 | /* |
| 618 | * Use short preamble if the BSS can handle it, but not for |
| 619 | * management frames unless we know the receiver can handle |
| 620 | * that -- the management frame might be to a station that |
| 621 | * just wants a probe response. |
| 622 | */ |
| 623 | if (tx->sdata->vif.bss_conf.use_short_preamble && |
| 624 | (ieee80211_is_data(hdr->frame_control) || |
| 625 | (tx->sta && test_sta_flags(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) |
| 626 | txrc.short_preamble = short_preamble = true; |
| 627 | |
| 628 | sta_flags = tx->sta ? get_sta_flags(tx->sta) : 0; |
| 629 | |
| 630 | /* |
| 631 | * Lets not bother rate control if we're associated and cannot |
| 632 | * talk to the sta. This should not happen. |
| 633 | */ |
| 634 | if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && |
| 635 | (sta_flags & WLAN_STA_ASSOC) && |
| 636 | !rate_usable_index_exists(sband, &tx->sta->sta), |
| 637 | "%s: Dropped data frame as no usable bitrate found while " |
| 638 | "scanning and associated. Target station: " |
| 639 | "%pM on %d GHz band\n", |
| 640 | tx->sdata->name, hdr->addr1, |
| 641 | tx->channel->band ? 5 : 2)) |
| 642 | return TX_DROP; |
| 643 | |
| 644 | /* |
| 645 | * If we're associated with the sta at this point we know we can at |
| 646 | * least send the frame at the lowest bit rate. |
| 647 | */ |
| 648 | rate_control_get_rate(tx->sdata, tx->sta, &txrc); |
| 649 | |
| 650 | if (unlikely(info->control.rates[0].idx < 0)) |
| 651 | return TX_DROP; |
| 652 | |
| 653 | if (txrc.reported_rate.idx < 0) |
| 654 | txrc.reported_rate = info->control.rates[0]; |
| 655 | |
| 656 | if (tx->sta) |
| 657 | tx->sta->last_tx_rate = txrc.reported_rate; |
| 658 | |
| 659 | if (unlikely(!info->control.rates[0].count)) |
| 660 | info->control.rates[0].count = 1; |
| 661 | |
| 662 | if (WARN_ON_ONCE((info->control.rates[0].count > 1) && |
| 663 | (info->flags & IEEE80211_TX_CTL_NO_ACK))) |
| 664 | info->control.rates[0].count = 1; |
| 665 | |
| 666 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 667 | /* |
| 668 | * XXX: verify the rate is in the basic rateset |
| 669 | */ |
| 670 | return TX_CONTINUE; |
| 671 | } |
| 672 | |
| 673 | /* |
| 674 | * set up the RTS/CTS rate as the fastest basic rate |
| 675 | * that is not faster than the data rate |
| 676 | * |
| 677 | * XXX: Should this check all retry rates? |
| 678 | */ |
| 679 | if (!(info->control.rates[0].flags & IEEE80211_TX_RC_MCS)) { |
| 680 | s8 baserate = 0; |
| 681 | |
| 682 | rate = &sband->bitrates[info->control.rates[0].idx]; |
| 683 | |
| 684 | for (i = 0; i < sband->n_bitrates; i++) { |
| 685 | /* must be a basic rate */ |
| 686 | if (!(tx->sdata->vif.bss_conf.basic_rates & BIT(i))) |
| 687 | continue; |
| 688 | /* must not be faster than the data rate */ |
| 689 | if (sband->bitrates[i].bitrate > rate->bitrate) |
| 690 | continue; |
| 691 | /* maximum */ |
| 692 | if (sband->bitrates[baserate].bitrate < |
| 693 | sband->bitrates[i].bitrate) |
| 694 | baserate = i; |
| 695 | } |
| 696 | |
| 697 | info->control.rts_cts_rate_idx = baserate; |
| 698 | } |
| 699 | |
| 700 | for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { |
| 701 | /* |
| 702 | * make sure there's no valid rate following |
| 703 | * an invalid one, just in case drivers don't |
| 704 | * take the API seriously to stop at -1. |
| 705 | */ |
| 706 | if (inval) { |
| 707 | info->control.rates[i].idx = -1; |
| 708 | continue; |
| 709 | } |
| 710 | if (info->control.rates[i].idx < 0) { |
| 711 | inval = true; |
| 712 | continue; |
| 713 | } |
| 714 | |
| 715 | /* |
| 716 | * For now assume MCS is already set up correctly, this |
| 717 | * needs to be fixed. |
| 718 | */ |
| 719 | if (info->control.rates[i].flags & IEEE80211_TX_RC_MCS) { |
| 720 | WARN_ON(info->control.rates[i].idx > 76); |
| 721 | continue; |
| 722 | } |
| 723 | |
| 724 | /* set up RTS protection if desired */ |
| 725 | if (rts) |
| 726 | info->control.rates[i].flags |= |
| 727 | IEEE80211_TX_RC_USE_RTS_CTS; |
| 728 | |
| 729 | /* RC is busted */ |
| 730 | if (WARN_ON_ONCE(info->control.rates[i].idx >= |
| 731 | sband->n_bitrates)) { |
| 732 | info->control.rates[i].idx = -1; |
| 733 | continue; |
| 734 | } |
| 735 | |
| 736 | rate = &sband->bitrates[info->control.rates[i].idx]; |
| 737 | |
| 738 | /* set up short preamble */ |
| 739 | if (short_preamble && |
| 740 | rate->flags & IEEE80211_RATE_SHORT_PREAMBLE) |
| 741 | info->control.rates[i].flags |= |
| 742 | IEEE80211_TX_RC_USE_SHORT_PREAMBLE; |
| 743 | |
| 744 | /* set up G protection */ |
| 745 | if (!rts && tx->sdata->vif.bss_conf.use_cts_prot && |
| 746 | rate->flags & IEEE80211_RATE_ERP_G) |
| 747 | info->control.rates[i].flags |= |
| 748 | IEEE80211_TX_RC_USE_CTS_PROTECT; |
| 749 | } |
| 750 | |
| 751 | return TX_CONTINUE; |
| 752 | } |
| 753 | |
| 754 | static ieee80211_tx_result debug_noinline |
| 755 | ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) |
| 756 | { |
| 757 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); |
| 758 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; |
| 759 | u16 *seq; |
| 760 | u8 *qc; |
| 761 | int tid; |
| 762 | |
| 763 | /* |
| 764 | * Packet injection may want to control the sequence |
| 765 | * number, if we have no matching interface then we |
| 766 | * neither assign one ourselves nor ask the driver to. |
| 767 | */ |
| 768 | if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) |
| 769 | return TX_CONTINUE; |
| 770 | |
| 771 | if (unlikely(ieee80211_is_ctl(hdr->frame_control))) |
| 772 | return TX_CONTINUE; |
| 773 | |
| 774 | if (ieee80211_hdrlen(hdr->frame_control) < 24) |
| 775 | return TX_CONTINUE; |
| 776 | |
| 777 | /* |
| 778 | * Anything but QoS data that has a sequence number field |
| 779 | * (is long enough) gets a sequence number from the global |
| 780 | * counter. |
| 781 | */ |
| 782 | if (!ieee80211_is_data_qos(hdr->frame_control)) { |
| 783 | /* driver should assign sequence number */ |
| 784 | info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; |
| 785 | /* for pure STA mode without beacons, we can do it */ |
| 786 | hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); |
| 787 | tx->sdata->sequence_number += 0x10; |
| 788 | return TX_CONTINUE; |
| 789 | } |
| 790 | |
| 791 | /* |
| 792 | * This should be true for injected/management frames only, for |
| 793 | * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ |
| 794 | * above since they are not QoS-data frames. |
| 795 | */ |
| 796 | if (!tx->sta) |
| 797 | return TX_CONTINUE; |
| 798 | |
| 799 | /* include per-STA, per-TID sequence counter */ |
| 800 | |
| 801 | qc = ieee80211_get_qos_ctl(hdr); |
| 802 | tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| 803 | seq = &tx->sta->tid_seq[tid]; |
| 804 | |
| 805 | hdr->seq_ctrl = cpu_to_le16(*seq); |
| 806 | |
| 807 | /* Increase the sequence number. */ |
| 808 | *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; |
| 809 | |
| 810 | return TX_CONTINUE; |
| 811 | } |
| 812 | |
| 813 | static int ieee80211_fragment(struct ieee80211_local *local, |
| 814 | struct sk_buff *skb, int hdrlen, |
| 815 | int frag_threshold) |
| 816 | { |
| 817 | struct sk_buff *tail = skb, *tmp; |
| 818 | int per_fragm = frag_threshold - hdrlen - FCS_LEN; |
| 819 | int pos = hdrlen + per_fragm; |
| 820 | int rem = skb->len - hdrlen - per_fragm; |
| 821 | |
| 822 | if (WARN_ON(rem < 0)) |
| 823 | return -EINVAL; |
| 824 | |
| 825 | while (rem) { |
| 826 | int fraglen = per_fragm; |
| 827 | |
| 828 | if (fraglen > rem) |
| 829 | fraglen = rem; |
| 830 | rem -= fraglen; |
| 831 | tmp = dev_alloc_skb(local->tx_headroom + |
| 832 | frag_threshold + |
| 833 | IEEE80211_ENCRYPT_HEADROOM + |
| 834 | IEEE80211_ENCRYPT_TAILROOM); |
| 835 | if (!tmp) |
| 836 | return -ENOMEM; |
| 837 | tail->next = tmp; |
| 838 | tail = tmp; |
| 839 | skb_reserve(tmp, local->tx_headroom + |
| 840 | IEEE80211_ENCRYPT_HEADROOM); |
| 841 | /* copy control information */ |
| 842 | memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); |
| 843 | skb_copy_queue_mapping(tmp, skb); |
| 844 | tmp->priority = skb->priority; |
| 845 | tmp->dev = skb->dev; |
| 846 | |
| 847 | /* copy header and data */ |
| 848 | memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); |
| 849 | memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); |
| 850 | |
| 851 | pos += fraglen; |
| 852 | } |
| 853 | |
| 854 | skb->len = hdrlen + per_fragm; |
| 855 | return 0; |
| 856 | } |
| 857 | |
| 858 | static ieee80211_tx_result debug_noinline |
| 859 | ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) |
| 860 | { |
| 861 | struct sk_buff *skb = tx->skb; |
