Change example launcher to use unsigned long not u32
[deliverable/linux.git] / Documentation / lguest / lguest.c
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 /*L:110 We can ignore the 28 include files we need for this program, but I do
36 * want to draw attention to the use of kernel-style types.
37 *
38 * As Linus said, "C is a Spartan language, and so should your naming be." I
39 * like these abbreviations and the header we need uses them, so we define them
40 * here.
41 */
42 typedef unsigned long long u64;
43 typedef uint32_t u32;
44 typedef uint16_t u16;
45 typedef uint8_t u8;
46 #include "linux/lguest_launcher.h"
47 #include "asm-x86/e820.h"
48 /*:*/
49
50 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
51 #define NET_PEERNUM 1
52 #define BRIDGE_PFX "bridge:"
53 #ifndef SIOCBRADDIF
54 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
55 #endif
56 /* We can have up to 256 pages for devices. */
57 #define DEVICE_PAGES 256
58
59 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
60 * this, and although I wouldn't recommend it, it works quite nicely here. */
61 static bool verbose;
62 #define verbose(args...) \
63 do { if (verbose) printf(args); } while(0)
64 /*:*/
65
66 /* The pipe to send commands to the waker process */
67 static int waker_fd;
68 /* The pointer to the start of guest memory. */
69 static void *guest_base;
70 /* The maximum guest physical address allowed, and maximum possible. */
71 static unsigned long guest_limit, guest_max;
72
73 /* This is our list of devices. */
74 struct device_list
75 {
76 /* Summary information about the devices in our list: ready to pass to
77 * select() to ask which need servicing.*/
78 fd_set infds;
79 int max_infd;
80
81 /* The descriptor page for the devices. */
82 struct lguest_device_desc *descs;
83
84 /* A single linked list of devices. */
85 struct device *dev;
86 /* ... And an end pointer so we can easily append new devices */
87 struct device **lastdev;
88 };
89
90 /* The device structure describes a single device. */
91 struct device
92 {
93 /* The linked-list pointer. */
94 struct device *next;
95 /* The descriptor for this device, as mapped into the Guest. */
96 struct lguest_device_desc *desc;
97 /* The memory page(s) of this device, if any. Also mapped in Guest. */
98 void *mem;
99
100 /* If handle_input is set, it wants to be called when this file
101 * descriptor is ready. */
102 int fd;
103 bool (*handle_input)(int fd, struct device *me);
104
105 /* If handle_output is set, it wants to be called when the Guest sends
106 * DMA to this key. */
107 unsigned long watch_key;
108 u32 (*handle_output)(int fd, const struct iovec *iov,
109 unsigned int num, struct device *me);
110
111 /* Device-specific data. */
112 void *priv;
113 };
114
115 /*L:100 The Launcher code itself takes us out into userspace, that scary place
116 * where pointers run wild and free! Unfortunately, like most userspace
117 * programs, it's quite boring (which is why everyone likes to hack on the
118 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
119 * will get you through this section. Or, maybe not.
120 *
121 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
122 * memory and stores it in "guest_base". In other words, Guest physical ==
123 * Launcher virtual with an offset.
124 *
125 * This can be tough to get your head around, but usually it just means that we
126 * use these trivial conversion functions when the Guest gives us it's
127 * "physical" addresses: */
128 static void *from_guest_phys(unsigned long addr)
129 {
130 return guest_base + addr;
131 }
132
133 static unsigned long to_guest_phys(const void *addr)
134 {
135 return (addr - guest_base);
136 }
137
138 /*L:130
139 * Loading the Kernel.
