lguest: documentation update
[deliverable/linux.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include "linux/lguest_launcher.h"
38 #include "linux/virtio_config.h"
39 #include "linux/virtio_net.h"
40 #include "linux/virtio_blk.h"
41 #include "linux/virtio_console.h"
42 #include "linux/virtio_ring.h"
43 #include "asm-x86/bootparam.h"
44 /*L:110 We can ignore the 38 include files we need for this program, but I do
45 * want to draw attention to the use of kernel-style types.
46 *
47 * As Linus said, "C is a Spartan language, and so should your naming be." I
48 * like these abbreviations, so we define them here. Note that u64 is always
49 * unsigned long long, which works on all Linux systems: this means that we can
50 * use %llu in printf for any u64. */
51 typedef unsigned long long u64;
52 typedef uint32_t u32;
53 typedef uint16_t u16;
54 typedef uint8_t u8;
55 /*:*/
56
57 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
58 #define NET_PEERNUM 1
59 #define BRIDGE_PFX "bridge:"
60 #ifndef SIOCBRADDIF
61 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
62 #endif
63 /* We can have up to 256 pages for devices. */
64 #define DEVICE_PAGES 256
65 /* This fits nicely in a single 4096-byte page. */
66 #define VIRTQUEUE_NUM 127
67
68 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
69 * this, and although I wouldn't recommend it, it works quite nicely here. */
70 static bool verbose;
71 #define verbose(args...) \
72 do { if (verbose) printf(args); } while(0)
73 /*:*/
74
75 /* The pipe to send commands to the waker process */
76 static int waker_fd;
77 /* The pointer to the start of guest memory. */
78 static void *guest_base;
79 /* The maximum guest physical address allowed, and maximum possible. */
80 static unsigned long guest_limit, guest_max;
81
82 /* This is our list of devices. */
83 struct device_list
84 {
85 /* Summary information about the devices in our list: ready to pass to
86 * select() to ask which need servicing.*/
87 fd_set infds;
88 int max_infd;
89
90 /* Counter to assign interrupt numbers. */
91 unsigned int next_irq;
92
93 /* Counter to print out convenient device numbers. */
94 unsigned int device_num;
95
96 /* The descriptor page for the devices. */
97 u8 *descpage;
98
99 /* The tail of the last descriptor. */
100 unsigned int desc_used;
101
102 /* A single linked list of devices. */
103 struct device *dev;
104 /* ... And an end pointer so we can easily append new devices */
105 struct device **lastdev;
106 };
107
108 /* The list of Guest devices, based on command line arguments. */
109 static struct device_list devices;
110
111 /* The device structure describes a single device. */
112 struct device
113 {
114 /* The linked-list pointer. */
115 struct device *next;
116
117 /* The this device's descriptor, as mapped into the Guest. */
118 struct lguest_device_desc *desc;
119
120 /* The name of this device, for --verbose. */
121 const char *name;
122
123 /* If handle_input is set, it wants to be called when this file
124 * descriptor is ready. */
125 int fd;
126 bool (*handle_input)(int fd, struct device *me);
127
128 /* Any queues attached to this device */
129 struct virtqueue *vq;
130
131 /* Device-specific data. */
132 void *priv;
133 };
134
135 /* The virtqueue structure describes a queue attached to a device. */
136 struct virtqueue
137 {
138 struct virtqueue *next;
139
140 /* Which device owns me. */
141 struct device *dev;
142
143 /* The configuration for this queue. */
144 struct lguest_vqconfig config;
145
146 /* The actual ring of buffers. */
147 struct vring vring;
148
149 /* Last available index we saw. */
150 u16 last_avail_idx;
151
152 /* The routine to call when the Guest pings us. */
153 void (*handle_output)(int fd, struct virtqueue *me);
154 };
155
156 /* Since guest is UP and we don't run at the same time, we don't need barriers.
157 * But I include them in the code in case others copy it. */
158 #define wmb()
159
160 /* Convert an iovec element to the given type.
161 *
162 * This is a fairly ugly trick: we need to know the size of the type and
163 * alignment requirement to check the pointer is kosher. It's also nice to
164 * have the name of the type in case we report failure.
165 *
166 * Typing those three things all the time is cumbersome and error prone, so we
167 * have a macro which sets them all up and passes to the real function. */
168 #define convert(iov, type) \
169 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
170
171 static void *_convert(struct iovec *iov, size_t size, size_t align,
172 const char *name)
173 {
174 if (iov->iov_len != size)
175 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
176 if ((unsigned long)iov->iov_base % align != 0)
177 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
178 return iov->iov_base;
179 }
180
181 /* The virtio configuration space is defined to be little-endian. x86 is
182 * little-endian too, but it's nice to be explicit so we have these helpers. */
183 #define cpu_to_le16(v16) (v16)
184 #define cpu_to_le32(v32) (v32)
185 #define cpu_to_le64(v64) (v64)
186 #define le16_to_cpu(v16) (v16)
187 #define le32_to_cpu(v32) (v32)
188 #define le64_to_cpu(v32) (v64)
189
190 /*L:100 The Launcher code itself takes us out into userspace, that scary place
191 * where pointers run wild and free! Unfortunately, like most userspace
192 * programs, it's quite boring (which is why everyone likes to hack on the
193 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
194 * will get you through this section. Or, maybe not.
195 *
196 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
197 * memory and stores it in "guest_base". In other words, Guest physical ==
198 * Launcher virtual with an offset.
199 *
200 * This can be tough to get your head around, but usually it just means that we
201 * use these trivial conversion functions when the Guest gives us it's
202 * "physical" addresses: */
203 static void *from_guest_phys(unsigned long addr)
204 {
205 return guest_base + addr;
206 }
207
208 static unsigned long to_guest_phys(const void *addr)
209 {
210 return (addr - guest_base);
211 }
212
213 /*L:130
214 * Loading the Kernel.
215 *
216 * We start with couple of simple helper routines. open_or_die() avoids
217 * error-checking code cluttering the callers: */
218 static int open_or_die(const char *name, int flags)
219 {
220 int fd = open(name, flags);
221 if (fd < 0)
222 err(1, "Failed to open %s", name);
223 return fd;
224 }
225
226 /* map_zeroed_pages() takes a number of pages. */
227 static void *map_zeroed_pages(unsigned int num)
228 {
229 int fd = open_or_die("/dev/zero", O_RDONLY);
230 void *addr;
231
232 /* We use a private mapping (ie. if we write to the page, it will be
233 * copied). */
234 addr = mmap(NULL, getpagesize() * num,
235 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
236 if (addr == MAP_FAILED)
237 err(1, "Mmaping %u pages of /dev/zero", num);
238
239 return addr;
240 }
241
242 /* Get some more pages for a device. */
243 static void *get_pages(unsigned int num)
244 {
245 void *addr = from_guest_phys(guest_limit);
246
247 guest_limit += num * getpagesize();
248 if (guest_limit > guest_max)
249 errx(1, "Not enough memory for devices");
250 return addr;
251 }
252
253 /* This routine is used to load the kernel or initrd. It tries mmap, but if
254 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
255 * it falls back to reading the memory in. */
256 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
257 {
258 ssize_t r;
259
260 /* We map writable even though for some segments are marked read-only.