| 862 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 863 | struct ieee80211_hdr *hdr = (void *)skb->data; |
| 864 | int frag_threshold = tx->local->hw.wiphy->frag_threshold; |
| 865 | int hdrlen; |
| 866 | int fragnum; |
| 867 | |
| 868 | if (!(tx->flags & IEEE80211_TX_FRAGMENTED)) |
| 869 | return TX_CONTINUE; |
| 870 | |
| 871 | /* |
| 872 | * Warn when submitting a fragmented A-MPDU frame and drop it. |
| 873 | * This scenario is handled in ieee80211_tx_prepare but extra |
| 874 | * caution taken here as fragmented ampdu may cause Tx stop. |
| 875 | */ |
| 876 | if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| 877 | return TX_DROP; |
| 878 | |
| 879 | hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| 880 | |
| 881 | /* internal error, why is TX_FRAGMENTED set? */ |
| 882 | if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) |
| 883 | return TX_DROP; |
| 884 | |
| 885 | /* |
| 886 | * Now fragment the frame. This will allocate all the fragments and |
| 887 | * chain them (using skb as the first fragment) to skb->next. |
| 888 | * During transmission, we will remove the successfully transmitted |
| 889 | * fragments from this list. When the low-level driver rejects one |
| 890 | * of the fragments then we will simply pretend to accept the skb |
| 891 | * but store it away as pending. |
| 892 | */ |
| 893 | if (ieee80211_fragment(tx->local, skb, hdrlen, frag_threshold)) |
| 894 | return TX_DROP; |
| 895 | |
| 896 | /* update duration/seq/flags of fragments */ |
| 897 | fragnum = 0; |
| 898 | do { |
| 899 | int next_len; |
| 900 | const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); |
| 901 | |
| 902 | hdr = (void *)skb->data; |
| 903 | info = IEEE80211_SKB_CB(skb); |
| 904 | |
| 905 | if (skb->next) { |
| 906 | hdr->frame_control |= morefrags; |
| 907 | next_len = skb->next->len; |
| 908 | /* |
| 909 | * No multi-rate retries for fragmented frames, that |
| 910 | * would completely throw off the NAV at other STAs. |
| 911 | */ |
| 912 | info->control.rates[1].idx = -1; |
| 913 | info->control.rates[2].idx = -1; |
| 914 | info->control.rates[3].idx = -1; |
| 915 | info->control.rates[4].idx = -1; |
| 916 | BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 5); |
| 917 | info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; |
| 918 | } else { |
| 919 | hdr->frame_control &= ~morefrags; |
| 920 | next_len = 0; |
| 921 | } |
| 922 | hdr->duration_id = ieee80211_duration(tx, 0, next_len); |
| 923 | hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); |
| 924 | fragnum++; |
| 925 | } while ((skb = skb->next)); |
| 926 | |
| 927 | return TX_CONTINUE; |
| 928 | } |
| 929 | |
| 930 | static ieee80211_tx_result debug_noinline |
| 931 | ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) |
| 932 | { |
| 933 | struct sk_buff *skb = tx->skb; |
| 934 | |
| 935 | if (!tx->sta) |
| 936 | return TX_CONTINUE; |
| 937 | |
| 938 | tx->sta->tx_packets++; |
| 939 | do { |
| 940 | tx->sta->tx_fragments++; |
| 941 | tx->sta->tx_bytes += skb->len; |
| 942 | } while ((skb = skb->next)); |
| 943 | |
| 944 | return TX_CONTINUE; |
| 945 | } |
| 946 | |
| 947 | static ieee80211_tx_result debug_noinline |
| 948 | ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) |
| 949 | { |
| 950 | if (!tx->key) |
| 951 | return TX_CONTINUE; |
| 952 | |
| 953 | switch (tx->key->conf.cipher) { |
| 954 | case WLAN_CIPHER_SUITE_WEP40: |
| 955 | case WLAN_CIPHER_SUITE_WEP104: |
| 956 | return ieee80211_crypto_wep_encrypt(tx); |
| 957 | case WLAN_CIPHER_SUITE_TKIP: |
| 958 | return ieee80211_crypto_tkip_encrypt(tx); |
| 959 | case WLAN_CIPHER_SUITE_CCMP: |
| 960 | return ieee80211_crypto_ccmp_encrypt(tx); |
| 961 | case WLAN_CIPHER_SUITE_AES_CMAC: |
| 962 | return ieee80211_crypto_aes_cmac_encrypt(tx); |
| 963 | } |
| 964 | |
| 965 | /* not reached */ |
| 966 | WARN_ON(1); |
| 967 | return TX_DROP; |
| 968 | } |
| 969 | |
| 970 | static ieee80211_tx_result debug_noinline |
| 971 | ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) |
| 972 | { |
| 973 | struct sk_buff *skb = tx->skb; |
| 974 | struct ieee80211_hdr *hdr; |
| 975 | int next_len; |
| 976 | bool group_addr; |
| 977 | |
| 978 | do { |
| 979 | hdr = (void *) skb->data; |
| 980 | if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) |
| 981 | break; /* must not overwrite AID */ |
| 982 | next_len = skb->next ? skb->next->len : 0; |
| 983 | group_addr = is_multicast_ether_addr(hdr->addr1); |
| 984 | |
| 985 | hdr->duration_id = |
| 986 | ieee80211_duration(tx, group_addr, next_len); |
| 987 | } while ((skb = skb->next)); |
| 988 | |
| 989 | return TX_CONTINUE; |
| 990 | } |
| 991 | |
| 992 | /* actual transmit path */ |
| 993 | |
| 994 | /* |
| 995 | * deal with packet injection down monitor interface |
| 996 | * with Radiotap Header -- only called for monitor mode interface |
| 997 | */ |
| 998 | static bool __ieee80211_parse_tx_radiotap(struct ieee80211_tx_data *tx, |
| 999 | struct sk_buff *skb) |
| 1000 | { |
| 1001 | /* |
| 1002 | * this is the moment to interpret and discard the radiotap header that |
| 1003 | * must be at the start of the packet injected in Monitor mode |
| 1004 | * |
| 1005 | * Need to take some care with endian-ness since radiotap |
| 1006 | * args are little-endian |
| 1007 | */ |
| 1008 | |
| 1009 | struct ieee80211_radiotap_iterator iterator; |
| 1010 | struct ieee80211_radiotap_header *rthdr = |
| 1011 | (struct ieee80211_radiotap_header *) skb->data; |
| 1012 | struct ieee80211_supported_band *sband; |
| 1013 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1014 | int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, |
| 1015 | NULL); |
| 1016 | |
| 1017 | sband = tx->local->hw.wiphy->bands[tx->channel->band]; |
| 1018 | |
| 1019 | info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| 1020 | tx->flags &= ~IEEE80211_TX_FRAGMENTED; |
| 1021 | |
| 1022 | /* |
| 1023 | * for every radiotap entry that is present |
| 1024 | * (ieee80211_radiotap_iterator_next returns -ENOENT when no more |
| 1025 | * entries present, or -EINVAL on error) |
| 1026 | */ |
| 1027 | |
| 1028 | while (!ret) { |
| 1029 | ret = ieee80211_radiotap_iterator_next(&iterator); |
| 1030 | |
| 1031 | if (ret) |
| 1032 | continue; |
| 1033 | |
| 1034 | /* see if this argument is something we can use */ |
| 1035 | switch (iterator.this_arg_index) { |
| 1036 | /* |
| 1037 | * You must take care when dereferencing iterator.this_arg |
| 1038 | * for multibyte types... the pointer is not aligned. Use |
| 1039 | * get_unaligned((type *)iterator.this_arg) to dereference |
| 1040 | * iterator.this_arg for type "type" safely on all arches. |
| 1041 | */ |
| 1042 | case IEEE80211_RADIOTAP_FLAGS: |
| 1043 | if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { |
| 1044 | /* |
| 1045 | * this indicates that the skb we have been |
| 1046 | * handed has the 32-bit FCS CRC at the end... |
| 1047 | * we should react to that by snipping it off |
| 1048 | * because it will be recomputed and added |
| 1049 | * on transmission |
| 1050 | */ |
| 1051 | if (skb->len < (iterator._max_length + FCS_LEN)) |
| 1052 | return false; |
| 1053 | |
| 1054 | skb_trim(skb, skb->len - FCS_LEN); |
| 1055 | } |
| 1056 | if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) |
| 1057 | info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| 1058 | if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) |
| 1059 | tx->flags |= IEEE80211_TX_FRAGMENTED; |
| 1060 | break; |
| 1061 | |
| 1062 | /* |
| 1063 | * Please update the file |
| 1064 | * Documentation/networking/mac80211-injection.txt |
| 1065 | * when parsing new fields here. |
| 1066 | */ |
| 1067 | |
| 1068 | default: |
| 1069 | break; |
| 1070 | } |
| 1071 | } |
| 1072 | |
| 1073 | if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ |
| 1074 | return false; |
| 1075 | |
| 1076 | /* |
| 1077 | * remove the radiotap header |
| 1078 | * iterator->_max_length was sanity-checked against |
| 1079 | * skb->len by iterator init |
| 1080 | */ |
| 1081 | skb_pull(skb, iterator._max_length); |
| 1082 | |
| 1083 | return true; |
| 1084 | } |
| 1085 | |
| 1086 | static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, |
| 1087 | struct sk_buff *skb, |
| 1088 | struct ieee80211_tx_info *info, |
| 1089 | struct tid_ampdu_tx *tid_tx, |
| 1090 | int tid) |
| 1091 | { |
| 1092 | bool queued = false; |
| 1093 | |
| 1094 | if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| 1095 | info->flags |= IEEE80211_TX_CTL_AMPDU; |
| 1096 | } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { |
| 1097 | /* |
| 1098 | * nothing -- this aggregation session is being started |
| 1099 | * but that might still fail with the driver |
| 1100 | */ |
