Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and
3 * the virtual devices, then opens /dev/lguest to tell the kernel
4 * about the Guest and control it. :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 #include <limits.h>
38 #include <stddef.h>
39 #include "linux/lguest_launcher.h"
40 #include "linux/virtio_config.h"
41 #include "linux/virtio_net.h"
42 #include "linux/virtio_blk.h"
43 #include "linux/virtio_console.h"
44 #include "linux/virtio_ring.h"
45 #include "asm-x86/bootparam.h"
46 /*L:110 We can ignore the 39 include files we need for this program, but I do
47 * want to draw attention to the use of kernel-style types.
48 *
49 * As Linus said, "C is a Spartan language, and so should your naming be." I
50 * like these abbreviations, so we define them here. Note that u64 is always
51 * unsigned long long, which works on all Linux systems: this means that we can
52 * use %llu in printf for any u64. */
53 typedef unsigned long long u64;
54 typedef uint32_t u32;
55 typedef uint16_t u16;
56 typedef uint8_t u8;
57 /*:*/
58
59 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
60 #define NET_PEERNUM 1
61 #define BRIDGE_PFX "bridge:"
62 #ifndef SIOCBRADDIF
63 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
64 #endif
65 /* We can have up to 256 pages for devices. */
66 #define DEVICE_PAGES 256
67 /* This will occupy 2 pages: it must be a power of 2. */
68 #define VIRTQUEUE_NUM 128
69
70 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
71 * this, and although I wouldn't recommend it, it works quite nicely here. */
72 static bool verbose;
73 #define verbose(args...) \
74 do { if (verbose) printf(args); } while(0)
75 /*:*/
76
77 /* The pipe to send commands to the waker process */
78 static int waker_fd;
79 /* The pointer to the start of guest memory. */
80 static void *guest_base;
81 /* The maximum guest physical address allowed, and maximum possible. */
82 static unsigned long guest_limit, guest_max;
83
84 /* a per-cpu variable indicating whose vcpu is currently running */
85 static unsigned int __thread cpu_id;
86
87 /* This is our list of devices. */
88 struct device_list
89 {
90 /* Summary information about the devices in our list: ready to pass to
91 * select() to ask which need servicing.*/
92 fd_set infds;
93 int max_infd;
94
95 /* Counter to assign interrupt numbers. */
96 unsigned int next_irq;
97
98 /* Counter to print out convenient device numbers. */
99 unsigned int device_num;
100
101 /* The descriptor page for the devices. */
102 u8 *descpage;
103
104 /* A single linked list of devices. */
105 struct device *dev;
106 /* And a pointer to the last device for easy append and also for
107 * configuration appending. */
108 struct device *lastdev;
109 };
110
111 /* The list of Guest devices, based on command line arguments. */
112 static struct device_list devices;
113
114 /* The device structure describes a single device. */
115 struct device
116 {
117 /* The linked-list pointer. */
118 struct device *next;
119
120 /* The this device's descriptor, as mapped into the Guest. */
121 struct lguest_device_desc *desc;
122
123 /* The name of this device, for --verbose. */
124 const char *name;
125
126 /* If handle_input is set, it wants to be called when this file
127 * descriptor is ready. */
128 int fd;
129 bool (*handle_input)(int fd, struct device *me);
130
131 /* Any queues attached to this device */
132 struct virtqueue *vq;
133
134 /* Handle status being finalized (ie. feature bits stable). */
135 void (*ready)(struct device *me);
136
137 /* Device-specific data. */
138 void *priv;
139 };
140
141 /* The virtqueue structure describes a queue attached to a device. */
142 struct virtqueue
143 {
144 struct virtqueue *next;
145
146 /* Which device owns me. */
147 struct device *dev;
148
149 /* The configuration for this queue. */
150 struct lguest_vqconfig config;
151
152 /* The actual ring of buffers. */
153 struct vring vring;
154
155 /* Last available index we saw. */
156 u16 last_avail_idx;
157
158 /* The routine to call when the Guest pings us. */
159 void (*handle_output)(int fd, struct virtqueue *me);
160 };
161
162 /* Remember the arguments to the program so we can "reboot" */
163 static char **main_args;
164
165 /* Since guest is UP and we don't run at the same time, we don't need barriers.
166 * But I include them in the code in case others copy it. */
167 #define wmb()
168
169 /* Convert an iovec element to the given type.
170 *
171 * This is a fairly ugly trick: we need to know the size of the type and
172 * alignment requirement to check the pointer is kosher. It's also nice to
173 * have the name of the type in case we report failure.
174 *
175 * Typing those three things all the time is cumbersome and error prone, so we
176 * have a macro which sets them all up and passes to the real function. */
177 #define convert(iov, type) \
178 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
179
180 static void *_convert(struct iovec *iov, size_t size, size_t align,
181 const char *name)
182 {
183 if (iov->iov_len != size)
184 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
185 if ((unsigned long)iov->iov_base % align != 0)
186 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
187 return iov->iov_base;
188 }
189
190 /* The virtio configuration space is defined to be little-endian. x86 is
191 * little-endian too, but it's nice to be explicit so we have these helpers. */
192 #define cpu_to_le16(v16) (v16)
193 #define cpu_to_le32(v32) (v32)
194 #define cpu_to_le64(v64) (v64)
195 #define le16_to_cpu(v16) (v16)
196 #define le32_to_cpu(v32) (v32)
197 #define le64_to_cpu(v64) (v64)
198
199 /* The device virtqueue descriptors are followed by feature bitmasks. */
200 static u8 *get_feature_bits(struct device *dev)
201 {
202 return (u8 *)(dev->desc + 1)
203 + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
204 }
205
206 /*L:100 The Launcher code itself takes us out into userspace, that scary place
207 * where pointers run wild and free! Unfortunately, like most userspace
208 * programs, it's quite boring (which is why everyone likes to hack on the
209 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
210 * will get you through this section. Or, maybe not.
211 *
212 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
213 * memory and stores it in "guest_base". In other words, Guest physical ==
214 * Launcher virtual with an offset.
215 *
216 * This can be tough to get your head around, but usually it just means that we
217 * use these trivial conversion functions when the Guest gives us it's
218 * "physical" addresses: */
219 static void *from_guest_phys(unsigned long addr)
220 {
221 return guest_base + addr;
222 }
223
224 static unsigned long to_guest_phys(const void *addr)
225 {
226 return (addr - guest_base);
227 }
228
229 /*L:130
230 * Loading the Kernel.
231 *
232 * We start with couple of simple helper routines. open_or_die() avoids
233 * error-checking code cluttering the callers: */
234 static int open_or_die(const char *name, int flags)
235 {
236 int fd = open(name, flags);
237 if (fd < 0)
238 err(1, "Failed to open %s", name);
239 return fd;
240 }
241
242 /* map_zeroed_pages() takes a number of pages. */
243 static void *map_zeroed_pages(unsigned int num)
244 {
245 int fd = open_or_die("/dev/zero", O_RDONLY);
246 void *addr;
247
248 /* We use a private mapping (ie. if we write to the page, it will be
249 * copied). */
250 addr = mmap(NULL, getpagesize() * num,
251 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
252 if (addr == MAP_FAILED)
253 err(1, "Mmaping %u pages of /dev/zero", num);
254
255 return addr;
256 }
257
258 /* Get some more pages for a device. */
259 static void *get_pages(unsigned int num)
260 {
261 void *addr = from_guest_phys(guest_limit);
262
263 guest_limit += num * getpagesize();
264 if (guest_limit > guest_max)
265 errx(1, "Not enough memory for devices");
266 return addr;
267 }
268
269 /* This routine is used to load the kernel or initrd. It tries mmap, but if
270 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
271 * it falls back to reading the memory in. */
272 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
273 {
274 ssize_t r;
275
276 /* We map writable even though for some segments are marked read-only.