140 *
141 * We start with couple of simple helper routines. open_or_die() avoids
142 * error-checking code cluttering the callers: */
143 static int open_or_die(const char *name, int flags)
144 {
145 int fd = open(name, flags);
146 if (fd < 0)
147 err(1, "Failed to open %s", name);
148 return fd;
149 }
150
151 /* map_zeroed_pages() takes a number of pages. */
152 static void *map_zeroed_pages(unsigned int num)
153 {
154 int fd = open_or_die("/dev/zero", O_RDONLY);
155 void *addr;
156
157 /* We use a private mapping (ie. if we write to the page, it will be
158 * copied). */
159 addr = mmap(NULL, getpagesize() * num,
160 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
161 if (addr == MAP_FAILED)
162 err(1, "Mmaping %u pages of /dev/zero", num);
163
164 return addr;
165 }
166
167 /* Get some more pages for a device. */
168 static void *get_pages(unsigned int num)
169 {
170 void *addr = from_guest_phys(guest_limit);
171
172 guest_limit += num * getpagesize();
173 if (guest_limit > guest_max)
174 errx(1, "Not enough memory for devices");
175 return addr;
176 }
177
178 /* To find out where to start we look for the magic Guest string, which marks
179 * the code we see in lguest_asm.S. This is a hack which we are currently
180 * plotting to replace with the normal Linux entry point. */
181 static unsigned long entry_point(const void *start, const void *end,
182 unsigned long page_offset)
183 {
184 const void *p;
185
186 /* The scan gives us the physical starting address. We want the
187 * virtual address in this case, and fortunately, we already figured
188 * out the physical-virtual difference and passed it here in
189 * "page_offset". */
190 for (p = start; p < end; p++)
191 if (memcmp(p, "GenuineLguest", strlen("GenuineLguest")) == 0)
192 return to_guest_phys(p + strlen("GenuineLguest"))
193 + page_offset;
194
195 errx(1, "Is this image a genuine lguest?");
196 }
197
198 /* This routine is used to load the kernel or initrd. It tries mmap, but if
199 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
200 * it falls back to reading the memory in. */
201 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
202 {
203 ssize_t r;
204
205 /* We map writable even though for some segments are marked read-only.
206 * The kernel really wants to be writable: it patches its own
207 * instructions.
208 *
209 * MAP_PRIVATE means that the page won't be copied until a write is
210 * done to it. This allows us to share untouched memory between
211 * Guests. */
212 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
213 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
214 return;
215
216 /* pread does a seek and a read in one shot: saves a few lines. */
217 r = pread(fd, addr, len, offset);
218 if (r != len)
219 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
220 }
221
222 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
223 * the Guest memory. ELF = Embedded Linking Format, which is the format used
224 * by all modern binaries on Linux including the kernel.
225 *
226 * The ELF headers give *two* addresses: a physical address, and a virtual
227 * address. The Guest kernel expects to be placed in memory at the physical
228 * address, and the page tables set up so it will correspond to that virtual
229 * address. We return the difference between the virtual and physical
230 * addresses in the "page_offset" pointer.
231 *
232 * We return the starting address. */
233 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr,
234 unsigned long *page_offset)
235 {
236 void *start = (void *)-1, *end = NULL;
237 Elf32_Phdr phdr[ehdr->e_phnum];
238 unsigned int i;
239
240 /* Sanity checks on the main ELF header: an x86 executable with a
241 * reasonable number of correctly-sized program headers. */
242 if (ehdr->e_type != ET_EXEC
243 || ehdr->e_machine != EM_386
244 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
245 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
246 errx(1, "Malformed elf header");
247
248 /* An ELF executable contains an ELF header and a number of "program"
249 * headers which indicate which parts ("segments") of the program to
250 * load where. */
251
252 /* We read in all the program headers at once: */
253 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
254 err(1, "Seeking to program headers");
255 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
256 err(1, "Reading program headers");
257
258 /* We don't know page_offset yet. */
259 *page_offset = 0;
260
261 /* Try all the headers: there are usually only three. A read-only one,
262 * a read-write one, and a "note" section which isn't loadable. */
263 for (i = 0; i < ehdr->e_phnum; i++) {
264 /* If this isn't a loadable segment, we ignore it */
265 if (phdr[i].p_type != PT_LOAD)
266 continue;
267
268 verbose("Section %i: size %i addr %p\n",
269 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
270
271 /* We expect a simple linear address space: every segment must
272 * have the same difference between virtual (p_vaddr) and
273 * physical (p_paddr) address. */
274 if (!*page_offset)
275 *page_offset = phdr[i].p_vaddr - phdr[i].p_paddr;
276 else if (*page_offset != phdr[i].p_vaddr - phdr[i].p_paddr)
277 errx(1, "Page offset of section %i different", i);
278
279 /* We track the first and last address we mapped, so we can
280 * tell entry_point() where to scan. */
281 if (from_guest_phys(phdr[i].p_paddr) < start)
282 start = from_guest_phys(phdr[i].p_paddr);
283 if (from_guest_phys(phdr[i].p_paddr) + phdr[i].p_filesz > end)
284 end=from_guest_phys(phdr[i].p_paddr)+phdr[i].p_filesz;
285
286 /* We map this section of the file at its physical address. */
287 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
288 phdr[i].p_offset, phdr[i].p_filesz);
289 }
290
291 return entry_point(start, end, *page_offset);
292 }
293
294 /*L:170 Prepare to be SHOCKED and AMAZED. And possibly a trifle nauseated.