| 1101 | } else { |
| 1102 | spin_lock(&tx->sta->lock); |
| 1103 | /* |
| 1104 | * Need to re-check now, because we may get here |
| 1105 | * |
| 1106 | * 1) in the window during which the setup is actually |
| 1107 | * already done, but not marked yet because not all |
| 1108 | * packets are spliced over to the driver pending |
| 1109 | * queue yet -- if this happened we acquire the lock |
| 1110 | * either before or after the splice happens, but |
| 1111 | * need to recheck which of these cases happened. |
| 1112 | * |
| 1113 | * 2) during session teardown, if the OPERATIONAL bit |
| 1114 | * was cleared due to the teardown but the pointer |
| 1115 | * hasn't been assigned NULL yet (or we loaded it |
| 1116 | * before it was assigned) -- in this case it may |
| 1117 | * now be NULL which means we should just let the |
| 1118 | * packet pass through because splicing the frames |
| 1119 | * back is already done. |
| 1120 | */ |
| 1121 | tid_tx = tx->sta->ampdu_mlme.tid_tx[tid]; |
| 1122 | |
| 1123 | if (!tid_tx) { |
| 1124 | /* do nothing, let packet pass through */ |
| 1125 | } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { |
| 1126 | info->flags |= IEEE80211_TX_CTL_AMPDU; |
| 1127 | } else { |
| 1128 | queued = true; |
| 1129 | info->control.vif = &tx->sdata->vif; |
| 1130 | info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| 1131 | __skb_queue_tail(&tid_tx->pending, skb); |
| 1132 | } |
| 1133 | spin_unlock(&tx->sta->lock); |
| 1134 | } |
| 1135 | |
| 1136 | return queued; |
| 1137 | } |
| 1138 | |
| 1139 | /* |
| 1140 | * initialises @tx |
| 1141 | */ |
| 1142 | static ieee80211_tx_result |
| 1143 | ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, |
| 1144 | struct ieee80211_tx_data *tx, |
| 1145 | struct sk_buff *skb) |
| 1146 | { |
| 1147 | struct ieee80211_local *local = sdata->local; |
| 1148 | struct ieee80211_hdr *hdr; |
| 1149 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1150 | int hdrlen, tid; |
| 1151 | u8 *qc; |
| 1152 | |
| 1153 | memset(tx, 0, sizeof(*tx)); |
| 1154 | tx->skb = skb; |
| 1155 | tx->local = local; |
| 1156 | tx->sdata = sdata; |
| 1157 | tx->channel = local->hw.conf.channel; |
| 1158 | /* |
| 1159 | * Set this flag (used below to indicate "automatic fragmentation"), |
| 1160 | * it will be cleared/left by radiotap as desired. |
| 1161 | */ |
| 1162 | tx->flags |= IEEE80211_TX_FRAGMENTED; |
| 1163 | |
| 1164 | /* process and remove the injection radiotap header */ |
| 1165 | if (unlikely(info->flags & IEEE80211_TX_INTFL_HAS_RADIOTAP)) { |
| 1166 | if (!__ieee80211_parse_tx_radiotap(tx, skb)) |
| 1167 | return TX_DROP; |
| 1168 | |
| 1169 | /* |
| 1170 | * __ieee80211_parse_tx_radiotap has now removed |
| 1171 | * the radiotap header that was present and pre-filled |
| 1172 | * 'tx' with tx control information. |
| 1173 | */ |
| 1174 | info->flags &= ~IEEE80211_TX_INTFL_HAS_RADIOTAP; |
| 1175 | } |
| 1176 | |
| 1177 | /* |
| 1178 | * If this flag is set to true anywhere, and we get here, |
| 1179 | * we are doing the needed processing, so remove the flag |
| 1180 | * now. |
| 1181 | */ |
| 1182 | info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; |
| 1183 | |
| 1184 | hdr = (struct ieee80211_hdr *) skb->data; |
| 1185 | |
| 1186 | if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { |
| 1187 | tx->sta = rcu_dereference(sdata->u.vlan.sta); |
| 1188 | if (!tx->sta && sdata->dev->ieee80211_ptr->use_4addr) |
| 1189 | return TX_DROP; |
| 1190 | } else if (info->flags & IEEE80211_TX_CTL_INJECTED) { |
| 1191 | tx->sta = sta_info_get_bss(sdata, hdr->addr1); |
| 1192 | } |
| 1193 | if (!tx->sta) |
| 1194 | tx->sta = sta_info_get(sdata, hdr->addr1); |
| 1195 | |
| 1196 | if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && |
| 1197 | (local->hw.flags & IEEE80211_HW_AMPDU_AGGREGATION)) { |
| 1198 | struct tid_ampdu_tx *tid_tx; |
| 1199 | |
| 1200 | qc = ieee80211_get_qos_ctl(hdr); |
| 1201 | tid = *qc & IEEE80211_QOS_CTL_TID_MASK; |
| 1202 | |
| 1203 | tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); |
| 1204 | if (tid_tx) { |
| 1205 | bool queued; |
| 1206 | |
| 1207 | queued = ieee80211_tx_prep_agg(tx, skb, info, |
| 1208 | tid_tx, tid); |
| 1209 | |
| 1210 | if (unlikely(queued)) |
| 1211 | return TX_QUEUED; |
| 1212 | } |
| 1213 | } |
| 1214 | |
| 1215 | if (is_multicast_ether_addr(hdr->addr1)) { |
| 1216 | tx->flags &= ~IEEE80211_TX_UNICAST; |
| 1217 | info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| 1218 | } else { |
| 1219 | tx->flags |= IEEE80211_TX_UNICAST; |
| 1220 | if (unlikely(local->wifi_wme_noack_test)) |
| 1221 | info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| 1222 | else |
| 1223 | info->flags &= ~IEEE80211_TX_CTL_NO_ACK; |
| 1224 | } |
| 1225 | |
| 1226 | if (tx->flags & IEEE80211_TX_FRAGMENTED) { |
| 1227 | if ((tx->flags & IEEE80211_TX_UNICAST) && |
| 1228 | skb->len + FCS_LEN > local->hw.wiphy->frag_threshold && |
| 1229 | !(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| 1230 | tx->flags |= IEEE80211_TX_FRAGMENTED; |
| 1231 | else |
| 1232 | tx->flags &= ~IEEE80211_TX_FRAGMENTED; |
| 1233 | } |
| 1234 | |
| 1235 | if (!tx->sta) |
| 1236 | info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| 1237 | else if (test_and_clear_sta_flags(tx->sta, WLAN_STA_CLEAR_PS_FILT)) |
| 1238 | info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; |
| 1239 | |
| 1240 | hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| 1241 | if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) { |
| 1242 | u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)]; |
| 1243 | tx->ethertype = (pos[0] << 8) | pos[1]; |
| 1244 | } |
| 1245 | info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; |
| 1246 | |
| 1247 | return TX_CONTINUE; |
| 1248 | } |
| 1249 | |
| 1250 | static int __ieee80211_tx(struct ieee80211_local *local, |
| 1251 | struct sk_buff **skbp, |
| 1252 | struct sta_info *sta, |
| 1253 | bool txpending) |
| 1254 | { |
| 1255 | struct sk_buff *skb = *skbp, *next; |
| 1256 | struct ieee80211_tx_info *info; |
| 1257 | struct ieee80211_sub_if_data *sdata; |
| 1258 | unsigned long flags; |
| 1259 | int ret, len; |
| 1260 | bool fragm = false; |
| 1261 | |
| 1262 | while (skb) { |
| 1263 | int q = skb_get_queue_mapping(skb); |
| 1264 | |
| 1265 | spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| 1266 | ret = IEEE80211_TX_OK; |
| 1267 | if (local->queue_stop_reasons[q] || |
| 1268 | (!txpending && !skb_queue_empty(&local->pending[q]))) |
| 1269 | ret = IEEE80211_TX_PENDING; |
| 1270 | spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); |
| 1271 | if (ret != IEEE80211_TX_OK) |
| 1272 | return ret; |
| 1273 | |
| 1274 | info = IEEE80211_SKB_CB(skb); |
| 1275 | |
| 1276 | if (fragm) |
| 1277 | info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | |
| 1278 | IEEE80211_TX_CTL_FIRST_FRAGMENT); |
| 1279 | |
| 1280 | next = skb->next; |
| 1281 | len = skb->len; |
| 1282 | |
| 1283 | if (next) |
| 1284 | info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; |
| 1285 | |
| 1286 | sdata = vif_to_sdata(info->control.vif); |
| 1287 | |
| 1288 | switch (sdata->vif.type) { |
| 1289 | case NL80211_IFTYPE_MONITOR: |
| 1290 | info->control.vif = NULL; |
| 1291 | break; |
| 1292 | case NL80211_IFTYPE_AP_VLAN: |
| 1293 | info->control.vif = &container_of(sdata->bss, |
| 1294 | struct ieee80211_sub_if_data, u.ap)->vif; |
| 1295 | break; |
| 1296 | default: |
| 1297 | /* keep */ |
| 1298 | break; |
| 1299 | } |
| 1300 | |
| 1301 | if (sta && sta->uploaded) |
| 1302 | info->control.sta = &sta->sta; |
| 1303 | else |
| 1304 | info->control.sta = NULL; |
| 1305 | |
| 1306 | ret = drv_tx(local, skb); |
| 1307 | if (WARN_ON(ret != NETDEV_TX_OK && skb->len != len)) { |
| 1308 | dev_kfree_skb(skb); |
| 1309 | ret = NETDEV_TX_OK; |
| 1310 | } |
| 1311 | if (ret != NETDEV_TX_OK) { |
| 1312 | info->control.vif = &sdata->vif; |
| 1313 | return IEEE80211_TX_AGAIN; |
| 1314 | } |
| 1315 | |
| 1316 | *skbp = skb = next; |
| 1317 | ieee80211_led_tx(local, 1); |
| 1318 | fragm = true; |
| 1319 | } |
| 1320 | |
| 1321 | return IEEE80211_TX_OK; |
| 1322 | } |
| 1323 | |
| 1324 | /* |
| 1325 | * Invoke TX handlers, return 0 on success and non-zero if the |
| 1326 | * frame was dropped or queued. |
| 1327 | */ |
| 1328 | static int invoke_tx_handlers(struct ieee80211_tx_data *tx) |
| 1329 | { |
| 1330 | struct sk_buff *skb = tx->skb; |
| 1331 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1332 | ieee80211_tx_result res = TX_DROP; |
| 1333 | |
| 1334 | #define CALL_TXH(txh) \ |
| 1335 | do { \ |
| 1336 | res = txh(tx); \ |
| 1337 | if (res != TX_CONTINUE) \ |
| 1338 | goto txh_done; \ |
| 1339 | } while (0) |