277 * The kernel really wants to be writable: it patches its own
278 * instructions.
279 *
280 * MAP_PRIVATE means that the page won't be copied until a write is
281 * done to it. This allows us to share untouched memory between
282 * Guests. */
283 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
284 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
285 return;
286
287 /* pread does a seek and a read in one shot: saves a few lines. */
288 r = pread(fd, addr, len, offset);
289 if (r != len)
290 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
291 }
292
293 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
294 * the Guest memory. ELF = Embedded Linking Format, which is the format used
295 * by all modern binaries on Linux including the kernel.
296 *
297 * The ELF headers give *two* addresses: a physical address, and a virtual
298 * address. We use the physical address; the Guest will map itself to the
299 * virtual address.
300 *
301 * We return the starting address. */
302 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
303 {
304 Elf32_Phdr phdr[ehdr->e_phnum];
305 unsigned int i;
306
307 /* Sanity checks on the main ELF header: an x86 executable with a
308 * reasonable number of correctly-sized program headers. */
309 if (ehdr->e_type != ET_EXEC
310 || ehdr->e_machine != EM_386
311 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
312 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
313 errx(1, "Malformed elf header");
314
315 /* An ELF executable contains an ELF header and a number of "program"
316 * headers which indicate which parts ("segments") of the program to
317 * load where. */
318
319 /* We read in all the program headers at once: */
320 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
321 err(1, "Seeking to program headers");
322 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
323 err(1, "Reading program headers");
324
325 /* Try all the headers: there are usually only three. A read-only one,
326 * a read-write one, and a "note" section which we don't load. */
327 for (i = 0; i < ehdr->e_phnum; i++) {
328 /* If this isn't a loadable segment, we ignore it */
329 if (phdr[i].p_type != PT_LOAD)
330 continue;
331
332 verbose("Section %i: size %i addr %p\n",
333 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
334
335 /* We map this section of the file at its physical address. */
336 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
337 phdr[i].p_offset, phdr[i].p_filesz);
338 }
339
340 /* The entry point is given in the ELF header. */
341 return ehdr->e_entry;
342 }
343
344 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
345 * supposed to jump into it and it will unpack itself. We used to have to
346 * perform some hairy magic because the unpacking code scared me.
347 *
348 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
349 * a small patch to jump over the tricky bits in the Guest, so now we just read
350 * the funky header so we know where in the file to load, and away we go! */
351 static unsigned long load_bzimage(int fd)
352 {
353 struct boot_params boot;
354 int r;
355 /* Modern bzImages get loaded at 1M. */
356 void *p = from_guest_phys(0x100000);
357
358 /* Go back to the start of the file and read the header. It should be
359 * a Linux boot header (see Documentation/i386/boot.txt) */
360 lseek(fd, 0, SEEK_SET);
361 read(fd, &boot, sizeof(boot));
362
363 /* Inside the setup_hdr, we expect the magic "HdrS" */
364 if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
365 errx(1, "This doesn't look like a bzImage to me");
366
367 /* Skip over the extra sectors of the header. */
368 lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
369
370 /* Now read everything into memory. in nice big chunks. */
371 while ((r = read(fd, p, 65536)) > 0)
372 p += r;
373
374 /* Finally, code32_start tells us where to enter the kernel. */
375 return boot.hdr.code32_start;
376 }
377
378 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
379 * come wrapped up in the self-decompressing "bzImage" format. With a little
380 * work, we can load those, too. */
381 static unsigned long load_kernel(int fd)
382 {
383 Elf32_Ehdr hdr;
384
385 /* Read in the first few bytes. */
386 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
387 err(1, "Reading kernel");
388
389 /* If it's an ELF file, it starts with "\177ELF" */
390 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
391 return map_elf(fd, &hdr);
392
393 /* Otherwise we assume it's a bzImage, and try to load it. */
394 return load_bzimage(fd);
395 }
396
397 /* This is a trivial little helper to align pages. Andi Kleen hated it because
398 * it calls getpagesize() twice: "it's dumb code."
399 *
400 * Kernel guys get really het up about optimization, even when it's not
401 * necessary. I leave this code as a reaction against that. */
402 static inline unsigned long page_align(unsigned long addr)
403 {
404 /* Add upwards and truncate downwards. */
405 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
406 }
407
408 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
409 * the kernel which the kernel can use to boot from without needing any
410 * drivers. Most distributions now use this as standard: the initrd contains
411 * the code to load the appropriate driver modules for the current machine.
412 *
413 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
414 * kernels. He sent me this (and tells me when I break it). */
415 static unsigned long load_initrd(const char *name, unsigned long mem)
416 {
417 int ifd;
418 struct stat st;
419 unsigned long len;
420
421 ifd = open_or_die(name, O_RDONLY);
422 /* fstat() is needed to get the file size. */
423 if (fstat(ifd, &st) < 0)
424 err(1, "fstat() on initrd '%s'", name);
425
426 /* We map the initrd at the top of memory, but mmap wants it to be
427 * page-aligned, so we round the size up for that. */
428 len = page_align(st.st_size);
429 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
430 /* Once a file is mapped, you can close the file descriptor. It's a
431 * little odd, but quite useful. */
432 close(ifd);
433 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
434
435 /* We return the initrd size. */
436 return len;
437 }
438
439 /* Once we know how much memory we have we can construct simple linear page
440 * tables which set virtual == physical which will get the Guest far enough
441 * into the boot to create its own.
442 *
443 * We lay them out of the way, just below the initrd (which is why we need to
444 * know its size here). */
445 static unsigned long setup_pagetables(unsigned long mem,
446 unsigned long initrd_size)
447 {
448 unsigned long *pgdir, *linear;
449 unsigned int mapped_pages, i, linear_pages;
450 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
451
452 mapped_pages = mem/getpagesize();
453
454 /* Each PTE page can map ptes_per_page pages: how many do we need? */
455 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
456
457 /* We put the toplevel page directory page at the top of memory. */
458 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
459
460 /* Now we use the next linear_pages pages as pte pages */
461 linear = (void *)pgdir - linear_pages*getpagesize();
462
463 /* Linear mapping is easy: put every page's address into the mapping in
464 * order. PAGE_PRESENT contains the flags Present, Writable and
465 * Executable. */
466 for (i = 0; i < mapped_pages; i++)
467 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
468
469 /* The top level points to the linear page table pages above. */
470 for (i = 0; i < mapped_pages; i += ptes_per_page) {
471 pgdir[i/ptes_per_page]
472 = ((to_guest_phys(linear) + i*sizeof(void *))
473 | PAGE_PRESENT);
474 }
475
476 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
477 mapped_pages, linear_pages, to_guest_phys(linear));
478
479 /* We return the top level (guest-physical) address: the kernel needs
480 * to know where it is. */
481 return to_guest_phys(pgdir);
482 }
483 /*:*/
484
485 /* Simple routine to roll all the commandline arguments together with spaces
486 * between them. */
487 static void concat(char *dst, char *args[])
488 {
489 unsigned int i, len = 0;
490
491 for (i = 0; args[i]; i++) {
492 if (i) {
493 strcat(dst+len, " ");
494 len++;
495 }
496 strcpy(dst+len, args[i]);
497 len += strlen(args[i]);
498 }
499 /* In case it's empty. */
500 dst[len] = '\0';
501 }
502
503 /*L:185 This is where we actually tell the kernel to initialize the Guest. We
504 * saw the arguments it expects when we looked at initialize() in lguest_user.c:
505 * the base of Guest "physical" memory, the top physical page to allow, the
506 * top level pagetable and the entry point for the Guest. */
507 static int tell_kernel(unsigned long pgdir, unsigned long start)
508 {
509 unsigned long args[] = { LHREQ_INITIALIZE,
510 (unsigned long)guest_base,
511 guest_limit / getpagesize(), pgdir, start };
512 int fd;
513
514 verbose("Guest: %p - %p (%#lx)\n",
515 guest_base, guest_base + guest_limit, guest_limit);
516 fd = open_or_die("/dev/lguest", O_RDWR);
517 if (write(fd, args, sizeof(args)) < 0)
518 err(1, "Writing to /dev/lguest");
519
520 /* We return the /dev/lguest file descriptor to control this Guest */
521 return fd;
522 }
523 /*:*/
524
525 static void add_device_fd(int fd)
526 {
527 FD_SET(fd, &devices.infds);
528 if (fd > devices.max_infd)
529 devices.max_infd = fd;
530 }
531
532 /*L:200
533 * The Waker.