261 * The kernel really wants to be writable: it patches its own
262 * instructions.
263 *
264 * MAP_PRIVATE means that the page won't be copied until a write is
265 * done to it. This allows us to share untouched memory between
266 * Guests. */
267 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
268 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
269 return;
270
271 /* pread does a seek and a read in one shot: saves a few lines. */
272 r = pread(fd, addr, len, offset);
273 if (r != len)
274 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
275 }
276
277 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
278 * the Guest memory. ELF = Embedded Linking Format, which is the format used
279 * by all modern binaries on Linux including the kernel.
280 *
281 * The ELF headers give *two* addresses: a physical address, and a virtual
282 * address. We use the physical address; the Guest will map itself to the
283 * virtual address.
284 *
285 * We return the starting address. */
286 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
287 {
288 Elf32_Phdr phdr[ehdr->e_phnum];
289 unsigned int i;
290
291 /* Sanity checks on the main ELF header: an x86 executable with a
292 * reasonable number of correctly-sized program headers. */
293 if (ehdr->e_type != ET_EXEC
294 || ehdr->e_machine != EM_386
295 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
296 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
297 errx(1, "Malformed elf header");
298
299 /* An ELF executable contains an ELF header and a number of "program"
300 * headers which indicate which parts ("segments") of the program to
301 * load where. */
302
303 /* We read in all the program headers at once: */
304 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
305 err(1, "Seeking to program headers");
306 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
307 err(1, "Reading program headers");
308
309 /* Try all the headers: there are usually only three. A read-only one,
310 * a read-write one, and a "note" section which isn't loadable. */
311 for (i = 0; i < ehdr->e_phnum; i++) {
312 /* If this isn't a loadable segment, we ignore it */
313 if (phdr[i].p_type != PT_LOAD)
314 continue;
315
316 verbose("Section %i: size %i addr %p\n",
317 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
318
319 /* We map this section of the file at its physical address. */
320 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
321 phdr[i].p_offset, phdr[i].p_filesz);
322 }
323
324 /* The entry point is given in the ELF header. */
325 return ehdr->e_entry;
326 }
327
328 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
329 * supposed to jump into it and it will unpack itself. We used to have to
330 * perform some hairy magic because the unpacking code scared me.
331 *
332 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
333 * a small patch to jump over the tricky bits in the Guest, so now we just read
334 * the funky header so we know where in the file to load, and away we go! */
335 static unsigned long load_bzimage(int fd)
336 {
337 struct boot_params boot;
338 int r;
339 /* Modern bzImages get loaded at 1M. */
340 void *p = from_guest_phys(0x100000);
341
342 /* Go back to the start of the file and read the header. It should be
343 * a Linux boot header (see Documentation/i386/boot.txt) */
344 lseek(fd, 0, SEEK_SET);
345 read(fd, &boot, sizeof(boot));
346
347 /* Inside the setup_hdr, we expect the magic "HdrS" */
348 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
349 errx(1, "This doesn't look like a bzImage to me");
350
351 /* Skip over the extra sectors of the header. */
352 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
353
354 /* Now read everything into memory. in nice big chunks. */
355 while ((r = read(fd, p, 65536)) > 0)
356 p += r;
357
358 /* Finally, code32_start tells us where to enter the kernel. */
359 return boot.hdr.code32_start;
360 }
361
362 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
363 * come wrapped up in the self-decompressing "bzImage" format. With a little
364 * work, we can load those, too. */
365 static unsigned long load_kernel(int fd)
366 {
367 Elf32_Ehdr hdr;
368
369 /* Read in the first few bytes. */
370 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
371 err(1, "Reading kernel");
372
373 /* If it's an ELF file, it starts with "\177ELF" */
374 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
375 return map_elf(fd, &hdr);
376
377 /* Otherwise we assume it's a bzImage, and try to unpack it */
378 return load_bzimage(fd);
379 }
380
381 /* This is a trivial little helper to align pages. Andi Kleen hated it because
382 * it calls getpagesize() twice: "it's dumb code."
383 *
384 * Kernel guys get really het up about optimization, even when it's not
385 * necessary. I leave this code as a reaction against that. */
386 static inline unsigned long page_align(unsigned long addr)
387 {
388 /* Add upwards and truncate downwards. */
389 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
390 }
391
392 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
393 * the kernel which the kernel can use to boot from without needing any
394 * drivers. Most distributions now use this as standard: the initrd contains
395 * the code to load the appropriate driver modules for the current machine.
396 *
397 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
398 * kernels. He sent me this (and tells me when I break it). */
399 static unsigned long load_initrd(const char *name, unsigned long mem)
400 {
401 int ifd;
402 struct stat st;
403 unsigned long len;
404
405 ifd = open_or_die(name, O_RDONLY);
406 /* fstat() is needed to get the file size. */
407 if (fstat(ifd, &st) < 0)
408 err(1, "fstat() on initrd '%s'", name);
409
410 /* We map the initrd at the top of memory, but mmap wants it to be
411 * page-aligned, so we round the size up for that. */
412 len = page_align(st.st_size);
413 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
414 /* Once a file is mapped, you can close the file descriptor. It's a
415 * little odd, but quite useful. */
416 close(ifd);
417 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
418
419 /* We return the initrd size. */
420 return len;
421 }
422
423 /* Once we know how much memory we have, we can construct simple linear page
424 * tables which set virtual == physical which will get the Guest far enough
425 * into the boot to create its own.