| 1340 | |
| 1341 | CALL_TXH(ieee80211_tx_h_dynamic_ps); |
| 1342 | CALL_TXH(ieee80211_tx_h_check_assoc); |
| 1343 | CALL_TXH(ieee80211_tx_h_ps_buf); |
| 1344 | CALL_TXH(ieee80211_tx_h_select_key); |
| 1345 | if (!(tx->local->hw.flags & IEEE80211_HW_HAS_RATE_CONTROL)) |
| 1346 | CALL_TXH(ieee80211_tx_h_rate_ctrl); |
| 1347 | |
| 1348 | if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) |
| 1349 | goto txh_done; |
| 1350 | |
| 1351 | CALL_TXH(ieee80211_tx_h_michael_mic_add); |
| 1352 | CALL_TXH(ieee80211_tx_h_sequence); |
| 1353 | CALL_TXH(ieee80211_tx_h_fragment); |
| 1354 | /* handlers after fragment must be aware of tx info fragmentation! */ |
| 1355 | CALL_TXH(ieee80211_tx_h_stats); |
| 1356 | CALL_TXH(ieee80211_tx_h_encrypt); |
| 1357 | CALL_TXH(ieee80211_tx_h_calculate_duration); |
| 1358 | #undef CALL_TXH |
| 1359 | |
| 1360 | txh_done: |
| 1361 | if (unlikely(res == TX_DROP)) { |
| 1362 | I802_DEBUG_INC(tx->local->tx_handlers_drop); |
| 1363 | while (skb) { |
| 1364 | struct sk_buff *next; |
| 1365 | |
| 1366 | next = skb->next; |
| 1367 | dev_kfree_skb(skb); |
| 1368 | skb = next; |
| 1369 | } |
| 1370 | return -1; |
| 1371 | } else if (unlikely(res == TX_QUEUED)) { |
| 1372 | I802_DEBUG_INC(tx->local->tx_handlers_queued); |
| 1373 | return -1; |
| 1374 | } |
| 1375 | |
| 1376 | return 0; |
| 1377 | } |
| 1378 | |
| 1379 | static void ieee80211_tx(struct ieee80211_sub_if_data *sdata, |
| 1380 | struct sk_buff *skb, bool txpending) |
| 1381 | { |
| 1382 | struct ieee80211_local *local = sdata->local; |
| 1383 | struct ieee80211_tx_data tx; |
| 1384 | ieee80211_tx_result res_prepare; |
| 1385 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1386 | struct sk_buff *next; |
| 1387 | unsigned long flags; |
| 1388 | int ret, retries; |
| 1389 | u16 queue; |
| 1390 | |
| 1391 | queue = skb_get_queue_mapping(skb); |
| 1392 | |
| 1393 | if (unlikely(skb->len < 10)) { |
| 1394 | dev_kfree_skb(skb); |
| 1395 | return; |
| 1396 | } |
| 1397 | |
| 1398 | rcu_read_lock(); |
| 1399 | |
| 1400 | /* initialises tx */ |
| 1401 | res_prepare = ieee80211_tx_prepare(sdata, &tx, skb); |
| 1402 | |
| 1403 | if (unlikely(res_prepare == TX_DROP)) { |
| 1404 | dev_kfree_skb(skb); |
| 1405 | rcu_read_unlock(); |
| 1406 | return; |
| 1407 | } else if (unlikely(res_prepare == TX_QUEUED)) { |
| 1408 | rcu_read_unlock(); |
| 1409 | return; |
| 1410 | } |
| 1411 | |
| 1412 | tx.channel = local->hw.conf.channel; |
| 1413 | info->band = tx.channel->band; |
| 1414 | |
| 1415 | if (invoke_tx_handlers(&tx)) |
| 1416 | goto out; |
| 1417 | |
| 1418 | retries = 0; |
| 1419 | retry: |
| 1420 | ret = __ieee80211_tx(local, &tx.skb, tx.sta, txpending); |
| 1421 | switch (ret) { |
| 1422 | case IEEE80211_TX_OK: |
| 1423 | break; |
| 1424 | case IEEE80211_TX_AGAIN: |
| 1425 | /* |
| 1426 | * Since there are no fragmented frames on A-MPDU |
| 1427 | * queues, there's no reason for a driver to reject |
| 1428 | * a frame there, warn and drop it. |
| 1429 | */ |
| 1430 | if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) |
| 1431 | goto drop; |
| 1432 | /* fall through */ |
| 1433 | case IEEE80211_TX_PENDING: |
| 1434 | skb = tx.skb; |
| 1435 | |
| 1436 | spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| 1437 | |
| 1438 | if (local->queue_stop_reasons[queue] || |
| 1439 | !skb_queue_empty(&local->pending[queue])) { |
| 1440 | /* |
| 1441 | * if queue is stopped, queue up frames for later |
| 1442 | * transmission from the tasklet |
| 1443 | */ |
| 1444 | do { |
| 1445 | next = skb->next; |
| 1446 | skb->next = NULL; |
| 1447 | if (unlikely(txpending)) |
| 1448 | __skb_queue_head(&local->pending[queue], |
| 1449 | skb); |
| 1450 | else |
| 1451 | __skb_queue_tail(&local->pending[queue], |
| 1452 | skb); |
| 1453 | } while ((skb = next)); |
| 1454 | |
| 1455 | spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| 1456 | flags); |
| 1457 | } else { |
| 1458 | /* |
| 1459 | * otherwise retry, but this is a race condition or |
| 1460 | * a driver bug (which we warn about if it persists) |
| 1461 | */ |
| 1462 | spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| 1463 | flags); |
| 1464 | |
| 1465 | retries++; |
| 1466 | if (WARN(retries > 10, "tx refused but queue active\n")) |
| 1467 | goto drop; |
| 1468 | goto retry; |
| 1469 | } |
| 1470 | } |
| 1471 | out: |
| 1472 | rcu_read_unlock(); |
| 1473 | return; |
| 1474 | |
| 1475 | drop: |
| 1476 | rcu_read_unlock(); |
| 1477 | |
| 1478 | skb = tx.skb; |
| 1479 | while (skb) { |
| 1480 | next = skb->next; |
| 1481 | dev_kfree_skb(skb); |
| 1482 | skb = next; |
| 1483 | } |
| 1484 | } |
| 1485 | |
| 1486 | /* device xmit handlers */ |
| 1487 | |
| 1488 | static int ieee80211_skb_resize(struct ieee80211_local *local, |
| 1489 | struct sk_buff *skb, |
| 1490 | int head_need, bool may_encrypt) |
| 1491 | { |
| 1492 | int tail_need = 0; |
| 1493 | |
| 1494 | /* |
| 1495 | * This could be optimised, devices that do full hardware |
| 1496 | * crypto (including TKIP MMIC) need no tailroom... But we |
| 1497 | * have no drivers for such devices currently. |
| 1498 | */ |
| 1499 | if (may_encrypt) { |
| 1500 | tail_need = IEEE80211_ENCRYPT_TAILROOM; |
| 1501 | tail_need -= skb_tailroom(skb); |
| 1502 | tail_need = max_t(int, tail_need, 0); |
| 1503 | } |
| 1504 | |
| 1505 | if (head_need || tail_need) { |
| 1506 | /* Sorry. Can't account for this any more */ |
| 1507 | skb_orphan(skb); |
| 1508 | } |
| 1509 | |
| 1510 | if (skb_header_cloned(skb)) |
| 1511 | I802_DEBUG_INC(local->tx_expand_skb_head_cloned); |
| 1512 | else |
| 1513 | I802_DEBUG_INC(local->tx_expand_skb_head); |
| 1514 | |
| 1515 | if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { |
| 1516 | wiphy_debug(local->hw.wiphy, |
| 1517 | "failed to reallocate TX buffer\n"); |
| 1518 | return -ENOMEM; |
| 1519 | } |
| 1520 | |
| 1521 | /* update truesize too */ |
| 1522 | skb->truesize += head_need + tail_need; |
| 1523 | |
| 1524 | return 0; |
| 1525 | } |
| 1526 | |
| 1527 | static void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, |
| 1528 | struct sk_buff *skb) |
| 1529 | { |
| 1530 | struct ieee80211_local *local = sdata->local; |
| 1531 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1532 | struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; |
| 1533 | struct ieee80211_sub_if_data *tmp_sdata; |
| 1534 | int headroom; |
| 1535 | bool may_encrypt; |
| 1536 | |
| 1537 | rcu_read_lock(); |
| 1538 | |
| 1539 | if (unlikely(sdata->vif.type == NL80211_IFTYPE_MONITOR)) { |
| 1540 | int hdrlen; |
| 1541 | u16 len_rthdr; |
| 1542 | |
| 1543 | info->flags |= IEEE80211_TX_CTL_INJECTED | |
| 1544 | IEEE80211_TX_INTFL_HAS_RADIOTAP; |
| 1545 | |
| 1546 | len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| 1547 | hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); |
| 1548 | hdrlen = ieee80211_hdrlen(hdr->frame_control); |
| 1549 | |
| 1550 | /* check the header is complete in the frame */ |
| 1551 | if (likely(skb->len >= len_rthdr + hdrlen)) { |
| 1552 | /* |
| 1553 | * We process outgoing injected frames that have a |
| 1554 | * local address we handle as though they are our |
| 1555 | * own frames. |
| 1556 | * This code here isn't entirely correct, the local |
| 1557 | * MAC address is not necessarily enough to find |
| 1558 | * the interface to use; for that proper VLAN/WDS |
| 1559 | * support we will need a different mechanism. |
| 1560 | */ |
| 1561 | |
| 1562 | list_for_each_entry_rcu(tmp_sdata, &local->interfaces, |
| 1563 | list) { |
| 1564 | if (!ieee80211_sdata_running(tmp_sdata)) |
| 1565 | continue; |
| 1566 | if (tmp_sdata->vif.type != NL80211_IFTYPE_AP) |
| 1567 | continue; |
| 1568 | if (compare_ether_addr(tmp_sdata->vif.addr, |
| 1569 | hdr->addr2) == 0) { |
| 1570 | sdata = tmp_sdata; |
| 1571 | break; |
| 1572 | } |
| 1573 | } |
| 1574 | } |
| 1575 | } |
| 1576 | |
| 1577 | may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); |
| 1578 | |
| 1579 | headroom = local->tx_headroom; |
| 1580 | if (may_encrypt) |
| 1581 | headroom += IEEE80211_ENCRYPT_HEADROOM; |
| 1582 | headroom -= skb_headroom(skb); |
| 1583 | headroom = max_t(int, 0, headroom); |
| 1584 | |
| 1585 | if (ieee80211_skb_resize(local, skb, headroom, may_encrypt)) { |
| 1586 | dev_kfree_skb(skb); |
| 1587 | rcu_read_unlock(); |
| 1588 | return; |
| 1589 | } |
| 1590 | |
| 1591 | info->control.vif = &sdata->vif; |
| 1592 | |
| 1593 | if (ieee80211_vif_is_mesh(&sdata->vif) && |
| 1594 | ieee80211_is_data(hdr->frame_control) && |
| 1595 | !is_multicast_ether_addr(hdr->addr1)) |
| 1596 | if (mesh_nexthop_lookup(skb, sdata)) { |
| 1597 | /* skb queued: don't free */ |
| 1598 | rcu_read_unlock(); |