534 *
535 * With console, block and network devices, we can have lots of input which we
536 * need to process. We could try to tell the kernel what file descriptors to
537 * watch, but handing a file descriptor mask through to the kernel is fairly
538 * icky.
539 *
540 * Instead, we fork off a process which watches the file descriptors and writes
541 * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
542 * stop running the Guest. This causes the Launcher to return from the
543 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
544 * the LHREQ_BREAK and wake us up again.
545 *
546 * This, of course, is merely a different *kind* of icky.
547 */
548 static void wake_parent(int pipefd, int lguest_fd)
549 {
550 /* Add the pipe from the Launcher to the fdset in the device_list, so
551 * we watch it, too. */
552 add_device_fd(pipefd);
553
554 for (;;) {
555 fd_set rfds = devices.infds;
556 unsigned long args[] = { LHREQ_BREAK, 1 };
557
558 /* Wait until input is ready from one of the devices. */
559 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
560 /* Is it a message from the Launcher? */
561 if (FD_ISSET(pipefd, &rfds)) {
562 int fd;
563 /* If read() returns 0, it means the Launcher has
564 * exited. We silently follow. */
565 if (read(pipefd, &fd, sizeof(fd)) == 0)
566 exit(0);
567 /* Otherwise it's telling us to change what file
568 * descriptors we're to listen to. Positive means
569 * listen to a new one, negative means stop
570 * listening. */
571 if (fd >= 0)
572 FD_SET(fd, &devices.infds);
573 else
574 FD_CLR(-fd - 1, &devices.infds);
575 } else /* Send LHREQ_BREAK command. */
576 pwrite(lguest_fd, args, sizeof(args), cpu_id);
577 }
578 }
579
580 /* This routine just sets up a pipe to the Waker process. */
581 static int setup_waker(int lguest_fd)
582 {
583 int pipefd[2], child;
584
585 /* We create a pipe to talk to the Waker, and also so it knows when the
586 * Launcher dies (and closes pipe). */
587 pipe(pipefd);
588 child = fork();
589 if (child == -1)
590 err(1, "forking");
591
592 if (child == 0) {
593 /* We are the Waker: close the "writing" end of our copy of the
594 * pipe and start waiting for input. */
595 close(pipefd[1]);
596 wake_parent(pipefd[0], lguest_fd);
597 }
598 /* Close the reading end of our copy of the pipe. */
599 close(pipefd[0]);
600
601 /* Here is the fd used to talk to the waker. */
602 return pipefd[1];
603 }
604
605 /*
606 * Device Handling.
607 *
608 * When the Guest gives us a buffer, it sends an array of addresses and sizes.
609 * We need to make sure it's not trying to reach into the Launcher itself, so
610 * we have a convenient routine which checks it and exits with an error message
611 * if something funny is going on:
612 */
613 static void *_check_pointer(unsigned long addr, unsigned int size,
614 unsigned int line)
615 {
616 /* We have to separately check addr and addr+size, because size could
617 * be huge and addr + size might wrap around. */
618 if (addr >= guest_limit || addr + size >= guest_limit)
619 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
620 /* We return a pointer for the caller's convenience, now we know it's
621 * safe to use. */
622 return from_guest_phys(addr);
623 }
624 /* A macro which transparently hands the line number to the real function. */
625 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
626
627 /* Each buffer in the virtqueues is actually a chain of descriptors. This
628 * function returns the next descriptor in the chain, or vq->vring.num if we're
629 * at the end. */
630 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
631 {
632 unsigned int next;
633
634 /* If this descriptor says it doesn't chain, we're done. */
635 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
636 return vq->vring.num;
637
638 /* Check they're not leading us off end of descriptors. */
639 next = vq->vring.desc[i].next;
640 /* Make sure compiler knows to grab that: we don't want it changing! */
641 wmb();
642
643 if (next >= vq->vring.num)
644 errx(1, "Desc next is %u", next);
645
646 return next;
647 }
648
649 /* This looks in the virtqueue and for the first available buffer, and converts
650 * it to an iovec for convenient access. Since descriptors consist of some
651 * number of output then some number of input descriptors, it's actually two
652 * iovecs, but we pack them into one and note how many of each there were.
653 *
654 * This function returns the descriptor number found, or vq->vring.num (which
655 * is never a valid descriptor number) if none was found. */
656 static unsigned get_vq_desc(struct virtqueue *vq,
657 struct iovec iov[],
658 unsigned int *out_num, unsigned int *in_num)
659 {
660 unsigned int i, head;
661
662 /* Check it isn't doing very strange things with descriptor numbers. */
663 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
664 errx(1, "Guest moved used index from %u to %u",
665 vq->last_avail_idx, vq->vring.avail->idx);
666
667 /* If there's nothing new since last we looked, return invalid. */
668 if (vq->vring.avail->idx == vq->last_avail_idx)
669 return vq->vring.num;
670
671 /* Grab the next descriptor number they're advertising, and increment
672 * the index we've seen. */
673 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
674
675 /* If their number is silly, that's a fatal mistake. */
676 if (head >= vq->vring.num)
677 errx(1, "Guest says index %u is available", head);
678
679 /* When we start there are none of either input nor output. */
680 *out_num = *in_num = 0;
681
682 i = head;
683 do {
684 /* Grab the first descriptor, and check it's OK. */
685 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
686 iov[*out_num + *in_num].iov_base
687 = check_pointer(vq->vring.desc[i].addr,
688 vq->vring.desc[i].len);
689 /* If this is an input descriptor, increment that count. */
690 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
691 (*in_num)++;
692 else {
693 /* If it's an output descriptor, they're all supposed
694 * to come before any input descriptors. */
695 if (*in_num)
696 errx(1, "Descriptor has out after in");
697 (*out_num)++;
698 }
699
700 /* If we've got too many, that implies a descriptor loop. */
701 if (*out_num + *in_num > vq->vring.num)
702 errx(1, "Looped descriptor");
703 } while ((i = next_desc(vq, i)) != vq->vring.num);
704
705 return head;
706 }
707
708 /* After we've used one of their buffers, we tell them about it. We'll then
709 * want to send them an interrupt, using trigger_irq(). */
710 static void add_used(struct virtqueue *vq, unsigned int head, int len)
711 {
712 struct vring_used_elem *used;
713
714 /* The virtqueue contains a ring of used buffers. Get a pointer to the
715 * next entry in that used ring. */
716 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
717 used->id = head;
718 used->len = len;
719 /* Make sure buffer is written before we update index. */
720 wmb();
721 vq->vring.used->idx++;
722 }
723
724 /* This actually sends the interrupt for this virtqueue */
725 static void trigger_irq(int fd, struct virtqueue *vq)
726 {
727 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
728
729 /* If they don't want an interrupt, don't send one. */
730 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
731 return;
732
733 /* Send the Guest an interrupt tell them we used something up. */
734 if (write(fd, buf, sizeof(buf)) != 0)
735 err(1, "Triggering irq %i", vq->config.irq);
736 }
737
738 /* And here's the combo meal deal. Supersize me! */
739 static void add_used_and_trigger(int fd, struct virtqueue *vq,
740 unsigned int head, int len)
741 {
742 add_used(vq, head, len);
743 trigger_irq(fd, vq);
744 }
745
746 /*
747 * The Console
748 *
749 * Here is the input terminal setting we save, and the routine to restore them
750 * on exit so the user gets their terminal back. */
751 static struct termios orig_term;
752 static void restore_term(void)
753 {
754 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
755 }
756
757 /* We associate some data with the console for our exit hack. */
758 struct console_abort
759 {
760 /* How many times have they hit ^C? */
761 int count;
762 /* When did they start? */
763 struct timeval start;
764 };
765
766 /* This is the routine which handles console input (ie. stdin). */
767 static bool handle_console_input(int fd, struct device *dev)
768 {
769 int len;
770 unsigned int head, in_num, out_num;
771 struct iovec iov[dev->vq->vring.num];
772 struct console_abort *abort = dev->priv;
773
774 /* First we need a console buffer from the Guests's input virtqueue. */
775 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
776
777 /* If they're not ready for input, stop listening to this file
778 * descriptor. We'll start again once they add an input buffer. */
779 if (head == dev->vq->vring.num)
780 return false;
781
782 if (out_num)
783 errx(1, "Output buffers in console in queue?");
784
785 /* This is why we convert to iovecs: the readv() call uses them, and so
786 * it reads straight into the Guest's buffer. */
787 len = readv(dev->fd, iov, in_num);
788 if (len <= 0) {
789 /* This implies that the console is closed, is /dev/null, or
790 * something went terribly wrong. */
791 warnx("Failed to get console input, ignoring console.");
792 /* Put the input terminal back. */
793 restore_term();
794 /* Remove callback from input vq, so it doesn't restart us. */
795 dev->vq->handle_output = NULL;
796 /* Stop listening to this fd: don't call us again. */
797 return false;
798 }
799
800 /* Tell the Guest about the new input. */
801 add_used_and_trigger(fd, dev->vq, head, len);
802
803 /* Three ^C within one second? Exit.