295 *
296 * We know that CONFIG_PAGE_OFFSET sets what virtual address the kernel expects
297 * to be. We don't know what that option was, but we can figure it out
298 * approximately by looking at the addresses in the code. I chose the common
299 * case of reading a memory location into the %eax register:
300 *
301 * movl <some-address>, %eax
302 *
303 * This gets encoded as five bytes: "0xA1 <4-byte-address>". For example,
304 * "0xA1 0x18 0x60 0x47 0xC0" reads the address 0xC0476018 into %eax.
305 *
306 * In this example can guess that the kernel was compiled with
307 * CONFIG_PAGE_OFFSET set to 0xC0000000 (it's always a round number). If the
308 * kernel were larger than 16MB, we might see 0xC1 addresses show up, but our
309 * kernel isn't that bloated yet.
310 *
311 * Unfortunately, x86 has variable-length instructions, so finding this
312 * particular instruction properly involves writing a disassembler. Instead,
313 * we rely on statistics. We look for "0xA1" and tally the different bytes
314 * which occur 4 bytes later (the "0xC0" in our example above). When one of
315 * those bytes appears three times, we can be reasonably confident that it
316 * forms the start of CONFIG_PAGE_OFFSET.
317 *
318 * This is amazingly reliable. */
319 static unsigned long intuit_page_offset(unsigned char *img, unsigned long len)
320 {
321 unsigned int i, possibilities[256] = { 0 };
322
323 for (i = 0; i + 4 < len; i++) {
324 /* mov 0xXXXXXXXX,%eax */
325 if (img[i] == 0xA1 && ++possibilities[img[i+4]] > 3)
326 return (unsigned long)img[i+4] << 24;
327 }
328 errx(1, "could not determine page offset");
329 }
330
331 /*L:160 Unfortunately the entire ELF image isn't compressed: the segments
332 * which need loading are extracted and compressed raw. This denies us the
333 * information we need to make a fully-general loader. */
334 static unsigned long unpack_bzimage(int fd, unsigned long *page_offset)
335 {
336 gzFile f;
337 int ret, len = 0;
338 /* A bzImage always gets loaded at physical address 1M. This is
339 * actually configurable as CONFIG_PHYSICAL_START, but as the comment
340 * there says, "Don't change this unless you know what you are doing".
341 * Indeed. */
342 void *img = from_guest_phys(0x100000);
343
344 /* gzdopen takes our file descriptor (carefully placed at the start of
345 * the GZIP header we found) and returns a gzFile. */
346 f = gzdopen(fd, "rb");
347 /* We read it into memory in 64k chunks until we hit the end. */
348 while ((ret = gzread(f, img + len, 65536)) > 0)
349 len += ret;
350 if (ret < 0)
351 err(1, "reading image from bzImage");
352
353 verbose("Unpacked size %i addr %p\n", len, img);
354
355 /* Without the ELF header, we can't tell virtual-physical gap. This is
356 * CONFIG_PAGE_OFFSET, and people do actually change it. Fortunately,
357 * I have a clever way of figuring it out from the code itself. */
358 *page_offset = intuit_page_offset(img, len);
359
360 return entry_point(img, img + len, *page_offset);
361 }
362
363 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
364 * supposed to jump into it and it will unpack itself. We can't do that
365 * because the Guest can't run the unpacking code, and adding features to
366 * lguest kills puppies, so we don't want to.
367 *
368 * The bzImage is formed by putting the decompressing code in front of the
369 * compressed kernel code. So we can simple scan through it looking for the
370 * first "gzip" header, and start decompressing from there. */
371 static unsigned long load_bzimage(int fd, unsigned long *page_offset)
372 {
373 unsigned char c;
374 int state = 0;
375
376 /* GZIP header is 0x1F 0x8B <method> <flags>... <compressed-by>. */
377 while (read(fd, &c, 1) == 1) {
378 switch (state) {
379 case 0:
380 if (c == 0x1F)
381 state++;
382 break;
383 case 1:
384 if (c == 0x8B)
385 state++;
386 else
387 state = 0;
388 break;
389 case 2 ... 8:
390 state++;
391 break;
392 case 9:
393 /* Seek back to the start of the gzip header. */
394 lseek(fd, -10, SEEK_CUR);
395 /* One final check: "compressed under UNIX". */
396 if (c != 0x03)
397 state = -1;
398 else
399 return unpack_bzimage(fd, page_offset);
400 }
401 }
402 errx(1, "Could not find kernel in bzImage");
403 }
404
405 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
406 * come wrapped up in the self-decompressing "bzImage" format. With some funky
407 * coding, we can load those, too. */
408 static unsigned long load_kernel(int fd, unsigned long *page_offset)
409 {
410 Elf32_Ehdr hdr;
411
412 /* Read in the first few bytes. */
413 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
414 err(1, "Reading kernel");
415
416 /* If it's an ELF file, it starts with "\177ELF" */
417 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
418 return map_elf(fd, &hdr, page_offset);
419
420 /* Otherwise we assume it's a bzImage, and try to unpack it */
421 return load_bzimage(fd, page_offset);
422 }
423
424 /* This is a trivial little helper to align pages. Andi Kleen hated it because
425 * it calls getpagesize() twice: "it's dumb code."