| 1599 | return; |
| 1600 | } |
| 1601 | |
| 1602 | ieee80211_set_qos_hdr(local, skb); |
| 1603 | ieee80211_tx(sdata, skb, false); |
| 1604 | rcu_read_unlock(); |
| 1605 | } |
| 1606 | |
| 1607 | netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, |
| 1608 | struct net_device *dev) |
| 1609 | { |
| 1610 | struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); |
| 1611 | struct ieee80211_channel *chan = local->hw.conf.channel; |
| 1612 | struct ieee80211_radiotap_header *prthdr = |
| 1613 | (struct ieee80211_radiotap_header *)skb->data; |
| 1614 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1615 | u16 len_rthdr; |
| 1616 | |
| 1617 | /* |
| 1618 | * Frame injection is not allowed if beaconing is not allowed |
| 1619 | * or if we need radar detection. Beaconing is usually not allowed when |
| 1620 | * the mode or operation (Adhoc, AP, Mesh) does not support DFS. |
| 1621 | * Passive scan is also used in world regulatory domains where |
| 1622 | * your country is not known and as such it should be treated as |
| 1623 | * NO TX unless the channel is explicitly allowed in which case |
| 1624 | * your current regulatory domain would not have the passive scan |
| 1625 | * flag. |
| 1626 | * |
| 1627 | * Since AP mode uses monitor interfaces to inject/TX management |
| 1628 | * frames we can make AP mode the exception to this rule once it |
| 1629 | * supports radar detection as its implementation can deal with |
| 1630 | * radar detection by itself. We can do that later by adding a |
| 1631 | * monitor flag interfaces used for AP support. |
| 1632 | */ |
| 1633 | if ((chan->flags & (IEEE80211_CHAN_NO_IBSS | IEEE80211_CHAN_RADAR | |
| 1634 | IEEE80211_CHAN_PASSIVE_SCAN))) |
| 1635 | goto fail; |
| 1636 | |
| 1637 | /* check for not even having the fixed radiotap header part */ |
| 1638 | if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) |
| 1639 | goto fail; /* too short to be possibly valid */ |
| 1640 | |
| 1641 | /* is it a header version we can trust to find length from? */ |
| 1642 | if (unlikely(prthdr->it_version)) |
| 1643 | goto fail; /* only version 0 is supported */ |
| 1644 | |
| 1645 | /* then there must be a radiotap header with a length we can use */ |
| 1646 | len_rthdr = ieee80211_get_radiotap_len(skb->data); |
| 1647 | |
| 1648 | /* does the skb contain enough to deliver on the alleged length? */ |
| 1649 | if (unlikely(skb->len < len_rthdr)) |
| 1650 | goto fail; /* skb too short for claimed rt header extent */ |
| 1651 | |
| 1652 | /* |
| 1653 | * fix up the pointers accounting for the radiotap |
| 1654 | * header still being in there. We are being given |
| 1655 | * a precooked IEEE80211 header so no need for |
| 1656 | * normal processing |
| 1657 | */ |
| 1658 | skb_set_mac_header(skb, len_rthdr); |
| 1659 | /* |
| 1660 | * these are just fixed to the end of the rt area since we |
| 1661 | * don't have any better information and at this point, nobody cares |
| 1662 | */ |
| 1663 | skb_set_network_header(skb, len_rthdr); |
| 1664 | skb_set_transport_header(skb, len_rthdr); |
| 1665 | |
| 1666 | memset(info, 0, sizeof(*info)); |
| 1667 | |
| 1668 | info->flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; |
| 1669 | |
| 1670 | /* pass the radiotap header up to xmit */ |
| 1671 | ieee80211_xmit(IEEE80211_DEV_TO_SUB_IF(dev), skb); |
| 1672 | return NETDEV_TX_OK; |
| 1673 | |
| 1674 | fail: |
| 1675 | dev_kfree_skb(skb); |
| 1676 | return NETDEV_TX_OK; /* meaning, we dealt with the skb */ |
| 1677 | } |
| 1678 | |
| 1679 | /** |
| 1680 | * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type |
| 1681 | * subinterfaces (wlan#, WDS, and VLAN interfaces) |
| 1682 | * @skb: packet to be sent |
| 1683 | * @dev: incoming interface |
| 1684 | * |
| 1685 | * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will |
| 1686 | * not be freed, and caller is responsible for either retrying later or freeing |
| 1687 | * skb). |
| 1688 | * |
| 1689 | * This function takes in an Ethernet header and encapsulates it with suitable |
| 1690 | * IEEE 802.11 header based on which interface the packet is coming in. The |
| 1691 | * encapsulated packet will then be passed to master interface, wlan#.11, for |
| 1692 | * transmission (through low-level driver). |
| 1693 | */ |
| 1694 | netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, |
| 1695 | struct net_device *dev) |
| 1696 | { |
| 1697 | struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); |
| 1698 | struct ieee80211_local *local = sdata->local; |
| 1699 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 1700 | int ret = NETDEV_TX_BUSY, head_need; |
| 1701 | u16 ethertype, hdrlen, meshhdrlen = 0; |
| 1702 | __le16 fc; |
| 1703 | struct ieee80211_hdr hdr; |
| 1704 | struct ieee80211s_hdr mesh_hdr __maybe_unused; |
| 1705 | const u8 *encaps_data; |
| 1706 | int encaps_len, skip_header_bytes; |
| 1707 | int nh_pos, h_pos; |
| 1708 | struct sta_info *sta = NULL; |
| 1709 | u32 sta_flags = 0; |
| 1710 | |
| 1711 | if (unlikely(skb->len < ETH_HLEN)) { |
| 1712 | ret = NETDEV_TX_OK; |
| 1713 | goto fail; |
| 1714 | } |
| 1715 | |
| 1716 | nh_pos = skb_network_header(skb) - skb->data; |
| 1717 | h_pos = skb_transport_header(skb) - skb->data; |
| 1718 | |
| 1719 | /* convert Ethernet header to proper 802.11 header (based on |
| 1720 | * operation mode) */ |
| 1721 | ethertype = (skb->data[12] << 8) | skb->data[13]; |
| 1722 | fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); |
| 1723 | |
| 1724 | switch (sdata->vif.type) { |
| 1725 | case NL80211_IFTYPE_AP_VLAN: |
| 1726 | rcu_read_lock(); |
| 1727 | sta = rcu_dereference(sdata->u.vlan.sta); |
| 1728 | if (sta) { |
| 1729 | fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| 1730 | /* RA TA DA SA */ |
| 1731 | memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); |
| 1732 | memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| 1733 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1734 | memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| 1735 | hdrlen = 30; |
| 1736 | sta_flags = get_sta_flags(sta); |
| 1737 | } |
| 1738 | rcu_read_unlock(); |
| 1739 | if (sta) |
| 1740 | break; |
| 1741 | /* fall through */ |
| 1742 | case NL80211_IFTYPE_AP: |
| 1743 | fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); |
| 1744 | /* DA BSSID SA */ |
| 1745 | memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| 1746 | memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| 1747 | memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); |
| 1748 | hdrlen = 24; |
| 1749 | break; |
| 1750 | case NL80211_IFTYPE_WDS: |
| 1751 | fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| 1752 | /* RA TA DA SA */ |
| 1753 | memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); |
| 1754 | memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| 1755 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1756 | memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| 1757 | hdrlen = 30; |
| 1758 | break; |
| 1759 | #ifdef CONFIG_MAC80211_MESH |
| 1760 | case NL80211_IFTYPE_MESH_POINT: |
| 1761 | if (!sdata->u.mesh.mshcfg.dot11MeshTTL) { |
| 1762 | /* Do not send frames with mesh_ttl == 0 */ |
| 1763 | sdata->u.mesh.mshstats.dropped_frames_ttl++; |
| 1764 | ret = NETDEV_TX_OK; |
| 1765 | goto fail; |
| 1766 | } |
| 1767 | |
| 1768 | if (compare_ether_addr(sdata->vif.addr, |
| 1769 | skb->data + ETH_ALEN) == 0) { |
| 1770 | hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| 1771 | skb->data, skb->data + ETH_ALEN); |
| 1772 | meshhdrlen = ieee80211_new_mesh_header(&mesh_hdr, |
| 1773 | sdata, NULL, NULL, NULL); |
| 1774 | } else { |
| 1775 | /* packet from other interface */ |
| 1776 | struct mesh_path *mppath; |
| 1777 | int is_mesh_mcast = 1; |
| 1778 | const u8 *mesh_da; |
| 1779 | |
| 1780 | rcu_read_lock(); |
| 1781 | if (is_multicast_ether_addr(skb->data)) |
| 1782 | /* DA TA mSA AE:SA */ |
| 1783 | mesh_da = skb->data; |
| 1784 | else { |
| 1785 | static const u8 bcast[ETH_ALEN] = |
| 1786 | { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; |
| 1787 | |
| 1788 | mppath = mpp_path_lookup(skb->data, sdata); |
| 1789 | if (mppath) { |
| 1790 | /* RA TA mDA mSA AE:DA SA */ |
| 1791 | mesh_da = mppath->mpp; |
| 1792 | is_mesh_mcast = 0; |
| 1793 | } else { |
| 1794 | /* DA TA mSA AE:SA */ |
| 1795 | mesh_da = bcast; |
| 1796 | } |
| 1797 | } |
| 1798 | hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, |
| 1799 | mesh_da, sdata->vif.addr); |
| 1800 | rcu_read_unlock(); |
| 1801 | if (is_mesh_mcast) |
| 1802 | meshhdrlen = |
| 1803 | ieee80211_new_mesh_header(&mesh_hdr, |
| 1804 | sdata, |
| 1805 | skb->data + ETH_ALEN, |
| 1806 | NULL, |