804 *
805 * This is such a hack, but works surprisingly well. Each ^C has to be
806 * in a buffer by itself, so they can't be too fast. But we check that
807 * we get three within about a second, so they can't be too slow. */
808 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
809 if (!abort->count++)
810 gettimeofday(&abort->start, NULL);
811 else if (abort->count == 3) {
812 struct timeval now;
813 gettimeofday(&now, NULL);
814 if (now.tv_sec <= abort->start.tv_sec+1) {
815 unsigned long args[] = { LHREQ_BREAK, 0 };
816 /* Close the fd so Waker will know it has to
817 * exit. */
818 close(waker_fd);
819 /* Just in case waker is blocked in BREAK, send
820 * unbreak now. */
821 write(fd, args, sizeof(args));
822 exit(2);
823 }
824 abort->count = 0;
825 }
826 } else
827 /* Any other key resets the abort counter. */
828 abort->count = 0;
829
830 /* Everything went OK! */
831 return true;
832 }
833
834 /* Handling output for console is simple: we just get all the output buffers
835 * and write them to stdout. */
836 static void handle_console_output(int fd, struct virtqueue *vq)
837 {
838 unsigned int head, out, in;
839 int len;
840 struct iovec iov[vq->vring.num];
841
842 /* Keep getting output buffers from the Guest until we run out. */
843 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
844 if (in)
845 errx(1, "Input buffers in output queue?");
846 len = writev(STDOUT_FILENO, iov, out);
847 add_used_and_trigger(fd, vq, head, len);
848 }
849 }
850
851 /*
852 * The Network
853 *
854 * Handling output for network is also simple: we get all the output buffers
855 * and write them (ignoring the first element) to this device's file descriptor
856 * (/dev/net/tun).
857 */
858 static void handle_net_output(int fd, struct virtqueue *vq)
859 {
860 unsigned int head, out, in;
861 int len;
862 struct iovec iov[vq->vring.num];
863
864 /* Keep getting output buffers from the Guest until we run out. */
865 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
866 if (in)
867 errx(1, "Input buffers in output queue?");
868 /* Check header, but otherwise ignore it (we told the Guest we
869 * supported no features, so it shouldn't have anything
870 * interesting). */
871 (void)convert(&iov[0], struct virtio_net_hdr);
872 len = writev(vq->dev->fd, iov+1, out-1);
873 add_used_and_trigger(fd, vq, head, len);
874 }
875 }
876
877 /* This is where we handle a packet coming in from the tun device to our
878 * Guest. */
879 static bool handle_tun_input(int fd, struct device *dev)
880 {
881 unsigned int head, in_num, out_num;
882 int len;
883 struct iovec iov[dev->vq->vring.num];
884 struct virtio_net_hdr *hdr;
885
886 /* First we need a network buffer from the Guests's recv virtqueue. */
887 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
888 if (head == dev->vq->vring.num) {
889 /* Now, it's expected that if we try to send a packet too
890 * early, the Guest won't be ready yet. Wait until the device
891 * status says it's ready. */
892 /* FIXME: Actually want DRIVER_ACTIVE here. */
893 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
894 warn("network: no dma buffer!");
895 /* We'll turn this back on if input buffers are registered. */
896 return false;
897 } else if (out_num)
898 errx(1, "Output buffers in network recv queue?");
899
900 /* First element is the header: we set it to 0 (no features). */
901 hdr = convert(&iov[0], struct virtio_net_hdr);
902 hdr->flags = 0;
903 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
904
905 /* Read the packet from the device directly into the Guest's buffer. */
906 len = readv(dev->fd, iov+1, in_num-1);
907 if (len <= 0)
908 err(1, "reading network");
909
910 /* Tell the Guest about the new packet. */
911 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
912
913 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
914 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
915 head != dev->vq->vring.num ? "sent" : "discarded");
916
917 /* All good. */
918 return true;
919 }
920
921 /*L:215 This is the callback attached to the network and console input
922 * virtqueues: it ensures we try again, in case we stopped console or net
923 * delivery because Guest didn't have any buffers. */
924 static void enable_fd(int fd, struct virtqueue *vq)
925 {
926 add_device_fd(vq->dev->fd);
927 /* Tell waker to listen to it again */
928 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
929 }
930
931 /* When the Guest tells us they updated the status field, we handle it. */
932 static void update_device_status(struct device *dev)
933 {
934 struct virtqueue *vq;
935
936 /* This is a reset. */
937 if (dev->desc->status == 0) {
938 verbose("Resetting device %s\n", dev->name);
939
940 /* Clear any features they've acked. */
941 memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
942 dev->desc->feature_len);
943
944 /* Zero out the virtqueues. */
945 for (vq = dev->vq; vq; vq = vq->next) {
946 memset(vq->vring.desc, 0,
947 vring_size(vq->config.num, getpagesize()));
948 vq->last_avail_idx = 0;
949 }
950 } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
951 warnx("Device %s configuration FAILED", dev->name);
952 } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
953 unsigned int i;
954
955 verbose("Device %s OK: offered", dev->name);
956 for (i = 0; i < dev->desc->feature_len; i++)
957 verbose(" %08x", get_feature_bits(dev)[i]);
958 verbose(", accepted");
959 for (i = 0; i < dev->desc->feature_len; i++)
960 verbose(" %08x", get_feature_bits(dev)
961 [dev->desc->feature_len+i]);
962
963 if (dev->ready)
964 dev->ready(dev);
965 }
966 }
967
968 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
969 static void handle_output(int fd, unsigned long addr)
970 {
971 struct device *i;
972 struct virtqueue *vq;
973
974 /* Check each device and virtqueue. */
975 for (i = devices.dev; i; i = i->next) {
976 /* Notifications to device descriptors update device status. */
977 if (from_guest_phys(addr) == i->desc) {
978 update_device_status(i);
979 return;
980 }
981
982 /* Notifications to virtqueues mean output has occurred. */
983 for (vq = i->vq; vq; vq = vq->next) {
984 if (vq->config.pfn != addr/getpagesize())
985 continue;
986
987 /* Guest should acknowledge (and set features!) before
988 * using the device. */
989 if (i->desc->status == 0) {
990 warnx("%s gave early output", i->name);
991 return;
992 }
993
994 if (strcmp(vq->dev->name, "console") != 0)