426 *
427 * We lay them out of the way, just below the initrd (which is why we need to
428 * know its size). */
429 static unsigned long setup_pagetables(unsigned long mem,
430 unsigned long initrd_size)
431 {
432 unsigned long *pgdir, *linear;
433 unsigned int mapped_pages, i, linear_pages;
434 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
435
436 mapped_pages = mem/getpagesize();
437
438 /* Each PTE page can map ptes_per_page pages: how many do we need? */
439 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
440
441 /* We put the toplevel page directory page at the top of memory. */
442 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
443
444 /* Now we use the next linear_pages pages as pte pages */
445 linear = (void *)pgdir - linear_pages*getpagesize();
446
447 /* Linear mapping is easy: put every page's address into the mapping in
448 * order. PAGE_PRESENT contains the flags Present, Writable and
449 * Executable. */
450 for (i = 0; i < mapped_pages; i++)
451 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
452
453 /* The top level points to the linear page table pages above. */
454 for (i = 0; i < mapped_pages; i += ptes_per_page) {
455 pgdir[i/ptes_per_page]
456 = ((to_guest_phys(linear) + i*sizeof(void *))
457 | PAGE_PRESENT);
458 }
459
460 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
461 mapped_pages, linear_pages, to_guest_phys(linear));
462
463 /* We return the top level (guest-physical) address: the kernel needs
464 * to know where it is. */
465 return to_guest_phys(pgdir);
466 }
467 /*:*/
468
469 /* Simple routine to roll all the commandline arguments together with spaces
470 * between them. */
471 static void concat(char *dst, char *args[])
472 {
473 unsigned int i, len = 0;
474
475 for (i = 0; args[i]; i++) {
476 strcpy(dst+len, args[i]);
477 strcat(dst+len, " ");
478 len += strlen(args[i]) + 1;
479 }
480 /* In case it's empty. */
481 dst[len] = '\0';
482 }
483
484 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
485 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
486 * the base of Guest "physical" memory, the top physical page to allow, the
487 * top level pagetable and the entry point for the Guest. */
488 static int tell_kernel(unsigned long pgdir, unsigned long start)
489 {
490 unsigned long args[] = { LHREQ_INITIALIZE,
491 (unsigned long)guest_base,
492 guest_limit / getpagesize(), pgdir, start };
493 int fd;
494
495 verbose("Guest: %p - %p (%#lx)\n",
496 guest_base, guest_base + guest_limit, guest_limit);
497 fd = open_or_die("/dev/lguest", O_RDWR);
498 if (write(fd, args, sizeof(args)) < 0)
499 err(1, "Writing to /dev/lguest");
500
501 /* We return the /dev/lguest file descriptor to control this Guest */
502 return fd;
503 }
504 /*:*/
505
506 static void add_device_fd(int fd)
507 {
508 FD_SET(fd, &devices.infds);
509 if (fd > devices.max_infd)
510 devices.max_infd = fd;
511 }
512
513 /*L:200
514 * The Waker.
515 *
516 * With console, block and network devices, we can have lots of input which we
517 * need to process. We could try to tell the kernel what file descriptors to
518 * watch, but handing a file descriptor mask through to the kernel is fairly
519 * icky.
520 *
521 * Instead, we fork off a process which watches the file descriptors and writes
522 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
523 * stop running the Guest. This causes the Launcher to return from the
524 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
525 * the LHREQ_BREAK and wake us up again.
526 *
527 * This, of course, is merely a different *kind* of icky.
528 */
529 static void wake_parent(int pipefd, int lguest_fd)
530 {
531 /* Add the pipe from the Launcher to the fdset in the device_list, so
532 * we watch it, too. */
533 add_device_fd(pipefd);
534
535 for (;;) {
536 fd_set rfds = devices.infds;
537 unsigned long args[] = { LHREQ_BREAK, 1 };
538
539 /* Wait until input is ready from one of the devices. */
540 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
541 /* Is it a message from the Launcher? */
542 if (FD_ISSET(pipefd, &rfds)) {
543 int fd;
544 /* If read() returns 0, it means the Launcher has
545 * exited. We silently follow. */
546 if (read(pipefd, &fd, sizeof(fd)) == 0)
547 exit(0);
548 /* Otherwise it's telling us to change what file
549 * descriptors we're to listen to. Positive means
550 * listen to a new one, negative means stop
551 * listening. */
552 if (fd >= 0)
553 FD_SET(fd, &devices.infds);
554 else
555 FD_CLR(-fd - 1, &devices.infds);
556 } else /* Send LHREQ_BREAK command. */
557 write(lguest_fd, args, sizeof(args));
558 }
559 }
560
561 /* This routine just sets up a pipe to the Waker process. */
562 static int setup_waker(int lguest_fd)
563 {
564 int pipefd[2], child;
565
566 /* We create a pipe to talk to the Waker, and also so it knows when the
567 * Launcher dies (and closes pipe). */
568 pipe(pipefd);
569 child = fork();
570 if (child == -1)
571 err(1, "forking");
572
573 if (child == 0) {
574 /* We are the Waker: close the "writing" end of our copy of the
575 * pipe and start waiting for input. */
576 close(pipefd[1]);
577 wake_parent(pipefd[0], lguest_fd);
578 }
579 /* Close the reading end of our copy of the pipe. */
580 close(pipefd[0]);
581
582 /* Here is the fd used to talk to the waker. */
583 return pipefd[1];
584 }
585
586 /*
587 * Device Handling.
588 *
589 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
590 * We need to make sure it's not trying to reach into the Launcher itself, so
591 * we have a convenient routine which checks it and exits with an error message
592 * if something funny is going on:
593 */
594 static void *_check_pointer(unsigned long addr, unsigned int size,
595 unsigned int line)
596 {
597 /* We have to separately check addr and addr+size, because size could
598 * be huge and addr + size might wrap around. */
599 if (addr >= guest_limit || addr + size >= guest_limit)
600 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
601 /* We return a pointer for the caller's convenience, now we know it's
602 * safe to use. */
603 return from_guest_phys(addr);
604 }
605 /* A macro which transparently hands the line number to the real function. */
606 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
607
608 /* Each buffer in the virtqueues is actually a chain of descriptors. This
609 * function returns the next descriptor in the chain, or vq->vring.num if we're
610 * at the end. */
611 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
612 {
613 unsigned int next;
614
615 /* If this descriptor says it doesn't chain, we're done. */
616 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
617 return vq->vring.num;
618
619 /* Check they're not leading us off end of descriptors. */
620 next = vq->vring.desc[i].next;
621 /* Make sure compiler knows to grab that: we don't want it changing! */
622 wmb();
623
624 if (next >= vq->vring.num)
625 errx(1, "Desc next is %u", next);
626
627 return next;
628 }
629
630 /* This looks in the virtqueue and for the first available buffer, and converts
631 * it to an iovec for convenient access. Since descriptors consist of some
632 * number of output then some number of input descriptors, it's actually two
633 * iovecs, but we pack them into one and note how many of each there were.