| 1807 | NULL); |
| 1808 | else |
| 1809 | meshhdrlen = |
| 1810 | ieee80211_new_mesh_header(&mesh_hdr, |
| 1811 | sdata, |
| 1812 | NULL, |
| 1813 | skb->data, |
| 1814 | skb->data + ETH_ALEN); |
| 1815 | |
| 1816 | } |
| 1817 | break; |
| 1818 | #endif |
| 1819 | case NL80211_IFTYPE_STATION: |
| 1820 | memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); |
| 1821 | if (sdata->u.mgd.use_4addr && ethertype != ETH_P_PAE) { |
| 1822 | fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); |
| 1823 | /* RA TA DA SA */ |
| 1824 | memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); |
| 1825 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1826 | memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); |
| 1827 | hdrlen = 30; |
| 1828 | } else { |
| 1829 | fc |= cpu_to_le16(IEEE80211_FCTL_TODS); |
| 1830 | /* BSSID SA DA */ |
| 1831 | memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| 1832 | memcpy(hdr.addr3, skb->data, ETH_ALEN); |
| 1833 | hdrlen = 24; |
| 1834 | } |
| 1835 | break; |
| 1836 | case NL80211_IFTYPE_ADHOC: |
| 1837 | /* DA SA BSSID */ |
| 1838 | memcpy(hdr.addr1, skb->data, ETH_ALEN); |
| 1839 | memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); |
| 1840 | memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); |
| 1841 | hdrlen = 24; |
| 1842 | break; |
| 1843 | default: |
| 1844 | ret = NETDEV_TX_OK; |
| 1845 | goto fail; |
| 1846 | } |
| 1847 | |
| 1848 | /* |
| 1849 | * There's no need to try to look up the destination |
| 1850 | * if it is a multicast address (which can only happen |
| 1851 | * in AP mode) |
| 1852 | */ |
| 1853 | if (!is_multicast_ether_addr(hdr.addr1)) { |
| 1854 | rcu_read_lock(); |
| 1855 | sta = sta_info_get(sdata, hdr.addr1); |
| 1856 | if (sta) |
| 1857 | sta_flags = get_sta_flags(sta); |
| 1858 | rcu_read_unlock(); |
| 1859 | } |
| 1860 | |
| 1861 | /* receiver and we are QoS enabled, use a QoS type frame */ |
| 1862 | if ((sta_flags & WLAN_STA_WME) && local->hw.queues >= 4) { |
| 1863 | fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); |
| 1864 | hdrlen += 2; |
| 1865 | } |
| 1866 | |
| 1867 | /* |
| 1868 | * Drop unicast frames to unauthorised stations unless they are |
| 1869 | * EAPOL frames from the local station. |
| 1870 | */ |
| 1871 | if (!ieee80211_vif_is_mesh(&sdata->vif) && |
| 1872 | unlikely(!is_multicast_ether_addr(hdr.addr1) && |
| 1873 | !(sta_flags & WLAN_STA_AUTHORIZED) && |
| 1874 | !(ethertype == ETH_P_PAE && |
| 1875 | compare_ether_addr(sdata->vif.addr, |
| 1876 | skb->data + ETH_ALEN) == 0))) { |
| 1877 | #ifdef CONFIG_MAC80211_VERBOSE_DEBUG |
| 1878 | if (net_ratelimit()) |
| 1879 | printk(KERN_DEBUG "%s: dropped frame to %pM" |
| 1880 | " (unauthorized port)\n", dev->name, |
| 1881 | hdr.addr1); |
| 1882 | #endif |
| 1883 | |
| 1884 | I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); |
| 1885 | |
| 1886 | ret = NETDEV_TX_OK; |
| 1887 | goto fail; |
| 1888 | } |
| 1889 | |
| 1890 | hdr.frame_control = fc; |
| 1891 | hdr.duration_id = 0; |
| 1892 | hdr.seq_ctrl = 0; |
| 1893 | |
| 1894 | skip_header_bytes = ETH_HLEN; |
| 1895 | if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { |
| 1896 | encaps_data = bridge_tunnel_header; |
| 1897 | encaps_len = sizeof(bridge_tunnel_header); |
| 1898 | skip_header_bytes -= 2; |
| 1899 | } else if (ethertype >= 0x600) { |
| 1900 | encaps_data = rfc1042_header; |
| 1901 | encaps_len = sizeof(rfc1042_header); |
| 1902 | skip_header_bytes -= 2; |
| 1903 | } else { |
| 1904 | encaps_data = NULL; |
| 1905 | encaps_len = 0; |
| 1906 | } |
| 1907 | |
| 1908 | skb_pull(skb, skip_header_bytes); |
| 1909 | nh_pos -= skip_header_bytes; |
| 1910 | h_pos -= skip_header_bytes; |
| 1911 | |
| 1912 | head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); |
| 1913 | |
| 1914 | /* |
| 1915 | * So we need to modify the skb header and hence need a copy of |
| 1916 | * that. The head_need variable above doesn't, so far, include |
| 1917 | * the needed header space that we don't need right away. If we |
| 1918 | * can, then we don't reallocate right now but only after the |
| 1919 | * frame arrives at the master device (if it does...) |
| 1920 | * |
| 1921 | * If we cannot, however, then we will reallocate to include all |
| 1922 | * the ever needed space. Also, if we need to reallocate it anyway, |
| 1923 | * make it big enough for everything we may ever need. |
| 1924 | */ |
| 1925 | |
| 1926 | if (head_need > 0 || skb_cloned(skb)) { |
| 1927 | head_need += IEEE80211_ENCRYPT_HEADROOM; |
| 1928 | head_need += local->tx_headroom; |
| 1929 | head_need = max_t(int, 0, head_need); |
| 1930 | if (ieee80211_skb_resize(local, skb, head_need, true)) |
| 1931 | goto fail; |
| 1932 | } |
| 1933 | |
| 1934 | if (encaps_data) { |
| 1935 | memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); |
| 1936 | nh_pos += encaps_len; |
| 1937 | h_pos += encaps_len; |
| 1938 | } |
| 1939 | |
| 1940 | #ifdef CONFIG_MAC80211_MESH |
| 1941 | if (meshhdrlen > 0) { |
| 1942 | memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); |
| 1943 | nh_pos += meshhdrlen; |
| 1944 | h_pos += meshhdrlen; |
| 1945 | } |
| 1946 | #endif |
| 1947 | |
| 1948 | if (ieee80211_is_data_qos(fc)) { |
| 1949 | __le16 *qos_control; |
| 1950 | |
| 1951 | qos_control = (__le16*) skb_push(skb, 2); |
| 1952 | memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); |
| 1953 | /* |
| 1954 | * Maybe we could actually set some fields here, for now just |
| 1955 | * initialise to zero to indicate no special operation. |
| 1956 | */ |
| 1957 | *qos_control = 0; |
| 1958 | } else |
| 1959 | memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); |
| 1960 | |
| 1961 | nh_pos += hdrlen; |
| 1962 | h_pos += hdrlen; |
| 1963 | |
| 1964 | dev->stats.tx_packets++; |
| 1965 | dev->stats.tx_bytes += skb->len; |
| 1966 | |
| 1967 | /* Update skb pointers to various headers since this modified frame |
| 1968 | * is going to go through Linux networking code that may potentially |
| 1969 | * need things like pointer to IP header. */ |
| 1970 | skb_set_mac_header(skb, 0); |
| 1971 | skb_set_network_header(skb, nh_pos); |
| 1972 | skb_set_transport_header(skb, h_pos); |
| 1973 | |
| 1974 | memset(info, 0, sizeof(*info)); |
| 1975 | |
| 1976 | dev->trans_start = jiffies; |
| 1977 | ieee80211_xmit(sdata, skb); |
| 1978 | |
| 1979 | return NETDEV_TX_OK; |
| 1980 | |
| 1981 | fail: |
| 1982 | if (ret == NETDEV_TX_OK) |
| 1983 | dev_kfree_skb(skb); |
| 1984 | |
| 1985 | return ret; |
| 1986 | } |
| 1987 | |
| 1988 | |
| 1989 | /* |
| 1990 | * ieee80211_clear_tx_pending may not be called in a context where |
| 1991 | * it is possible that it packets could come in again. |
| 1992 | */ |
| 1993 | void ieee80211_clear_tx_pending(struct ieee80211_local *local) |
| 1994 | { |
| 1995 | int i; |
| 1996 | |
| 1997 | for (i = 0; i < local->hw.queues; i++) |
| 1998 | skb_queue_purge(&local->pending[i]); |
| 1999 | } |
| 2000 | |
| 2001 | static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, |
| 2002 | struct sk_buff *skb) |
| 2003 | { |
| 2004 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 2005 | struct ieee80211_sub_if_data *sdata; |
| 2006 | struct sta_info *sta; |
| 2007 | struct ieee80211_hdr *hdr; |
| 2008 | int ret; |
| 2009 | bool result = true; |
| 2010 | |
| 2011 | sdata = vif_to_sdata(info->control.vif); |
| 2012 | |
| 2013 | if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { |
| 2014 | ieee80211_tx(sdata, skb, true); |
| 2015 | } else { |
| 2016 | hdr = (struct ieee80211_hdr *)skb->data; |
| 2017 | sta = sta_info_get(sdata, hdr->addr1); |
| 2018 | |
| 2019 | ret = __ieee80211_tx(local, &skb, sta, true); |
| 2020 | if (ret != IEEE80211_TX_OK) |
| 2021 | result = false; |
| 2022 | } |
| 2023 | |
| 2024 | return result; |
| 2025 | } |
| 2026 | |
| 2027 | /* |
| 2028 | * Transmit all pending packets. Called from tasklet. |
| 2029 | */ |
| 2030 | void ieee80211_tx_pending(unsigned long data) |
| 2031 | { |
| 2032 | struct ieee80211_local *local = (struct ieee80211_local *)data; |
| 2033 | struct ieee80211_sub_if_data *sdata; |
| 2034 | unsigned long flags; |
| 2035 | int i; |
| 2036 | bool txok; |
| 2037 | |
| 2038 | rcu_read_lock(); |
| 2039 | |
| 2040 | spin_lock_irqsave(&local->queue_stop_reason_lock, flags); |
| 2041 | for (i = 0; i < local->hw.queues; i++) { |
| 2042 | /* |
| 2043 | * If queue is stopped by something other than due to pending |
| 2044 | * frames, or we have no pending frames, proceed to next queue. |
| 2045 | */ |
| 2046 | if (local->queue_stop_reasons[i] || |
| 2047 | skb_queue_empty(&local->pending[i])) |
| 2048 | continue; |
| 2049 | |
| 2050 | while (!skb_queue_empty(&local->pending[i])) { |