995 verbose("Output to %s\n", vq->dev->name);
996 if (vq->handle_output)
997 vq->handle_output(fd, vq);
998 return;
999 }
1000 }
1001
1002 /* Early console write is done using notify on a nul-terminated string
1003 * in Guest memory. */
1004 if (addr >= guest_limit)
1005 errx(1, "Bad NOTIFY %#lx", addr);
1006
1007 write(STDOUT_FILENO, from_guest_phys(addr),
1008 strnlen(from_guest_phys(addr), guest_limit - addr));
1009 }
1010
1011 /* This is called when the Waker wakes us up: check for incoming file
1012 * descriptors. */
1013 static void handle_input(int fd)
1014 {
1015 /* select() wants a zeroed timeval to mean "don't wait". */
1016 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
1017
1018 for (;;) {
1019 struct device *i;
1020 fd_set fds = devices.infds;
1021
1022 /* If nothing is ready, we're done. */
1023 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
1024 break;
1025
1026 /* Otherwise, call the device(s) which have readable file
1027 * descriptors and a method of handling them. */
1028 for (i = devices.dev; i; i = i->next) {
1029 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1030 int dev_fd;
1031 if (i->handle_input(fd, i))
1032 continue;
1033
1034 /* If handle_input() returns false, it means we
1035 * should no longer service it. Networking and
1036 * console do this when there's no input
1037 * buffers to deliver into. Console also uses
1038 * it when it discovers that stdin is closed. */
1039 FD_CLR(i->fd, &devices.infds);
1040 /* Tell waker to ignore it too, by sending a
1041 * negative fd number (-1, since 0 is a valid
1042 * FD number). */
1043 dev_fd = -i->fd - 1;
1044 write(waker_fd, &dev_fd, sizeof(dev_fd));
1045 }
1046 }
1047 }
1048 }
1049
1050 /*L:190
1051 * Device Setup
1052 *
1053 * All devices need a descriptor so the Guest knows it exists, and a "struct
1054 * device" so the Launcher can keep track of it. We have common helper
1055 * routines to allocate and manage them.
1056 */
1057
1058 /* The layout of the device page is a "struct lguest_device_desc" followed by a
1059 * number of virtqueue descriptors, then two sets of feature bits, then an
1060 * array of configuration bytes. This routine returns the configuration
1061 * pointer. */
1062 static u8 *device_config(const struct device *dev)
1063 {
1064 return (void *)(dev->desc + 1)
1065 + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
1066 + dev->desc->feature_len * 2;
1067 }
1068
1069 /* This routine allocates a new "struct lguest_device_desc" from descriptor
1070 * table page just above the Guest's normal memory. It returns a pointer to
1071 * that descriptor. */
1072 static struct lguest_device_desc *new_dev_desc(u16 type)
1073 {
1074 struct lguest_device_desc d = { .type = type };
1075 void *p;
1076
1077 /* Figure out where the next device config is, based on the last one. */
1078 if (devices.lastdev)
1079 p = device_config(devices.lastdev)
1080 + devices.lastdev->desc->config_len;
1081 else
1082 p = devices.descpage;
1083
1084 /* We only have one page for all the descriptors. */
1085 if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
1086 errx(1, "Too many devices");
1087
1088 /* p might not be aligned, so we memcpy in. */
1089 return memcpy(p, &d, sizeof(d));
1090 }
1091
1092 /* Each device descriptor is followed by the description of its virtqueues. We
1093 * specify how many descriptors the virtqueue is to have. */
1094 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1095 void (*handle_output)(int fd, struct virtqueue *me))
1096 {
1097 unsigned int pages;
1098 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1099 void *p;
1100
1101 /* First we need some memory for this virtqueue. */
1102 pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
1103 / getpagesize();
1104 p = get_pages(pages);
1105
1106 /* Initialize the virtqueue */
1107 vq->next = NULL;
1108 vq->last_avail_idx = 0;
1109 vq->dev = dev;
1110
1111 /* Initialize the configuration. */
1112 vq->config.num = num_descs;
1113 vq->config.irq = devices.next_irq++;
1114 vq->config.pfn = to_guest_phys(p) / getpagesize();
1115
1116 /* Initialize the vring. */
1117 vring_init(&vq->vring, num_descs, p, getpagesize());
1118
1119 /* Append virtqueue to this device's descriptor. We use
1120 * device_config() to get the end of the device's current virtqueues;
1121 * we check that we haven't added any config or feature information
1122 * yet, otherwise we'd be overwriting them. */
1123 assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
1124 memcpy(device_config(dev), &vq->config, sizeof(vq->config));
1125 dev->desc->num_vq++;
1126
1127 verbose("Virtqueue page %#lx\n", to_guest_phys(p));
1128
1129 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1130 * second. */
1131 for (i = &dev->vq; *i; i = &(*i)->next);
1132 *i = vq;
1133
1134 /* Set the routine to call when the Guest does something to this
1135 * virtqueue. */
1136 vq->handle_output = handle_output;
1137
1138 /* As an optimization, set the advisory "Don't Notify Me" flag if we
1139 * don't have a handler */
1140 if (!handle_output)
1141 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1142 }
1143
1144 /* The first half of the feature bitmask is for us to advertise features. The
1145 * second half is for the Guest to accept features. */
1146 static void add_feature(struct device *dev, unsigned bit)
1147 {
1148 u8 *features = get_feature_bits(dev);
1149
1150 /* We can't extend the feature bits once we've added config bytes */
1151 if (dev->desc->feature_len <= bit / CHAR_BIT) {
1152 assert(dev->desc->config_len == 0);
1153 dev->desc->feature_len = (bit / CHAR_BIT) + 1;
1154 }
1155
1156 features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
1157 }
1158
1159 /* This routine sets the configuration fields for an existing device's
1160 * descriptor. It only works for the last device, but that's OK because that's
1161 * how we use it. */
1162 static void set_config(struct device *dev, unsigned len, const void *conf)
1163 {
1164 /* Check we haven't overflowed our single page. */
1165 if (device_config(dev) + len > devices.descpage + getpagesize())
1166 errx(1, "Too many devices");
1167
1168 /* Copy in the config information, and store the length. */
1169 memcpy(device_config(dev), conf, len);
1170 dev->desc->config_len = len;
1171 }
1172
1173 /* This routine does all the creation and setup of a new device, including
1174 * calling new_dev_desc() to allocate the descriptor and device memory.