426 *
427 * Kernel guys get really het up about optimization, even when it's not
428 * necessary. I leave this code as a reaction against that. */
429 static inline unsigned long page_align(unsigned long addr)
430 {
431 /* Add upwards and truncate downwards. */
432 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
433 }
434
435 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
436 * the kernel which the kernel can use to boot from without needing any
437 * drivers. Most distributions now use this as standard: the initrd contains
438 * the code to load the appropriate driver modules for the current machine.
439 *
440 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
441 * kernels. He sent me this (and tells me when I break it). */
442 static unsigned long load_initrd(const char *name, unsigned long mem)
443 {
444 int ifd;
445 struct stat st;
446 unsigned long len;
447
448 ifd = open_or_die(name, O_RDONLY);
449 /* fstat() is needed to get the file size. */
450 if (fstat(ifd, &st) < 0)
451 err(1, "fstat() on initrd '%s'", name);
452
453 /* We map the initrd at the top of memory, but mmap wants it to be
454 * page-aligned, so we round the size up for that. */
455 len = page_align(st.st_size);
456 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
457 /* Once a file is mapped, you can close the file descriptor. It's a
458 * little odd, but quite useful. */
459 close(ifd);
460 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
461
462 /* We return the initrd size. */
463 return len;
464 }
465
466 /* Once we know the address the Guest kernel expects, we can construct simple
467 * linear page tables for all of memory which will get the Guest far enough
468 * into the boot to create its own.
469 *
470 * We lay them out of the way, just below the initrd (which is why we need to
471 * know its size). */
472 static unsigned long setup_pagetables(unsigned long mem,
473 unsigned long initrd_size,
474 unsigned long page_offset)
475 {
476 unsigned long *pgdir, *linear;
477 unsigned int mapped_pages, i, linear_pages;
478 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
479
480 /* Ideally we map all physical memory starting at page_offset.
481 * However, if page_offset is 0xC0000000 we can only map 1G of physical
482 * (0xC0000000 + 1G overflows). */
483 if (mem <= -page_offset)
484 mapped_pages = mem/getpagesize();
485 else
486 mapped_pages = -page_offset/getpagesize();
487
488 /* Each PTE page can map ptes_per_page pages: how many do we need? */
489 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
490
491 /* We put the toplevel page directory page at the top of memory. */
492 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
493
494 /* Now we use the next linear_pages pages as pte pages */
495 linear = (void *)pgdir - linear_pages*getpagesize();
496
497 /* Linear mapping is easy: put every page's address into the mapping in
498 * order. PAGE_PRESENT contains the flags Present, Writable and
499 * Executable. */
500 for (i = 0; i < mapped_pages; i++)
501 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
502
503 /* The top level points to the linear page table pages above. The
504 * entry representing page_offset points to the first one, and they
505 * continue from there. */
506 for (i = 0; i < mapped_pages; i += ptes_per_page) {
507 pgdir[(i + page_offset/getpagesize())/ptes_per_page]
508 = ((to_guest_phys(linear) + i*sizeof(void *))
509 | PAGE_PRESENT);
510 }
511
512 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
513 mapped_pages, linear_pages, to_guest_phys(linear));
514
515 /* We return the top level (guest-physical) address: the kernel needs
516 * to know where it is. */
517 return to_guest_phys(pgdir);
518 }
519
520 /* Simple routine to roll all the commandline arguments together with spaces
521 * between them. */
522 static void concat(char *dst, char *args[])
523 {
524 unsigned int i, len = 0;
525
526 for (i = 0; args[i]; i++) {
527 strcpy(dst+len, args[i]);
528 strcat(dst+len, " ");
529 len += strlen(args[i]) + 1;
530 }
531 /* In case it's empty. */
532 dst[len] = '\0';
533 }
534