| 2051 | struct sk_buff *skb = __skb_dequeue(&local->pending[i]); |
| 2052 | struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); |
| 2053 | |
| 2054 | if (WARN_ON(!info->control.vif)) { |
| 2055 | kfree_skb(skb); |
| 2056 | continue; |
| 2057 | } |
| 2058 | |
| 2059 | spin_unlock_irqrestore(&local->queue_stop_reason_lock, |
| 2060 | flags); |
| 2061 | |
| 2062 | txok = ieee80211_tx_pending_skb(local, skb); |
| 2063 | if (!txok) |
| 2064 | __skb_queue_head(&local->pending[i], skb); |
| 2065 | spin_lock_irqsave(&local->queue_stop_reason_lock, |
| 2066 | flags); |
| 2067 | if (!txok) |
| 2068 | break; |
| 2069 | } |
| 2070 | |
| 2071 | if (skb_queue_empty(&local->pending[i])) |
| 2072 | list_for_each_entry_rcu(sdata, &local->interfaces, list) |
| 2073 | netif_tx_wake_queue( |
| 2074 | netdev_get_tx_queue(sdata->dev, i)); |
| 2075 | } |
| 2076 | spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); |
| 2077 | |
| 2078 | rcu_read_unlock(); |
| 2079 | } |
| 2080 | |
| 2081 | /* functions for drivers to get certain frames */ |
| 2082 | |
| 2083 | static void ieee80211_beacon_add_tim(struct ieee80211_if_ap *bss, |
| 2084 | struct sk_buff *skb, |
| 2085 | struct beacon_data *beacon) |
| 2086 | { |
| 2087 | u8 *pos, *tim; |
| 2088 | int aid0 = 0; |
| 2089 | int i, have_bits = 0, n1, n2; |
| 2090 | |
| 2091 | /* Generate bitmap for TIM only if there are any STAs in power save |
| 2092 | * mode. */ |
| 2093 | if (atomic_read(&bss->num_sta_ps) > 0) |
| 2094 | /* in the hope that this is faster than |
| 2095 | * checking byte-for-byte */ |
| 2096 | have_bits = !bitmap_empty((unsigned long*)bss->tim, |
| 2097 | IEEE80211_MAX_AID+1); |
| 2098 | |
| 2099 | if (bss->dtim_count == 0) |
| 2100 | bss->dtim_count = beacon->dtim_period - 1; |
| 2101 | else |
| 2102 | bss->dtim_count--; |
| 2103 | |
| 2104 | tim = pos = (u8 *) skb_put(skb, 6); |
| 2105 | *pos++ = WLAN_EID_TIM; |
| 2106 | *pos++ = 4; |
| 2107 | *pos++ = bss->dtim_count; |
| 2108 | *pos++ = beacon->dtim_period; |
| 2109 | |
| 2110 | if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) |
| 2111 | aid0 = 1; |
| 2112 | |
| 2113 | if (have_bits) { |
| 2114 | /* Find largest even number N1 so that bits numbered 1 through |
| 2115 | * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits |
| 2116 | * (N2 + 1) x 8 through 2007 are 0. */ |
| 2117 | n1 = 0; |
| 2118 | for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { |
| 2119 | if (bss->tim[i]) { |
| 2120 | n1 = i & 0xfe; |
| 2121 | break; |
| 2122 | } |
| 2123 | } |
| 2124 | n2 = n1; |
| 2125 | for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { |
| 2126 | if (bss->tim[i]) { |
| 2127 | n2 = i; |
| 2128 | break; |
| 2129 | } |
| 2130 | } |
| 2131 | |
| 2132 | /* Bitmap control */ |
| 2133 | *pos++ = n1 | aid0; |
| 2134 | /* Part Virt Bitmap */ |
| 2135 | memcpy(pos, bss->tim + n1, n2 - n1 + 1); |
| 2136 | |
| 2137 | tim[1] = n2 - n1 + 4; |
| 2138 | skb_put(skb, n2 - n1); |
| 2139 | } else { |
| 2140 | *pos++ = aid0; /* Bitmap control */ |
| 2141 | *pos++ = 0; /* Part Virt Bitmap */ |
| 2142 | } |
| 2143 | } |
| 2144 | |
| 2145 | struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, |
| 2146 | struct ieee80211_vif *vif, |
| 2147 | u16 *tim_offset, u16 *tim_length) |
| 2148 | { |
| 2149 | struct ieee80211_local *local = hw_to_local(hw); |
| 2150 | struct sk_buff *skb = NULL; |
| 2151 | struct ieee80211_tx_info *info; |
| 2152 | struct ieee80211_sub_if_data *sdata = NULL; |
| 2153 | struct ieee80211_if_ap *ap = NULL; |
| 2154 | struct beacon_data *beacon; |
| 2155 | struct ieee80211_supported_band *sband; |
| 2156 | enum ieee80211_band band = local->hw.conf.channel->band; |
| 2157 | struct ieee80211_tx_rate_control txrc; |
| 2158 | |
| 2159 | sband = local->hw.wiphy->bands[band]; |
| 2160 | |
| 2161 | rcu_read_lock(); |
| 2162 | |
| 2163 | sdata = vif_to_sdata(vif); |
| 2164 | |
| 2165 | if (tim_offset) |
| 2166 | *tim_offset = 0; |
| 2167 | if (tim_length) |
| 2168 | *tim_length = 0; |
| 2169 | |
| 2170 | if (sdata->vif.type == NL80211_IFTYPE_AP) { |
| 2171 | ap = &sdata->u.ap; |
| 2172 | beacon = rcu_dereference(ap->beacon); |
| 2173 | if (ap && beacon) { |
| 2174 | /* |
| 2175 | * headroom, head length, |
| 2176 | * tail length and maximum TIM length |
| 2177 | */ |
| 2178 | skb = dev_alloc_skb(local->tx_headroom + |
| 2179 | beacon->head_len + |
| 2180 | beacon->tail_len + 256); |
| 2181 | if (!skb) |
| 2182 | goto out; |
| 2183 | |
| 2184 | skb_reserve(skb, local->tx_headroom); |
| 2185 | memcpy(skb_put(skb, beacon->head_len), beacon->head, |
| 2186 | beacon->head_len); |
| 2187 | |
| 2188 | /* |
| 2189 | * Not very nice, but we want to allow the driver to call |
| 2190 | * ieee80211_beacon_get() as a response to the set_tim() |
| 2191 | * callback. That, however, is already invoked under the |
| 2192 | * sta_lock to guarantee consistent and race-free update |
| 2193 | * of the tim bitmap in mac80211 and the driver. |
| 2194 | */ |
| 2195 | if (local->tim_in_locked_section) { |
| 2196 | ieee80211_beacon_add_tim(ap, skb, beacon); |
| 2197 | } else { |
| 2198 | unsigned long flags; |
| 2199 | |
| 2200 | spin_lock_irqsave(&local->sta_lock, flags); |
| 2201 | ieee80211_beacon_add_tim(ap, skb, beacon); |
| 2202 | spin_unlock_irqrestore(&local->sta_lock, flags); |
| 2203 | } |
| 2204 | |
| 2205 | if (tim_offset) |
| 2206 | *tim_offset = beacon->head_len; |
| 2207 | if (tim_length) |
| 2208 | *tim_length = skb->len - beacon->head_len; |
| 2209 | |
| 2210 | if (beacon->tail) |
| 2211 | memcpy(skb_put(skb, beacon->tail_len), |
| 2212 | beacon->tail, beacon->tail_len); |
| 2213 | } else |
| 2214 | goto out; |
| 2215 | } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { |
| 2216 | struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; |
| 2217 | struct ieee80211_hdr *hdr; |
| 2218 | struct sk_buff *presp = rcu_dereference(ifibss->presp); |
| 2219 | |
| 2220 | if (!presp) |
| 2221 | goto out; |
| 2222 | |
| 2223 | skb = skb_copy(presp, GFP_ATOMIC); |
| 2224 | if (!skb) |
| 2225 | goto out; |
| 2226 | |
| 2227 | hdr = (struct ieee80211_hdr *) skb->data; |
| 2228 | hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | |
| 2229 | IEEE80211_STYPE_BEACON); |
| 2230 | } else if (ieee80211_vif_is_mesh(&sdata->vif)) { |
| 2231 | struct ieee80211_mgmt *mgmt; |
| 2232 | u8 *pos; |
| 2233 | |
| 2234 | /* headroom, head length, tail length and maximum TIM length */ |
| 2235 | skb = dev_alloc_skb(local->tx_headroom + 400); |
| 2236 | if (!skb) |
| 2237 | goto out; |
| 2238 | |
| 2239 | skb_reserve(skb, local->hw.extra_tx_headroom); |
| 2240 | mgmt = (struct ieee80211_mgmt *) |
| 2241 | skb_put(skb, 24 + sizeof(mgmt->u.beacon)); |
| 2242 | memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon)); |
| 2243 | mgmt->frame_control = |
| 2244 | cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); |
| 2245 | memset(mgmt->da, 0xff, ETH_ALEN); |
| 2246 | memcpy(mgmt->sa, sdata->vif.addr, ETH_ALEN); |
| 2247 | memcpy(mgmt->bssid, sdata->vif.addr, ETH_ALEN); |
| 2248 | mgmt->u.beacon.beacon_int = |
| 2249 | cpu_to_le16(sdata->vif.bss_conf.beacon_int); |
| 2250 | mgmt->u.beacon.capab_info = 0x0; /* 0x0 for MPs */ |
| 2251 | |
| 2252 | pos = skb_put(skb, 2); |
| 2253 | *pos++ = WLAN_EID_SSID; |
| 2254 | *pos++ = 0x0; |
| 2255 | |
| 2256 | mesh_mgmt_ies_add(skb, sdata); |
| 2257 | } else { |
| 2258 | WARN_ON(1); |
| 2259 | goto out; |
| 2260 | } |
| 2261 | |
| 2262 | info = IEEE80211_SKB_CB(skb); |
| 2263 | |
| 2264 | info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; |
| 2265 | info->flags |= IEEE80211_TX_CTL_NO_ACK; |
| 2266 | info->band = band; |
| 2267 | |
| 2268 | memset(&txrc, 0, sizeof(txrc)); |
| 2269 | txrc.hw = hw; |
| 2270 | txrc.sband = sband; |
| 2271 | txrc.bss_conf = &sdata->vif.bss_conf; |
| 2272 | txrc.skb = skb; |
| 2273 | txrc.reported_rate.idx = -1; |
| 2274 | txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; |
| 2275 | if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) |
| 2276 | txrc.max_rate_idx = -1; |
| 2277 | else |
| 2278 | txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; |
| 2279 | txrc.ap = true; |
| 2280 | rate_control_get_rate(sdata, NULL, &txrc); |
| 2281 | |
| 2282 | info->control.vif = vif; |
| 2283 | |
| 2284 | info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | |
| 2285 | IEEE80211_TX_CTL_ASSIGN_SEQ | |
| 2286 | IEEE80211_TX_CTL_FIRST_FRAGMENT; |
| 2287 | out: |
| 2288 | rcu_read_unlock(); |
| 2289 | return skb; |
| 2290 | } |
| 2291 | EXPORT_SYMBOL(ieee80211_beacon_get_tim); |
| 2292 | |
| 2293 | struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, |
| 2294 | struct ieee80211_vif *vif) |
| 2295 | { |