1175 *
1176 * See what I mean about userspace being boring? */
1177 static struct device *new_device(const char *name, u16 type, int fd,
1178 bool (*handle_input)(int, struct device *))
1179 {
1180 struct device *dev = malloc(sizeof(*dev));
1181
1182 /* Now we populate the fields one at a time. */
1183 dev->fd = fd;
1184 /* If we have an input handler for this file descriptor, then we add it
1185 * to the device_list's fdset and maxfd. */
1186 if (handle_input)
1187 add_device_fd(dev->fd);
1188 dev->desc = new_dev_desc(type);
1189 dev->handle_input = handle_input;
1190 dev->name = name;
1191 dev->vq = NULL;
1192 dev->ready = NULL;
1193
1194 /* Append to device list. Prepending to a single-linked list is
1195 * easier, but the user expects the devices to be arranged on the bus
1196 * in command-line order. The first network device on the command line
1197 * is eth0, the first block device /dev/vda, etc. */
1198 if (devices.lastdev)
1199 devices.lastdev->next = dev;
1200 else
1201 devices.dev = dev;
1202 devices.lastdev = dev;
1203
1204 return dev;
1205 }
1206
1207 /* Our first setup routine is the console. It's a fairly simple device, but
1208 * UNIX tty handling makes it uglier than it could be. */
1209 static void setup_console(void)
1210 {
1211 struct device *dev;
1212
1213 /* If we can save the initial standard input settings... */
1214 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1215 struct termios term = orig_term;
1216 /* Then we turn off echo, line buffering and ^C etc. We want a
1217 * raw input stream to the Guest. */
1218 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1219 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1220 /* If we exit gracefully, the original settings will be
1221 * restored so the user can see what they're typing. */
1222 atexit(restore_term);
1223 }
1224
1225 dev = new_device("console", VIRTIO_ID_CONSOLE,
1226 STDIN_FILENO, handle_console_input);
1227 /* We store the console state in dev->priv, and initialize it. */
1228 dev->priv = malloc(sizeof(struct console_abort));
1229 ((struct console_abort *)dev->priv)->count = 0;
1230
1231 /* The console needs two virtqueues: the input then the output. When
1232 * they put something the input queue, we make sure we're listening to
1233 * stdin. When they put something in the output queue, we write it to
1234 * stdout. */
1235 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1236 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1237
1238 verbose("device %u: console\n", devices.device_num++);
1239 }
1240 /*:*/
1241
1242 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1243 * --sharenet=<name> option which opens or creates a named pipe. This can be
1244 * used to send packets to another guest in a 1:1 manner.
1245 *
1246 * More sopisticated is to use one of the tools developed for project like UML
1247 * to do networking.
1248 *
1249 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1250 * completely generic ("here's my vring, attach to your vring") and would work
1251 * for any traffic. Of course, namespace and permissions issues need to be
1252 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1253 * multiple inter-guest channels behind one interface, although it would
1254 * require some manner of hotplugging new virtio channels.
1255 *
1256 * Finally, we could implement a virtio network switch in the kernel. :*/
1257
1258 static u32 str2ip(const char *ipaddr)
1259 {
1260 unsigned int byte[4];
1261
1262 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1263 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1264 }
1265
1266 /* This code is "adapted" from libbridge: it attaches the Host end of the
1267 * network device to the bridge device specified by the command line.
1268 *
1269 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1270 * dislike bridging), and I just try not to break it. */
1271 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1272 {
1273 int ifidx;
1274 struct ifreq ifr;
1275
1276 if (!*br_name)
1277 errx(1, "must specify bridge name");
1278
1279 ifidx = if_nametoindex(if_name);
1280 if (!ifidx)
1281 errx(1, "interface %s does not exist!", if_name);
1282
1283 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1284 ifr.ifr_ifindex = ifidx;
1285 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1286 err(1, "can't add %s to bridge %s", if_name, br_name);
1287 }
1288
1289 /* This sets up the Host end of the network device with an IP address, brings
1290 * it up so packets will flow, the copies the MAC address into the hwaddr
1291 * pointer. */
1292 static void configure_device(int fd, const char *devname, u32 ipaddr,
1293 unsigned char hwaddr[6])
1294 {
1295 struct ifreq ifr;
1296 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1297
1298 /* Don't read these incantations. Just cut & paste them like I did! */
1299 memset(&ifr, 0, sizeof(ifr));
1300 strcpy(ifr.ifr_name, devname);
1301 sin->sin_family = AF_INET;
1302 sin->sin_addr.s_addr = htonl(ipaddr);
1303 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1304 err(1, "Setting %s interface address", devname);
1305 ifr.ifr_flags = IFF_UP;
1306 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1307 err(1, "Bringing interface %s up", devname);
1308
1309 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1310 * above). IF means Interface, and HWADDR is hardware address.
1311 * Simple! */
1312 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1313 err(1, "getting hw address for %s", devname);
1314 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1315 }
1316
1317 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1318 * routing, but the principle is the same: it uses the "tun" device to inject
1319 * packets into the Host as if they came in from a normal network card. We
1320 * just shunt packets between the Guest and the tun device. */
1321 static void setup_tun_net(const char *arg)
1322 {
1323 struct device *dev;
1324 struct ifreq ifr;
1325 int netfd, ipfd;
1326 u32 ip;
1327 const char *br_name = NULL;
1328 struct virtio_net_config conf;
1329
1330 /* We open the /dev/net/tun device and tell it we want a tap device. A
1331 * tap device is like a tun device, only somehow different. To tell
1332 * the truth, I completely blundered my way through this code, but it
1333 * works now! */
1334 netfd = open_or_die("/dev/net/tun", O_RDWR);
1335 memset(&ifr, 0, sizeof(ifr));
1336 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1337 strcpy(ifr.ifr_name, "tap%d");
1338 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1339 err(1, "configuring /dev/net/tun");
1340 /* We don't need checksums calculated for packets coming in this
1341 * device: trust us! */
1342 ioctl(netfd, TUNSETNOCSUM, 1);
1343
1344 /* First we create a new network device. */
1345 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1346
1347 /* Network devices need a receive and a send queue, just like
1348 * console. */
1349 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1350 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1351
1352 /* We need a socket to perform the magic network ioctls to bring up the
1353 * tap interface, connect to the bridge etc. Any socket will do! */
1354 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1355 if (ipfd < 0)
1356 err(1, "opening IP socket");
1357
1358 /* If the command line was --tunnet=bridge:<name> do bridging. */
1359 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1360 ip = INADDR_ANY;
1361 br_name = arg + strlen(BRIDGE_PFX);
1362 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1363 } else /* It is an IP address to set up the device with */
1364 ip = str2ip(arg);
1365
1366 /* Set up the tun device, and get the mac address for the interface. */
1367 configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
1368
1369 /* Tell Guest what MAC address to use. */
1370 add_feature(dev, VIRTIO_NET_F_MAC);
1371 set_config(dev, sizeof(conf), &conf);
1372
1373 /* We don't need the socket any more; setup is done. */
1374 close(ipfd);
1375
1376 verbose("device %u: tun net %u.%u.%u.%u\n",
1377 devices.device_num++,
1378 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1379 if (br_name)
1380 verbose("attached to bridge: %s\n", br_name);
1381 }
1382
1383 /* Our block (disk) device should be really simple: the Guest asks for a block
1384 * number and we read or write that position in the file. Unfortunately, that
1385 * was amazingly slow: the Guest waits until the read is finished before
1386 * running anything else, even if it could have been doing useful work.
1387 *
1388 * We could use async I/O, except it's reputed to suck so hard that characters
1389 * actually go missing from your code when you try to use it.