634 *
635 * This function returns the descriptor number found, or vq->vring.num (which
636 * is never a valid descriptor number) if none was found. */
637 static unsigned get_vq_desc(struct virtqueue *vq,
638 struct iovec iov[],
639 unsigned int *out_num, unsigned int *in_num)
640 {
641 unsigned int i, head;
642
643 /* Check it isn't doing very strange things with descriptor numbers. */
644 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
645 errx(1, "Guest moved used index from %u to %u",
646 vq->last_avail_idx, vq->vring.avail->idx);
647
648 /* If there's nothing new since last we looked, return invalid. */
649 if (vq->vring.avail->idx == vq->last_avail_idx)
650 return vq->vring.num;
651
652 /* Grab the next descriptor number they're advertising, and increment
653 * the index we've seen. */
654 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
655
656 /* If their number is silly, that's a fatal mistake. */
657 if (head >= vq->vring.num)
658 errx(1, "Guest says index %u is available", head);
659
660 /* When we start there are none of either input nor output. */
661 *out_num = *in_num = 0;
662
663 i = head;
664 do {
665 /* Grab the first descriptor, and check it's OK. */
666 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
667 iov[*out_num + *in_num].iov_base
668 = check_pointer(vq->vring.desc[i].addr,
669 vq->vring.desc[i].len);
670 /* If this is an input descriptor, increment that count. */
671 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
672 (*in_num)++;
673 else {
674 /* If it's an output descriptor, they're all supposed
675 * to come before any input descriptors. */
676 if (*in_num)
677 errx(1, "Descriptor has out after in");
678 (*out_num)++;
679 }
680
681 /* If we've got too many, that implies a descriptor loop. */
682 if (*out_num + *in_num > vq->vring.num)
683 errx(1, "Looped descriptor");
684 } while ((i = next_desc(vq, i)) != vq->vring.num);
685
686 return head;
687 }
688
689 /* After we've used one of their buffers, we tell them about it. We'll then
690 * want to send them an interrupt, using trigger_irq(). */
691 static void add_used(struct virtqueue *vq, unsigned int head, int len)
692 {
693 struct vring_used_elem *used;
694
695 /* The virtqueue contains a ring of used buffers. Get a pointer to the
696 * next entry in that used ring. */
697 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
698 used->id = head;
699 used->len = len;
700 /* Make sure buffer is written before we update index. */
701 wmb();
702 vq->vring.used->idx++;
703 }
704
705 /* This actually sends the interrupt for this virtqueue */
706 static void trigger_irq(int fd, struct virtqueue *vq)
707 {
708 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
709
710 /* If they don't want an interrupt, don't send one. */
711 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
712 return;
713
714 /* Send the Guest an interrupt tell them we used something up. */
715 if (write(fd, buf, sizeof(buf)) != 0)
716 err(1, "Triggering irq %i", vq->config.irq);
717 }
718
719 /* And here's the combo meal deal. Supersize me! */
720 static void add_used_and_trigger(int fd, struct virtqueue *vq,
721 unsigned int head, int len)
722 {
723 add_used(vq, head, len);
724 trigger_irq(fd, vq);
725 }
726
727 /*
728 * The Console
729 *
730 * Here is the input terminal setting we save, and the routine to restore them
731 * on exit so the user gets their terminal back. */
732 static struct termios orig_term;
733 static void restore_term(void)
734 {
735 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
736 }
737
738 /* We associate some data with the console for our exit hack. */
739 struct console_abort
740 {
741 /* How many times have they hit ^C? */
742 int count;
743 /* When did they start? */
744 struct timeval start;
745 };
746
747 /* This is the routine which handles console input (ie. stdin). */
748 static bool handle_console_input(int fd, struct device *dev)
749 {
750 int len;
751 unsigned int head, in_num, out_num;
752 struct iovec iov[dev->vq->vring.num];
753 struct console_abort *abort = dev->priv;
754
755 /* First we need a console buffer from the Guests's input virtqueue. */
756 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
757
758 /* If they're not ready for input, stop listening to this file
759 * descriptor. We'll start again once they add an input buffer. */
760 if (head == dev->vq->vring.num)
761 return false;
762
763 if (out_num)
764 errx(1, "Output buffers in console in queue?");
765
766 /* This is why we convert to iovecs: the readv() call uses them, and so
767 * it reads straight into the Guest's buffer. */
768 len = readv(dev->fd, iov, in_num);
769 if (len <= 0) {
770 /* This implies that the console is closed, is /dev/null, or
771 * something went terribly wrong. */
772 warnx("Failed to get console input, ignoring console.");
773 /* Put the input terminal back. */
774 restore_term();
775 /* Remove callback from input vq, so it doesn't restart us. */
776 dev->vq->handle_output = NULL;
777 /* Stop listening to this fd: don't call us again. */
778 return false;
779 }
780
781 /* Tell the Guest about the new input. */
782 add_used_and_trigger(fd, dev->vq, head, len);
783
784 /* Three ^C within one second? Exit.
785 *
786 * This is such a hack, but works surprisingly well. Each ^C has to be
787 * in a buffer by itself, so they can't be too fast. But we check that
788 * we get three within about a second, so they can't be too slow. */
789 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
790 if (!abort->count++)
791 gettimeofday(&abort->start, NULL);
792 else if (abort->count == 3) {
793 struct timeval now;
794 gettimeofday(&now, NULL);
795 if (now.tv_sec <= abort->start.tv_sec+1) {
796 unsigned long args[] = { LHREQ_BREAK, 0 };
797 /* Close the fd so Waker will know it has to
798 * exit. */
799 close(waker_fd);
800 /* Just in case waker is blocked in BREAK, send
801 * unbreak now. */
802 write(fd, args, sizeof(args));
803 exit(2);
804 }
805 abort->count = 0;
806 }
807 } else
808 /* Any other key resets the abort counter. */
809 abort->count = 0;
810
811 /* Everything went OK! */
812 return true;
813 }
814
815 /* Handling output for console is simple: we just get all the output buffers
816 * and write them to stdout. */
817 static void handle_console_output(int fd, struct virtqueue *vq)
818 {
819 unsigned int head, out, in;
820 int len;
821 struct iovec iov[vq->vring.num];
822
823 /* Keep getting output buffers from the Guest until we run out. */
824 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
825 if (in)
826 errx(1, "Input buffers in output queue?");
827 len = writev(STDOUT_FILENO, iov, out);
828 add_used_and_trigger(fd, vq, head, len);
829 }
830 }
831
832 /*
833 * The Network
834 *
835 * Handling output for network is also simple: we get all the output buffers
836 * and write them (ignoring the first element) to this device's file descriptor
837 * (stdout). */
838 static void handle_net_output(int fd, struct virtqueue *vq)
839 {
840 unsigned int head, out, in;
841 int len;
842 struct iovec iov[vq->vring.num];
843
844 /* Keep getting output buffers from the Guest until we run out. */
845 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
846 if (in)
847 errx(1, "Input buffers in output queue?");
848 /* Check header, but otherwise ignore it (we told the Guest we
849 * supported no features, so it shouldn't have anything
850 * interesting). */
851 (void)convert(&iov[0], struct virtio_net_hdr);
852 len = writev(vq->dev->fd, iov+1, out-1);
853 add_used_and_trigger(fd, vq, head, len);
854 }
855 }
856
857 /* This is where we handle a packet coming in from the tun device to our
858 * Guest. */
859 static bool handle_tun_input(int fd, struct device *dev)
860 {
861 unsigned int head, in_num, out_num;
862 int len;
863 struct iovec iov[dev->vq->vring.num];
864 struct virtio_net_hdr *hdr;
865
866 /* First we need a network buffer from the Guests's recv virtqueue. */
867 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
868 if (head == dev->vq->vring.num) {
869 /* Now, it's expected that if we try to send a packet too
870 * early, the Guest won't be ready yet. Wait until the device
871 * status says it's ready. */
872 /* FIXME: Actually want DRIVER_ACTIVE here. */
873 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
874 warn("network: no dma buffer!");
875 /* We'll turn this back on if input buffers are registered. */
876 return false;
877 } else if (out_num)
878 errx(1, "Output buffers in network recv queue?");
879
880 /* First element is the header: we set it to 0 (no features). */
881 hdr = convert(&iov[0], struct virtio_net_hdr);
882 hdr->flags = 0;
883 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
884
885 /* Read the packet from the device directly into the Guest's buffer. */
886 len = readv(dev->fd, iov+1, in_num-1);
887 if (len <= 0)
888 err(1, "reading network");
889
890 /* Tell the Guest about the new packet. */