| 2296 | struct ieee80211_sub_if_data *sdata; |
| 2297 | struct ieee80211_if_managed *ifmgd; |
| 2298 | struct ieee80211_pspoll *pspoll; |
| 2299 | struct ieee80211_local *local; |
| 2300 | struct sk_buff *skb; |
| 2301 | |
| 2302 | if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| 2303 | return NULL; |
| 2304 | |
| 2305 | sdata = vif_to_sdata(vif); |
| 2306 | ifmgd = &sdata->u.mgd; |
| 2307 | local = sdata->local; |
| 2308 | |
| 2309 | skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); |
| 2310 | if (!skb) { |
| 2311 | printk(KERN_DEBUG "%s: failed to allocate buffer for " |
| 2312 | "pspoll template\n", sdata->name); |
| 2313 | return NULL; |
| 2314 | } |
| 2315 | skb_reserve(skb, local->hw.extra_tx_headroom); |
| 2316 | |
| 2317 | pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); |
| 2318 | memset(pspoll, 0, sizeof(*pspoll)); |
| 2319 | pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | |
| 2320 | IEEE80211_STYPE_PSPOLL); |
| 2321 | pspoll->aid = cpu_to_le16(ifmgd->aid); |
| 2322 | |
| 2323 | /* aid in PS-Poll has its two MSBs each set to 1 */ |
| 2324 | pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); |
| 2325 | |
| 2326 | memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); |
| 2327 | memcpy(pspoll->ta, vif->addr, ETH_ALEN); |
| 2328 | |
| 2329 | return skb; |
| 2330 | } |
| 2331 | EXPORT_SYMBOL(ieee80211_pspoll_get); |
| 2332 | |
| 2333 | struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, |
| 2334 | struct ieee80211_vif *vif) |
| 2335 | { |
| 2336 | struct ieee80211_hdr_3addr *nullfunc; |
| 2337 | struct ieee80211_sub_if_data *sdata; |
| 2338 | struct ieee80211_if_managed *ifmgd; |
| 2339 | struct ieee80211_local *local; |
| 2340 | struct sk_buff *skb; |
| 2341 | |
| 2342 | if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) |
| 2343 | return NULL; |
| 2344 | |
| 2345 | sdata = vif_to_sdata(vif); |
| 2346 | ifmgd = &sdata->u.mgd; |
| 2347 | local = sdata->local; |
| 2348 | |
| 2349 | skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); |
| 2350 | if (!skb) { |
| 2351 | printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc " |
| 2352 | "template\n", sdata->name); |
| 2353 | return NULL; |
| 2354 | } |
| 2355 | skb_reserve(skb, local->hw.extra_tx_headroom); |
| 2356 | |
| 2357 | nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, |
| 2358 | sizeof(*nullfunc)); |
| 2359 | memset(nullfunc, 0, sizeof(*nullfunc)); |
| 2360 | nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | |
| 2361 | IEEE80211_STYPE_NULLFUNC | |
| 2362 | IEEE80211_FCTL_TODS); |
| 2363 | memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); |
| 2364 | memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); |
| 2365 | memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); |
| 2366 | |
| 2367 | return skb; |
| 2368 | } |
| 2369 | EXPORT_SYMBOL(ieee80211_nullfunc_get); |
| 2370 | |
| 2371 | struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, |
| 2372 | struct ieee80211_vif *vif, |
| 2373 | const u8 *ssid, size_t ssid_len, |
| 2374 | const u8 *ie, size_t ie_len) |
| 2375 | { |
| 2376 | struct ieee80211_sub_if_data *sdata; |
| 2377 | struct ieee80211_local *local; |
| 2378 | struct ieee80211_hdr_3addr *hdr; |
| 2379 | struct sk_buff *skb; |
| 2380 | size_t ie_ssid_len; |
| 2381 | u8 *pos; |
| 2382 | |
| 2383 | sdata = vif_to_sdata(vif); |
| 2384 | local = sdata->local; |
| 2385 | ie_ssid_len = 2 + ssid_len; |
| 2386 | |
| 2387 | skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + |
| 2388 | ie_ssid_len + ie_len); |
| 2389 | if (!skb) { |
| 2390 | printk(KERN_DEBUG "%s: failed to allocate buffer for probe " |
| 2391 | "request template\n", sdata->name); |
| 2392 | return NULL; |
| 2393 | } |
| 2394 | |
| 2395 | skb_reserve(skb, local->hw.extra_tx_headroom); |
| 2396 | |
| 2397 | hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); |
| 2398 | memset(hdr, 0, sizeof(*hdr)); |
| 2399 | hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | |
| 2400 | IEEE80211_STYPE_PROBE_REQ); |
| 2401 | memset(hdr->addr1, 0xff, ETH_ALEN); |
| 2402 | memcpy(hdr->addr2, vif->addr, ETH_ALEN); |
| 2403 | memset(hdr->addr3, 0xff, ETH_ALEN); |
| 2404 | |
| 2405 | pos = skb_put(skb, ie_ssid_len); |
| 2406 | *pos++ = WLAN_EID_SSID; |
| 2407 | *pos++ = ssid_len; |
| 2408 | if (ssid) |
| 2409 | memcpy(pos, ssid, ssid_len); |
| 2410 | pos += ssid_len; |
| 2411 | |
| 2412 | if (ie) { |
| 2413 | pos = skb_put(skb, ie_len); |
| 2414 | memcpy(pos, ie, ie_len); |
| 2415 | } |
| 2416 | |
| 2417 | return skb; |
| 2418 | } |
| 2419 | EXPORT_SYMBOL(ieee80211_probereq_get); |
| 2420 | |
| 2421 | void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, |
| 2422 | const void *frame, size_t frame_len, |
| 2423 | const struct ieee80211_tx_info *frame_txctl, |
| 2424 | struct ieee80211_rts *rts) |
| 2425 | { |
| 2426 | const struct ieee80211_hdr *hdr = frame; |
| 2427 | |
| 2428 | rts->frame_control = |
| 2429 | cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); |
| 2430 | rts->duration = ieee80211_rts_duration(hw, vif, frame_len, |
| 2431 | frame_txctl); |
| 2432 | memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); |
| 2433 | memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); |
| 2434 | } |
| 2435 | EXPORT_SYMBOL(ieee80211_rts_get); |
| 2436 | |
| 2437 | void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, |
| 2438 | const void *frame, size_t frame_len, |
| 2439 | const struct ieee80211_tx_info *frame_txctl, |
| 2440 | struct ieee80211_cts *cts) |
| 2441 | { |
| 2442 | const struct ieee80211_hdr *hdr = frame; |
| 2443 | |
| 2444 | cts->frame_control = |
| 2445 | cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); |
| 2446 | cts->duration = ieee80211_ctstoself_duration(hw, vif, |
| 2447 | frame_len, frame_txctl); |
| 2448 | memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); |
| 2449 | } |
| 2450 | EXPORT_SYMBOL(ieee80211_ctstoself_get); |
| 2451 | |
| 2452 | struct sk_buff * |
| 2453 | ieee80211_get_buffered_bc(struct ieee80211_hw *hw, |
| 2454 | struct ieee80211_vif *vif) |
| 2455 | { |
| 2456 | struct ieee80211_local *local = hw_to_local(hw); |
| 2457 | struct sk_buff *skb = NULL; |
| 2458 | struct sta_info *sta; |
| 2459 | struct ieee80211_tx_data tx; |
| 2460 | struct ieee80211_sub_if_data *sdata; |
| 2461 | struct ieee80211_if_ap *bss = NULL; |
| 2462 | struct beacon_data *beacon; |
| 2463 | struct ieee80211_tx_info *info; |
| 2464 | |
| 2465 | sdata = vif_to_sdata(vif); |
| 2466 | bss = &sdata->u.ap; |
| 2467 | |
| 2468 | rcu_read_lock(); |
| 2469 | beacon = rcu_dereference(bss->beacon); |
| 2470 | |
| 2471 | if (sdata->vif.type != NL80211_IFTYPE_AP || !beacon || !beacon->head) |
| 2472 | goto out; |
| 2473 | |
| 2474 | if (bss->dtim_count != 0) |
| 2475 | goto out; /* send buffered bc/mc only after DTIM beacon */ |
| 2476 | |
| 2477 | while (1) { |
| 2478 | skb = skb_dequeue(&bss->ps_bc_buf); |
| 2479 | if (!skb) |
| 2480 | goto out; |
| 2481 | local->total_ps_buffered--; |
| 2482 | |
| 2483 | if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) { |
| 2484 | struct ieee80211_hdr *hdr = |
| 2485 | (struct ieee80211_hdr *) skb->data; |
| 2486 | /* more buffered multicast/broadcast frames ==> set |
| 2487 | * MoreData flag in IEEE 802.11 header to inform PS |
| 2488 | * STAs */ |
| 2489 | hdr->frame_control |= |
| 2490 | cpu_to_le16(IEEE80211_FCTL_MOREDATA); |
| 2491 | } |
| 2492 | |
| 2493 | if (!ieee80211_tx_prepare(sdata, &tx, skb)) |
| 2494 | break; |
| 2495 | dev_kfree_skb_any(skb); |
| 2496 | } |
| 2497 | |
| 2498 | info = IEEE80211_SKB_CB(skb); |
| 2499 | |
| 2500 | sta = tx.sta; |
| 2501 | tx.flags |= IEEE80211_TX_PS_BUFFERED; |
| 2502 | tx.channel = local->hw.conf.channel; |
| 2503 | info->band = tx.channel->band; |
| 2504 | |
| 2505 | if (invoke_tx_handlers(&tx)) |
| 2506 | skb = NULL; |
| 2507 | out: |
| 2508 | rcu_read_unlock(); |
| 2509 | |
| 2510 | return skb; |
| 2511 | } |
| 2512 | EXPORT_SYMBOL(ieee80211_get_buffered_bc); |
| 2513 | |
| 2514 | void ieee80211_tx_skb(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb) |
| 2515 | { |
| 2516 | skb_set_mac_header(skb, 0); |
| 2517 | skb_set_network_header(skb, 0); |
| 2518 | skb_set_transport_header(skb, 0); |
| 2519 | |
| 2520 | /* send all internal mgmt frames on VO */ |
| 2521 | skb_set_queue_mapping(skb, 0); |
| 2522 | |
| 2523 | /* |
| 2524 | * The other path calling ieee80211_xmit is from the tasklet, |
| 2525 | * and while we can handle concurrent transmissions locking |
| 2526 | * requirements are that we do not come into tx with bhs on. |
| 2527 | */ |
| 2528 | local_bh_disable(); |
| 2529 | ieee80211_xmit(sdata, skb); |
| 2530 | local_bh_enable(); |
| 2531 | } |