1390 *
1391 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1392
1393 /* This hangs off device->priv. */
1394 struct vblk_info
1395 {
1396 /* The size of the file. */
1397 off64_t len;
1398
1399 /* The file descriptor for the file. */
1400 int fd;
1401
1402 /* IO thread listens on this file descriptor [0]. */
1403 int workpipe[2];
1404
1405 /* IO thread writes to this file descriptor to mark it done, then
1406 * Launcher triggers interrupt to Guest. */
1407 int done_fd;
1408 };
1409
1410 /*L:210
1411 * The Disk
1412 *
1413 * Remember that the block device is handled by a separate I/O thread. We head
1414 * straight into the core of that thread here:
1415 */
1416 static bool service_io(struct device *dev)
1417 {
1418 struct vblk_info *vblk = dev->priv;
1419 unsigned int head, out_num, in_num, wlen;
1420 int ret;
1421 u8 *in;
1422 struct virtio_blk_outhdr *out;
1423 struct iovec iov[dev->vq->vring.num];
1424 off64_t off;
1425
1426 /* See if there's a request waiting. If not, nothing to do. */
1427 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1428 if (head == dev->vq->vring.num)
1429 return false;
1430
1431 /* Every block request should contain at least one output buffer
1432 * (detailing the location on disk and the type of request) and one
1433 * input buffer (to hold the result). */
1434 if (out_num == 0 || in_num == 0)
1435 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1436 head, out_num, in_num);
1437
1438 out = convert(&iov[0], struct virtio_blk_outhdr);
1439 in = convert(&iov[out_num+in_num-1], u8);
1440 off = out->sector * 512;
1441
1442 /* The block device implements "barriers", where the Guest indicates
1443 * that it wants all previous writes to occur before this write. We
1444 * don't have a way of asking our kernel to do a barrier, so we just
1445 * synchronize all the data in the file. Pretty poor, no? */
1446 if (out->type & VIRTIO_BLK_T_BARRIER)
1447 fdatasync(vblk->fd);
1448
1449 /* In general the virtio block driver is allowed to try SCSI commands.
1450 * It'd be nice if we supported eject, for example, but we don't. */
1451 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1452 fprintf(stderr, "Scsi commands unsupported\n");
1453 *in = VIRTIO_BLK_S_UNSUPP;
1454 wlen = sizeof(*in);
1455 } else if (out->type & VIRTIO_BLK_T_OUT) {
1456 /* Write */
1457
1458 /* Move to the right location in the block file. This can fail
1459 * if they try to write past end. */
1460 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1461 err(1, "Bad seek to sector %llu", out->sector);
1462
1463 ret = writev(vblk->fd, iov+1, out_num-1);
1464 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1465
1466 /* Grr... Now we know how long the descriptor they sent was, we
1467 * make sure they didn't try to write over the end of the block
1468 * file (possibly extending it). */
1469 if (ret > 0 && off + ret > vblk->len) {
1470 /* Trim it back to the correct length */
1471 ftruncate64(vblk->fd, vblk->len);
1472 /* Die, bad Guest, die. */
1473 errx(1, "Write past end %llu+%u", off, ret);
1474 }
1475 wlen = sizeof(*in);
1476 *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1477 } else {
1478 /* Read */
1479
1480 /* Move to the right location in the block file. This can fail
1481 * if they try to read past end. */
1482 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1483 err(1, "Bad seek to sector %llu", out->sector);
1484
1485 ret = readv(vblk->fd, iov+1, in_num-1);
1486 verbose("READ from sector %llu: %i\n", out->sector, ret);
1487 if (ret >= 0) {
1488 wlen = sizeof(*in) + ret;
1489 *in = VIRTIO_BLK_S_OK;
1490 } else {
1491 wlen = sizeof(*in);
1492 *in = VIRTIO_BLK_S_IOERR;
1493 }
1494 }
1495
1496 /* We can't trigger an IRQ, because we're not the Launcher. It does
1497 * that when we tell it we're done. */
1498 add_used(dev->vq, head, wlen);
1499 return true;
1500 }
1501
1502 /* This is the thread which actually services the I/O. */
1503 static int io_thread(void *_dev)
1504 {
1505 struct device *dev = _dev;
1506 struct vblk_info *vblk = dev->priv;
1507 char c;
1508
1509 /* Close other side of workpipe so we get 0 read when main dies. */
1510 close(vblk->workpipe[1]);
1511 /* Close the other side of the done_fd pipe. */
1512 close(dev->fd);
1513
1514 /* When this read fails, it means Launcher died, so we follow. */
1515 while (read(vblk->workpipe[0], &c, 1) == 1) {
1516 /* We acknowledge each request immediately to reduce latency,
1517 * rather than waiting until we've done them all. I haven't
1518 * measured to see if it makes any difference.
1519 *
1520 * That would be an interesting test, wouldn't it? You could
1521 * also try having more than one I/O thread. */
1522 while (service_io(dev))
1523 write(vblk->done_fd, &c, 1);
1524 }
1525 return 0;
1526 }
1527
1528 /* Now we've seen the I/O thread, we return to the Launcher to see what happens
1529 * when that thread tells us it's completed some I/O. */
1530 static bool handle_io_finish(int fd, struct device *dev)
1531 {
1532 char c;
1533
1534 /* If the I/O thread died, presumably it printed the error, so we
1535 * simply exit. */
1536 if (read(dev->fd, &c, 1) != 1)
1537 exit(1);
1538
1539 /* It did some work, so trigger the irq. */
1540 trigger_irq(fd, dev->vq);
1541 return true;
1542 }
1543
1544 /* When the Guest submits some I/O, we just need to wake the I/O thread. */
1545 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1546 {
1547 struct vblk_info *vblk = vq->dev->priv;
1548 char c = 0;
1549
1550 /* Wake up I/O thread and tell it to go to work! */
1551 if (write(vblk->workpipe[1], &c, 1) != 1)
1552 /* Presumably it indicated why it died. */
1553 exit(1);
1554 }
1555
1556 /*L:198 This actually sets up a virtual block device. */
1557 static void setup_block_file(const char *filename)
1558 {
1559 int p[2];
1560 struct device *dev;
1561 struct vblk_info *vblk;
1562 void *stack;
1563 struct virtio_blk_config conf;
1564
1565 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1566 pipe(p);
1567
1568 /* The device responds to return from I/O thread. */
1569 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1570
1571 /* The device has one virtqueue, where the Guest places requests. */
1572 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1573
1574 /* Allocate the room for our own bookkeeping */
1575 vblk = dev->priv = malloc(sizeof(*vblk));
1576
1577 /* First we open the file and store the length. */
1578 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1579 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1580
1581 /* We support barriers. */
1582 add_feature(dev, VIRTIO_BLK_F_BARRIER);
1583
1584 /* Tell Guest how many sectors this device has. */
1585 conf.capacity = cpu_to_le64(vblk->len / 512);
1586
1587 /* Tell Guest not to put in too many descriptors at once: two are used
1588 * for the in and out elements. */
1589 add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
1590 conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
1591
1592 set_config(dev, sizeof(conf), &conf);
1593
1594 /* The I/O thread writes to this end of the pipe when done. */
1595 vblk->done_fd = p[1];
1596
1597 /* This is the second pipe, which is how we tell the I/O thread about
1598 * more work. */
1599 pipe(vblk->workpipe);
1600
1601 /* Create stack for thread and run it. Since stack grows upwards, we
1602 * point the stack pointer to the end of this region. */
1603 stack = malloc(32768);
1604 /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
1605 * becoming a zombie. */
1606 if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
1607 err(1, "Creating clone");
1608
1609 /* We don't need to keep the I/O thread's end of the pipes open. */
1610 close(vblk->done_fd);
1611 close(vblk->workpipe[0]);
1612
1613 verbose("device %u: virtblock %llu sectors\n",
1614 devices.device_num, le64_to_cpu(conf.capacity));
1615 }
1616 /* That's the end of device setup. */
1617
1618 /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
1619 static void __attribute__((noreturn)) restart_guest(void)
1620 {
1621 unsigned int i;
1622
1623 /* Closing pipes causes the Waker thread and io_threads to die, and
1624 * closing /dev/lguest cleans up the Guest. Since we don't track all
1625 * open fds, we simply close everything beyond stderr. */
1626 for (i = 3; i < FD_SETSIZE; i++)
1627 close(i);
1628 execv(main_args[0], main_args);
1629 err(1, "Could not exec %s", main_args[0]);
1630 }
1631
1632 /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
1633 * its input and output, and finally, lays it to rest. */
1634 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1635 {
1636 for (;;) {
1637 unsigned long args[] = { LHREQ_BREAK, 0 };
1638 unsigned long notify_addr;
1639 int readval;
1640
1641 /* We read from the /dev/lguest device to run the Guest. */
1642 readval = pread(lguest_fd, &notify_addr,
1643 sizeof(notify_addr), cpu_id);
1644
1645 /* One unsigned long means the Guest did HCALL_NOTIFY */
1646 if (readval == sizeof(notify_addr)) {
1647 verbose("Notify on address %#lx\n", notify_addr);
1648 handle_output(lguest_fd, notify_addr);
1649 continue;
1650 /* ENOENT means the Guest died. Reading tells us why. */
1651 } else if (errno == ENOENT) {
1652 char reason[1024] = { 0 };
1653 pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
1654 errx(1, "%s", reason);
1655 /* ERESTART means that we need to reboot the guest */
1656 } else if (errno == ERESTART) {
1657 restart_guest();
1658 /* EAGAIN means the Waker wanted us to look at some input.