891 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
892
893 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
894 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
895 head != dev->vq->vring.num ? "sent" : "discarded");
896
897 /* All good. */
898 return true;
899 }
900
901 /*L:215 This is the callback attached to the network and console input
902 * virtqueues: it ensures we try again, in case we stopped console or net
903 * delivery because Guest didn't have any buffers. */
904 static void enable_fd(int fd, struct virtqueue *vq)
905 {
906 add_device_fd(vq->dev->fd);
907 /* Tell waker to listen to it again */
908 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
909 }
910
911 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
912 static void handle_output(int fd, unsigned long addr)
913 {
914 struct device *i;
915 struct virtqueue *vq;
916
917 /* Check each virtqueue. */
918 for (i = devices.dev; i; i = i->next) {
919 for (vq = i->vq; vq; vq = vq->next) {
920 if (vq->config.pfn == addr/getpagesize()
921 && vq->handle_output) {
922 verbose("Output to %s\n", vq->dev->name);
923 vq->handle_output(fd, vq);
924 return;
925 }
926 }
927 }
928
929 /* Early console write is done using notify on a nul-terminated string
930 * in Guest memory. */
931 if (addr >= guest_limit)
932 errx(1, "Bad NOTIFY %#lx", addr);
933
934 write(STDOUT_FILENO, from_guest_phys(addr),
935 strnlen(from_guest_phys(addr), guest_limit - addr));
936 }
937
938 /* This is called when the Waker wakes us up: check for incoming file
939 * descriptors. */
940 static void handle_input(int fd)
941 {
942 /* select() wants a zeroed timeval to mean "don't wait". */
943 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
944
945 for (;;) {
946 struct device *i;
947 fd_set fds = devices.infds;
948
949 /* If nothing is ready, we're done. */
950 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
951 break;
952
953 /* Otherwise, call the device(s) which have readable
954 * file descriptors and a method of handling them. */
955 for (i = devices.dev; i; i = i->next) {
956 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
957 int dev_fd;
958 if (i->handle_input(fd, i))
959 continue;
960
961 /* If handle_input() returns false, it means we
962 * should no longer service it. Networking and
963 * console do this when there's no input
964 * buffers to deliver into. Console also uses
965 * it when it discovers that stdin is
966 * closed. */
967 FD_CLR(i->fd, &devices.infds);
968 /* Tell waker to ignore it too, by sending a
969 * negative fd number (-1, since 0 is a valid
970 * FD number). */
971 dev_fd = -i->fd - 1;
972 write(waker_fd, &dev_fd, sizeof(dev_fd));
973 }
974 }
975 }
976 }
977
978 /*L:190
979 * Device Setup
980 *
981 * All devices need a descriptor so the Guest knows it exists, and a "struct
982 * device" so the Launcher can keep track of it. We have common helper
983 * routines to allocate them.
984 *
985 * This routine allocates a new "struct lguest_device_desc" from descriptor
986 * table just above the Guest's normal memory. It returns a pointer to that
987 * descriptor. */
988 static struct lguest_device_desc *new_dev_desc(u16 type)
989 {
990 struct lguest_device_desc *d;
991
992 /* We only have one page for all the descriptors. */
993 if (devices.desc_used + sizeof(*d) > getpagesize())
994 errx(1, "Too many devices");
995
996 /* We don't need to set config_len or status: page is 0 already. */
997 d = (void *)devices.descpage + devices.desc_used;
998 d->type = type;
999 devices.desc_used += sizeof(*d);
1000
1001 return d;
1002 }
1003
1004 /* Each device descriptor is followed by some configuration information.
1005 * Each configuration field looks like: u8 type, u8 len, [... len bytes...].
1006 *
1007 * This routine adds a new field to an existing device's descriptor. It only
1008 * works for the last device, but that's OK because that's how we use it. */
1009 static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
1010 {
1011 /* This is the last descriptor, right? */
1012 assert(devices.descpage + devices.desc_used
1013 == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1014
1015 /* We only have one page of device descriptions. */
1016 if (devices.desc_used + 2 + len > getpagesize())
1017 errx(1, "Too many devices");
1018
1019 /* Copy in the new config header: type then length. */
1020 devices.descpage[devices.desc_used++] = type;
1021 devices.descpage[devices.desc_used++] = len;
1022 memcpy(devices.descpage + devices.desc_used, c, len);
1023 devices.desc_used += len;
1024
1025 /* Update the device descriptor length: two byte head then data. */
1026 dev->desc->config_len += 2 + len;
1027 }
1028
1029 /* This routine adds a virtqueue to a device. We specify how many descriptors
1030 * the virtqueue is to have. */
1031 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1032 void (*handle_output)(int fd, struct virtqueue *me))
1033 {
1034 unsigned int pages;
1035 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1036 void *p;
1037
1038 /* First we need some pages for this virtqueue. */
1039 pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
1040 p = get_pages(pages);
1041
1042 /* Initialize the configuration. */
1043 vq->config.num = num_descs;
1044 vq->config.irq = devices.next_irq++;
1045 vq->config.pfn = to_guest_phys(p) / getpagesize();
1046
1047 /* Initialize the vring. */
1048 vring_init(&vq->vring, num_descs, p);
1049
1050 /* Add the configuration information to this device's descriptor. */
1051 add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1052 sizeof(vq->config), &vq->config);
1053
1054 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1055 * second. */
1056 for (i = &dev->vq; *i; i = &(*i)->next);
1057 *i = vq;
1058
1059 /* Link virtqueue back to device. */
1060 vq->dev = dev;
1061
1062 /* Set the routine to call when the Guest does something to this
1063 * virtqueue. */
1064 vq->handle_output = handle_output;
1065
1066 /* Set the "Don't Notify Me" flag if we don't have a handler */
1067 if (!handle_output)
1068 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1069 }
1070
1071 /* This routine does all the creation and setup of a new device, including
1072 * calling new_dev_desc() to allocate the descriptor and device memory. */
1073 static struct device *new_device(const char *name, u16 type, int fd,
1074 bool (*handle_input)(int, struct device *))
1075 {
1076 struct device *dev = malloc(sizeof(*dev));
1077
1078 /* Append to device list. Prepending to a single-linked list is
1079 * easier, but the user expects the devices to be arranged on the bus
1080 * in command-line order. The first network device on the command line
1081 * is eth0, the first block device /dev/vda, etc. */
1082 *devices.lastdev = dev;
1083 dev->next = NULL;
1084 devices.lastdev = &dev->next;
1085
1086 /* Now we populate the fields one at a time. */
1087 dev->fd = fd;
1088 /* If we have an input handler for this file descriptor, then we add it
1089 * to the device_list's fdset and maxfd. */
1090 if (handle_input)
1091 add_device_fd(dev->fd);
1092 dev->desc = new_dev_desc(type);
1093 dev->handle_input = handle_input;
1094 dev->name = name;
1095 return dev;
1096 }
1097
1098 /* Our first setup routine is the console. It's a fairly simple device, but
1099 * UNIX tty handling makes it uglier than it could be. */
1100 static void setup_console(void)
1101 {
1102 struct device *dev;
1103
1104 /* If we can save the initial standard input settings... */
1105 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1106 struct termios term = orig_term;
1107 /* Then we turn off echo, line buffering and ^C etc. We want a
1108 * raw input stream to the Guest. */
1109 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1110 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1111 /* If we exit gracefully, the original settings will be
1112 * restored so the user can see what they're typing. */
1113 atexit(restore_term);
1114 }
1115
1116 dev = new_device("console", VIRTIO_ID_CONSOLE,
1117 STDIN_FILENO, handle_console_input);
1118 /* We store the console state in dev->priv, and initialize it. */
1119 dev->priv = malloc(sizeof(struct console_abort));
1120 ((struct console_abort *)dev->priv)->count = 0;
1121
1122 /* The console needs two virtqueues: the input then the output. When
1123 * they put something the input queue, we make sure we're listening to
1124 * stdin. When they put something in the output queue, we write it to
1125 * stdout. */
1126 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1127 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1128
1129 verbose("device %u: console\n", devices.device_num++);
1130 }
1131 /*:*/
1132
1133 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1134 * --sharenet=<name> option which opens or creates a named pipe. This can be
1135 * used to send packets to another guest in a 1:1 manner.