1659 * Anything else means a bug or incompatible change. */
1660 } else if (errno != EAGAIN)
1661 err(1, "Running guest failed");
1662
1663 /* Only service input on thread for CPU 0. */
1664 if (cpu_id != 0)
1665 continue;
1666
1667 /* Service input, then unset the BREAK to release the Waker. */
1668 handle_input(lguest_fd);
1669 if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
1670 err(1, "Resetting break");
1671 }
1672 }
1673 /*L:240
1674 * This is the end of the Launcher. The good news: we are over halfway
1675 * through! The bad news: the most fiendish part of the code still lies ahead
1676 * of us.
1677 *
1678 * Are you ready? Take a deep breath and join me in the core of the Host, in
1679 * "make Host".
1680 :*/
1681
1682 static struct option opts[] = {
1683 { "verbose", 0, NULL, 'v' },
1684 { "tunnet", 1, NULL, 't' },
1685 { "block", 1, NULL, 'b' },
1686 { "initrd", 1, NULL, 'i' },
1687 { NULL },
1688 };
1689 static void usage(void)
1690 {
1691 errx(1, "Usage: lguest [--verbose] "
1692 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1693 "|--block=<filename>|--initrd=<filename>]...\n"
1694 "<mem-in-mb> vmlinux [args...]");
1695 }
1696
1697 /*L:105 The main routine is where the real work begins: */
1698 int main(int argc, char *argv[])
1699 {
1700 /* Memory, top-level pagetable, code startpoint and size of the
1701 * (optional) initrd. */
1702 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1703 /* Two temporaries and the /dev/lguest file descriptor. */
1704 int i, c, lguest_fd;
1705 /* The boot information for the Guest. */
1706 struct boot_params *boot;
1707 /* If they specify an initrd file to load. */
1708 const char *initrd_name = NULL;
1709
1710 /* Save the args: we "reboot" by execing ourselves again. */
1711 main_args = argv;
1712 /* We don't "wait" for the children, so prevent them from becoming
1713 * zombies. */
1714 signal(SIGCHLD, SIG_IGN);
1715
1716 /* First we initialize the device list. Since console and network
1717 * device receive input from a file descriptor, we keep an fdset
1718 * (infds) and the maximum fd number (max_infd) with the head of the
1719 * list. We also keep a pointer to the last device. Finally, we keep
1720 * the next interrupt number to use for devices (1: remember that 0 is
1721 * used by the timer). */
1722 FD_ZERO(&devices.infds);
1723 devices.max_infd = -1;
1724 devices.lastdev = NULL;
1725 devices.next_irq = 1;
1726
1727 cpu_id = 0;
1728 /* We need to know how much memory so we can set up the device
1729 * descriptor and memory pages for the devices as we parse the command
1730 * line. So we quickly look through the arguments to find the amount
1731 * of memory now. */
1732 for (i = 1; i < argc; i++) {
1733 if (argv[i][0] != '-') {
1734 mem = atoi(argv[i]) * 1024 * 1024;
1735 /* We start by mapping anonymous pages over all of
1736 * guest-physical memory range. This fills it with 0,
1737 * and ensures that the Guest won't be killed when it
1738 * tries to access it. */
1739 guest_base = map_zeroed_pages(mem / getpagesize()
1740 + DEVICE_PAGES);
1741 guest_limit = mem;
1742 guest_max = mem + DEVICE_PAGES*getpagesize();
1743 devices.descpage = get_pages(1);
1744 break;
1745 }
1746 }
1747
1748 /* The options are fairly straight-forward */
1749 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1750 switch (c) {
1751 case 'v':
1752 verbose = true;
1753 break;
1754 case 't':
1755 setup_tun_net(optarg);
1756 break;
1757 case 'b':
1758 setup_block_file(optarg);
1759 break;
1760 case 'i':
1761 initrd_name = optarg;
1762 break;
1763 default:
1764 warnx("Unknown argument %s", argv[optind]);
1765 usage();
1766 }
1767 }
1768 /* After the other arguments we expect memory and kernel image name,
1769 * followed by command line arguments for the kernel. */
1770 if (optind + 2 > argc)
1771 usage();
1772
1773 verbose("Guest base is at %p\n", guest_base);
1774
1775 /* We always have a console device */
1776 setup_console();
1777
1778 /* Now we load the kernel */
1779 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1780
1781 /* Boot information is stashed at physical address 0 */
1782 boot = from_guest_phys(0);
1783
1784 /* Map the initrd image if requested (at top of physical memory) */
1785 if (initrd_name) {
1786 initrd_size = load_initrd(initrd_name, mem);
1787 /* These are the location in the Linux boot header where the
1788 * start and size of the initrd are expected to be found. */
1789 boot->hdr.ramdisk_image = mem - initrd_size;
1790 boot->hdr.ramdisk_size = initrd_size;
1791 /* The bootloader type 0xFF means "unknown"; that's OK. */
1792 boot->hdr.type_of_loader = 0xFF;
1793 }
1794
1795 /* Set up the initial linear pagetables, starting below the initrd. */
1796 pgdir = setup_pagetables(mem, initrd_size);
1797
1798 /* The Linux boot header contains an "E820" memory map: ours is a
1799 * simple, single region. */
1800 boot->e820_entries = 1;
1801 boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
1802 /* The boot header contains a command line pointer: we put the command
1803 * line after the boot header. */
1804 boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
1805 /* We use a simple helper to copy the arguments separated by spaces. */
1806 concat((char *)(boot + 1), argv+optind+2);
1807
1808 /* Boot protocol version: 2.07 supports the fields for lguest. */
1809 boot->hdr.version = 0x207;
1810
1811 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1812 boot->hdr.hardware_subarch = 1;
1813
1814 /* Tell the entry path not to try to reload segment registers. */
1815 boot->hdr.loadflags |= KEEP_SEGMENTS;
1816
1817 /* We tell the kernel to initialize the Guest: this returns the open
1818 * /dev/lguest file descriptor. */
1819 lguest_fd = tell_kernel(pgdir, start);
1820
1821 /* We fork off a child process, which wakes the Launcher whenever one
1822 * of the input file descriptors needs attention. We call this the
1823 * Waker, and we'll cover it in a moment. */
1824 waker_fd = setup_waker(lguest_fd);
1825
1826 /* Finally, run the Guest. This doesn't return. */
1827 run_guest(lguest_fd);
1828 }
1829 /*:*/
1830
1831 /*M:999
1832 * Mastery is done: you now know everything I do.
1833 *
1834 * But surely you have seen code, features and bugs in your wanderings which
1835 * you now yearn to attack? That is the real game, and I look forward to you
1836 * patching and forking lguest into the Your-Name-Here-visor.
1837 *
1838 * Farewell, and good coding!
1839 * Rusty Russell.
1840 */
This page took 0.071967 seconds and 6 git commands to generate.