1136 *
1137 * More sopisticated is to use one of the tools developed for project like UML
1138 * to do networking.
1139 *
1140 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1141 * completely generic ("here's my vring, attach to your vring") and would work
1142 * for any traffic. Of course, namespace and permissions issues need to be
1143 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1144 * multiple inter-guest channels behind one interface, although it would
1145 * require some manner of hotplugging new virtio channels.
1146 *
1147 * Finally, we could implement a virtio network switch in the kernel. :*/
1148
1149 static u32 str2ip(const char *ipaddr)
1150 {
1151 unsigned int byte[4];
1152
1153 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1154 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1155 }
1156
1157 /* This code is "adapted" from libbridge: it attaches the Host end of the
1158 * network device to the bridge device specified by the command line.
1159 *
1160 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1161 * dislike bridging), and I just try not to break it. */
1162 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1163 {
1164 int ifidx;
1165 struct ifreq ifr;
1166
1167 if (!*br_name)
1168 errx(1, "must specify bridge name");
1169
1170 ifidx = if_nametoindex(if_name);
1171 if (!ifidx)
1172 errx(1, "interface %s does not exist!", if_name);
1173
1174 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1175 ifr.ifr_ifindex = ifidx;
1176 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1177 err(1, "can't add %s to bridge %s", if_name, br_name);
1178 }
1179
1180 /* This sets up the Host end of the network device with an IP address, brings
1181 * it up so packets will flow, the copies the MAC address into the hwaddr
1182 * pointer. */
1183 static void configure_device(int fd, const char *devname, u32 ipaddr,
1184 unsigned char hwaddr[6])
1185 {
1186 struct ifreq ifr;
1187 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1188
1189 /* Don't read these incantations. Just cut & paste them like I did! */
1190 memset(&ifr, 0, sizeof(ifr));
1191 strcpy(ifr.ifr_name, devname);
1192 sin->sin_family = AF_INET;
1193 sin->sin_addr.s_addr = htonl(ipaddr);
1194 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1195 err(1, "Setting %s interface address", devname);
1196 ifr.ifr_flags = IFF_UP;
1197 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1198 err(1, "Bringing interface %s up", devname);
1199
1200 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1201 * above). IF means Interface, and HWADDR is hardware address.
1202 * Simple! */
1203 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1204 err(1, "getting hw address for %s", devname);
1205 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1206 }
1207
1208 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1209 * routing, but the principle is the same: it uses the "tun" device to inject
1210 * packets into the Host as if they came in from a normal network card. We
1211 * just shunt packets between the Guest and the tun device. */
1212 static void setup_tun_net(const char *arg)
1213 {
1214 struct device *dev;
1215 struct ifreq ifr;
1216 int netfd, ipfd;
1217 u32 ip;
1218 const char *br_name = NULL;
1219 u8 hwaddr[6];
1220
1221 /* We open the /dev/net/tun device and tell it we want a tap device. A
1222 * tap device is like a tun device, only somehow different. To tell
1223 * the truth, I completely blundered my way through this code, but it
1224 * works now! */
1225 netfd = open_or_die("/dev/net/tun", O_RDWR);
1226 memset(&ifr, 0, sizeof(ifr));
1227 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1228 strcpy(ifr.ifr_name, "tap%d");
1229 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1230 err(1, "configuring /dev/net/tun");
1231 /* We don't need checksums calculated for packets coming in this
1232 * device: trust us! */
1233 ioctl(netfd, TUNSETNOCSUM, 1);
1234
1235 /* First we create a new network device. */
1236 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1237
1238 /* Network devices need a receive and a send queue, just like
1239 * console. */
1240 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1241 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1242
1243 /* We need a socket to perform the magic network ioctls to bring up the
1244 * tap interface, connect to the bridge etc. Any socket will do! */
1245 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1246 if (ipfd < 0)
1247 err(1, "opening IP socket");
1248
1249 /* If the command line was --tunnet=bridge:<name> do bridging. */
1250 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1251 ip = INADDR_ANY;
1252 br_name = arg + strlen(BRIDGE_PFX);
1253 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1254 } else /* It is an IP address to set up the device with */
1255 ip = str2ip(arg);
1256
1257 /* Set up the tun device, and get the mac address for the interface. */
1258 configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1259
1260 /* Tell Guest what MAC address to use. */
1261 add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1262
1263 /* We don't seed the socket any more; setup is done. */
1264 close(ipfd);
1265
1266 verbose("device %u: tun net %u.%u.%u.%u\n",
1267 devices.device_num++,
1268 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1269 if (br_name)
1270 verbose("attached to bridge: %s\n", br_name);
1271 }
1272
1273 /* Our block (disk) device should be really simple: the Guest asks for a block
1274 * number and we read or write that position in the file. Unfortunately, that
1275 * was amazingly slow: the Guest waits until the read is finished before
1276 * running anything else, even if it could have been doing useful work.
1277 *
1278 * We could use async I/O, except it's reputed to suck so hard that characters
1279 * actually go missing from your code when you try to use it.
1280 *
1281 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1282
1283 /* This hangs off device->priv. */
1284 struct vblk_info
1285 {
1286 /* The size of the file. */
1287 off64_t len;
1288
1289 /* The file descriptor for the file. */
1290 int fd;
1291
1292 /* IO thread listens on this file descriptor [0]. */
1293 int workpipe[2];
1294
1295 /* IO thread writes to this file descriptor to mark it done, then
1296 * Launcher triggers interrupt to Guest. */
1297 int done_fd;
1298 };
1299 /*:*/
1300
1301 /*L:210
1302 * The Disk
1303 *
1304 * Remember that the block device is handled by a separate I/O thread. We head
1305 * straight into the core of that thread here:
1306 */
1307 static bool service_io(struct device *dev)
1308 {
1309 struct vblk_info *vblk = dev->priv;
1310 unsigned int head, out_num, in_num, wlen;
1311 int ret;
1312 struct virtio_blk_inhdr *in;
1313 struct virtio_blk_outhdr *out;
1314 struct iovec iov[dev->vq->vring.num];
1315 off64_t off;
1316
1317 /* See if there's a request waiting. If not, nothing to do. */
1318 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1319 if (head == dev->vq->vring.num)
1320 return false;
1321
1322 /* Every block request should contain at least one output buffer
1323 * (detailing the location on disk and the type of request) and one
1324 * input buffer (to hold the result). */
1325 if (out_num == 0 || in_num == 0)
1326 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1327 head, out_num, in_num);
1328
1329 out = convert(&iov[0], struct virtio_blk_outhdr);
1330 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1331 off = out->sector * 512;
1332
1333 /* The block device implements "barriers", where the Guest indicates
1334 * that it wants all previous writes to occur before this write. We
1335 * don't have a way of asking our kernel to do a barrier, so we just
1336 * synchronize all the data in the file. Pretty poor, no? */
1337 if (out->type & VIRTIO_BLK_T_BARRIER)
1338 fdatasync(vblk->fd);
1339
1340 /* In general the virtio block driver is allowed to try SCSI commands.
1341 * It'd be nice if we supported eject, for example, but we don't. */
1342 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1343 fprintf(stderr, "Scsi commands unsupported\n");
1344 in->status = VIRTIO_BLK_S_UNSUPP;
1345 wlen = sizeof(in);
1346 } else if (out->type & VIRTIO_BLK_T_OUT) {
1347 /* Write */
1348
1349 /* Move to the right location in the block file. This can fail
1350 * if they try to write past end. */
1351 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1352 err(1, "Bad seek to sector %llu", out->sector);
1353
1354 ret = writev(vblk->fd, iov+1, out_num-1);
1355 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1356
1357 /* Grr... Now we know how long the descriptor they sent was, we
1358 * make sure they didn't try to write over the end of the block
1359 * file (possibly extending it). */
1360 if (ret > 0 && off + ret > vblk->len) {
1361 /* Trim it back to the correct length */
1362 ftruncate64(vblk->fd, vblk->len);
1363 /* Die, bad Guest, die. */
1364 errx(1, "Write past end %llu+%u", off, ret);
1365 }
1366 wlen = sizeof(in);
1367 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1368 } else {
1369 /* Read */
1370
1371 /* Move to the right location in the block file. This can fail
1372 * if they try to read past end. */
1373 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1374 err(1, "Bad seek to sector %llu", out->sector);
1375
1376 ret = readv(vblk->fd, iov+1, in_num-1);
1377 verbose("READ from sector %llu: %i\n", out->sector, ret);
1378 if (ret >= 0) {
1379 wlen = sizeof(in) + ret;
1380 in->status = VIRTIO_BLK_S_OK;
1381 } else {
1382 wlen = sizeof(in);
1383 in->status = VIRTIO_BLK_S_IOERR;
1384 }
1385 }
1386
1387 /* We can't trigger an IRQ, because we're not the Launcher. It does
1388 * that when we tell it we're done. */
1389 add_used(dev->vq, head, wlen);
1390 return true;
1391 }
1392
1393 /* This is the thread which actually services the I/O. */
1394 static int io_thread(void *_dev)
1395 {
1396 struct device *dev = _dev;
1397 struct vblk_info *vblk = dev->priv;
1398 char c;
1399
1400 /* Close other side of workpipe so we get 0 read when main dies. */
1401 close(vblk->workpipe[1]);
1402 /* Close the other side of the done_fd pipe. */
1403 close(dev->fd);
1404
1405 /* When this read fails, it means Launcher died, so we follow. */
1406 while (read(vblk->workpipe[0], &c, 1) == 1) {
1407 /* We acknowledge each request immediately to reduce latency,
1408 * rather than waiting until we've done them all. I haven't
1409 * measured to see if it makes any difference. */
1410 while (service_io(dev))
1411 write(vblk->done_fd, &c, 1);
1412 }
1413 return 0;
1414 }
1415
1416 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1417 * when the thread tells us it's completed some I/O. */
1418 static bool handle_io_finish(int fd, struct device *dev)
1419 {
1420 char c;
1421
1422 /* If the I/O thread died, presumably it printed the error, so we
1423 * simply exit. */
1424 if (read(dev->fd, &c, 1) != 1)
1425 exit(1);
1426
1427 /* It did some work, so trigger the irq. */
1428 trigger_irq(fd, dev->vq);
1429 return true;
1430 }
1431
1432 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1433 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1434 {
1435 struct vblk_info *vblk = vq->dev->priv;
1436 char c = 0;
1437
1438 /* Wake up I/O thread and tell it to go to work! */
1439 if (write(vblk->workpipe[1], &c, 1) != 1)
1440 /* Presumably it indicated why it died. */
1441 exit(1);
1442 }
1443
1444 /*L:198 This actually sets up a virtual block device. */
1445 static void setup_block_file(const char *filename)
1446 {
1447 int p[2];
1448 struct device *dev;
1449 struct vblk_info *vblk;
1450 void *stack;
1451 u64 cap;
1452 unsigned int val;
1453
1454 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1455 pipe(p);
1456
1457 /* The device responds to return from I/O thread. */
1458 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1459
1460 /* The device has one virtqueue, where the Guest places requests. */
1461 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1462
1463 /* Allocate the room for our own bookkeeping */
1464 vblk = dev->priv = malloc(sizeof(*vblk));
1465
1466 /* First we open the file and store the length. */
1467 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1468 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1469
1470 /* Tell Guest how many sectors this device has. */
1471 cap = cpu_to_le64(vblk->len / 512);
1472 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1473
1474 /* Tell Guest not to put in too many descriptors at once: two are used
1475 * for the in and out elements. */
1476 val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1477 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1478
1479 /* The I/O thread writes to this end of the pipe when done. */
1480 vblk->done_fd = p[1];
1481
1482 /* This is the second pipe, which is how we tell the I/O thread about
1483 * more work. */
1484 pipe(vblk->workpipe);
1485
1486 /* Create stack for thread and run it */
1487 stack = malloc(32768);
1488 if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1489 err(1, "Creating clone");
1490
1491 /* We don't need to keep the I/O thread's end of the pipes open. */
1492 close(vblk->done_fd);
1493 close(vblk->workpipe[0]);
1494
1495 verbose("device %u: virtblock %llu sectors\n",
1496 devices.device_num, cap);
1497 }
1498 /* That's the end of device setup. */
1499
1500 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1501 * its input and output, and finally, lays it to rest. */
1502 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1503 {
1504 for (;;) {
1505 unsigned long args[] = { LHREQ_BREAK, 0 };
1506 unsigned long notify_addr;
1507 int readval;
1508
1509 /* We read from the /dev/lguest device to run the Guest. */
1510 readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1511
1512 /* One unsigned long means the Guest did HCALL_NOTIFY */
1513 if (readval == sizeof(notify_addr)) {
1514 verbose("Notify on address %#lx\n", notify_addr);
1515 handle_output(lguest_fd, notify_addr);
1516 continue;
1517 /* ENOENT means the Guest died. Reading tells us why. */
1518 } else if (errno == ENOENT) {
1519 char reason[1024] = { 0 };
1520 read(lguest_fd, reason, sizeof(reason)-1);
1521 errx(1, "%s", reason);
1522 /* EAGAIN means the Waker wanted us to look at some input.
1523 * Anything else means a bug or incompatible change. */
1524 } else if (errno != EAGAIN)
1525 err(1, "Running guest failed");
1526
1527 /* Service input, then unset the BREAK to release the Waker. */
1528 handle_input(lguest_fd);
1529 if (write(lguest_fd, args, sizeof(args)) < 0)
1530 err(1, "Resetting break");
1531 }
1532 }
1533 /*
1534 * This is the end of the Launcher. The good news: we are over halfway
1535 * through! The bad news: the most fiendish part of the code still lies ahead
1536 * of us.
1537 *
1538 * Are you ready? Take a deep breath and join me in the core of the Host, in
1539 * "make Host".
1540 :*/
1541
1542 static struct option opts[] = {
1543 { "verbose", 0, NULL, 'v' },
1544 { "tunnet", 1, NULL, 't' },
1545 { "block", 1, NULL, 'b' },
1546 { "initrd", 1, NULL, 'i' },
1547 { NULL },
1548 };
1549 static void usage(void)
1550 {
1551 errx(1, "Usage: lguest [--verbose] "
1552 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1553 "|--block=<filename>|--initrd=<filename>]...\n"
1554 "<mem-in-mb> vmlinux [args...]");
1555 }
1556
1557 /*L:105 The main routine is where the real work begins: */
1558 int main(int argc, char *argv[])
1559 {
1560 /* Memory, top-level pagetable, code startpoint and size of the
1561 * (optional) initrd. */
1562 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1563 /* Two temporaries and the /dev/lguest file descriptor. */
1564 int i, c, lguest_fd;
1565 /* The boot information for the Guest. */
1566 struct boot_params *boot;
1567 /* If they specify an initrd file to load. */
1568 const char *initrd_name = NULL;
1569
1570 /* First we initialize the device list. Since console and network
1571 * device receive input from a file descriptor, we keep an fdset
1572 * (infds) and the maximum fd number (max_infd) with the head of the
1573 * list. We also keep a pointer to the last device, for easy appending
1574 * to the list. Finally, we keep the next interrupt number to hand out
1575 * (1: remember that 0 is used by the timer). */
1576 FD_ZERO(&devices.infds);
1577 devices.max_infd = -1;
1578 devices.lastdev = &devices.dev;
1579 devices.next_irq = 1;
1580
1581 /* We need to know how much memory so we can set up the device
1582 * descriptor and memory pages for the devices as we parse the command
1583 * line. So we quickly look through the arguments to find the amount
1584 * of memory now. */
1585 for (i = 1; i < argc; i++) {
1586 if (argv[i][0] != '-') {
1587 mem = atoi(argv[i]) * 1024 * 1024;
1588 /* We start by mapping anonymous pages over all of
1589 * guest-physical memory range. This fills it with 0,
1590 * and ensures that the Guest won't be killed when it
1591 * tries to access it. */
1592 guest_base = map_zeroed_pages(mem / getpagesize()
1593 + DEVICE_PAGES);
1594 guest_limit = mem;
1595 guest_max = mem + DEVICE_PAGES*getpagesize();
1596 devices.descpage = get_pages(1);
1597 break;
1598 }
1599 }
1600
1601 /* The options are fairly straight-forward */
1602 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1603 switch (c) {
1604 case 'v':
1605 verbose = true;
1606 break;
1607 case 't':
1608 setup_tun_net(optarg);
1609 break;
1610 case 'b':
1611 setup_block_file(optarg);
1612 break;
1613 case 'i':
1614 initrd_name = optarg;
1615 break;
1616 default:
1617 warnx("Unknown argument %s", argv[optind]);
1618 usage();
1619 }
1620 }
1621 /* After the other arguments we expect memory and kernel image name,
1622 * followed by command line arguments for the kernel. */
1623 if (optind + 2 > argc)
1624 usage();
1625
1626 verbose("Guest base is at %p\n", guest_base);
1627
1628 /* We always have a console device */
1629 setup_console();
1630
1631 /* Now we load the kernel */
1632 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1633
1634 /* Boot information is stashed at physical address 0 */
1635 boot = from_guest_phys(0);
1636
1637 /* Map the initrd image if requested (at top of physical memory) */
1638 if (initrd_name) {
1639 initrd_size = load_initrd(initrd_name, mem);
1640 /* These are the location in the Linux boot header where the
1641 * start and size of the initrd are expected to be found. */
1642 boot->hdr.ramdisk_image = mem - initrd_size;
1643 boot->hdr.ramdisk_size = initrd_size;
1644 /* The bootloader type 0xFF means "unknown"; that's OK. */
1645 boot->hdr.type_of_loader = 0xFF;
1646 }
1647
1648 /* Set up the initial linear pagetables, starting below the initrd. */
1649 pgdir = setup_pagetables(mem, initrd_size);
1650
1651 /* The Linux boot header contains an "E820" memory map: ours is a
1652 * simple, single region. */
1653 boot->e820_entries = 1;
1654 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1655 /* The boot header contains a command line pointer: we put the command
1656 * line after the boot header. */
1657 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1658 /* We use a simple helper to copy the arguments separated by spaces. */
1659 concat((char *)(boot + 1), argv+optind+2);
1660
1661 /* Boot protocol version: 2.07 supports the fields for lguest. */
1662 boot->hdr.version = 0x207;
1663
1664 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1665 boot->hdr.hardware_subarch = 1;
1666
1667 /* Tell the entry path not to try to reload segment registers. */
1668 boot->hdr.loadflags |= KEEP_SEGMENTS;
1669
1670 /* We tell the kernel to initialize the Guest: this returns the open
1671 * /dev/lguest file descriptor. */
1672 lguest_fd = tell_kernel(pgdir, start);
1673
1674 /* We fork off a child process, which wakes the Launcher whenever one
1675 * of the input file descriptors needs attention. Otherwise we would
1676 * run the Guest until it tries to output something. */
1677 waker_fd = setup_waker(lguest_fd);
1678
1679 /* Finally, run the Guest. This doesn't return. */
1680 run_guest(lguest_fd);
1681 }
1682 /*:*/
1683
1684 /*M:999
1685 * Mastery is done: you now know everything I do.
1686 *
1687 * But surely you have seen code, features and bugs in your wanderings which
1688 * you now yearn to attack? That is the real game, and I look forward to you
1689 * patching and forking lguest into the Your-Name-Here-visor.
1690 *
1691 * Farewell, and good coding!
1692 * Rusty Russell.
1693 */
This page took 0.069504 seconds and 5 git commands to generate.