535 /* This is where we actually tell the kernel to initialize the Guest. We saw
536 * the arguments it expects when we looked at initialize() in lguest_user.c:
537 * the base of guest "physical" memory, the top physical page to allow, the
538 * top level pagetable, the entry point and the page_offset constant for the
539 * Guest. */
540 static int tell_kernel(unsigned long pgdir, unsigned long start,
541 unsigned long page_offset)
542 {
543 unsigned long args[] = { LHREQ_INITIALIZE,
544 (unsigned long)guest_base,
545 guest_limit / getpagesize(),
546 pgdir, start, page_offset };
547 int fd;
548
549 verbose("Guest: %p - %p (%#lx)\n",
550 guest_base, guest_base + guest_limit, guest_limit);
551 fd = open_or_die("/dev/lguest", O_RDWR);
552 if (write(fd, args, sizeof(args)) < 0)
553 err(1, "Writing to /dev/lguest");
554
555 /* We return the /dev/lguest file descriptor to control this Guest */
556 return fd;
557 }
558 /*:*/
559
560 static void set_fd(int fd, struct device_list *devices)
561 {
562 FD_SET(fd, &devices->infds);
563 if (fd > devices->max_infd)
564 devices->max_infd = fd;
565 }
566
567 /*L:200
568 * The Waker.
569 *
570 * With a console and network devices, we can have lots of input which we need
571 * to process. We could try to tell the kernel what file descriptors to watch,
572 * but handing a file descriptor mask through to the kernel is fairly icky.
573 *
574 * Instead, we fork off a process which watches the file descriptors and writes
575 * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
576 * loop to stop running the Guest. This causes it to return from the
577 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
578 * the LHREQ_BREAK and wake us up again.
579 *
580 * This, of course, is merely a different *kind* of icky.
581 */
582 static void wake_parent(int pipefd, int lguest_fd, struct device_list *devices)
583 {
584 /* Add the pipe from the Launcher to the fdset in the device_list, so
585 * we watch it, too. */
586 set_fd(pipefd, devices);
587
588 for (;;) {
589 fd_set rfds = devices->infds;
590 unsigned long args[] = { LHREQ_BREAK, 1 };
591
592 /* Wait until input is ready from one of the devices. */
593 select(devices->max_infd+1, &rfds, NULL, NULL, NULL);
594 /* Is it a message from the Launcher? */
595 if (FD_ISSET(pipefd, &rfds)) {
596 int ignorefd;
597 /* If read() returns 0, it means the Launcher has
598 * exited. We silently follow. */
599 if (read(pipefd, &ignorefd, sizeof(ignorefd)) == 0)
600 exit(0);
601 /* Otherwise it's telling us there's a problem with one
602 * of the devices, and we should ignore that file
603 * descriptor from now on. */
604 FD_CLR(ignorefd, &devices->infds);
605 } else /* Send LHREQ_BREAK command. */
606 write(lguest_fd, args, sizeof(args));
607 }
608 }
609
610 /* This routine just sets up a pipe to the Waker process. */
611 static int setup_waker(int lguest_fd, struct device_list *device_list)
612 {
613 int pipefd[2], child;
614
615 /* We create a pipe to talk to the waker, and also so it knows when the
616 * Launcher dies (and closes pipe). */
617 pipe(pipefd);
618 child = fork();
619 if (child == -1)
620 err(1, "forking");
621
622 if (child == 0) {
623 /* Close the "writing" end of our copy of the pipe */
624 close(pipefd[1]);
625 wake_parent(pipefd[0], lguest_fd, device_list);
626 }
627 /* Close the reading end of our copy of the pipe. */
628 close(pipefd[0]);
629
630 /* Here is the fd used to talk to the waker. */
631 return pipefd[1];
632 }
633
634 /*L:210
635 * Device Handling.
636 *
637 * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
638 * We need to make sure it's not trying to reach into the Launcher itself, so
639 * we have a convenient routine which check it and exits with an error message
640 * if something funny is going on:
641 */
642 static void *_check_pointer(unsigned long addr, unsigned int size,
643 unsigned int line)
644 {
645 /* We have to separately check addr and addr+size, because size could
646 * be huge and addr + size might wrap around. */
647 if (addr >= guest_limit || addr + size >= guest_limit)
648 errx(1, "%s:%i: Invalid address %li", __FILE__, line, addr);
649 /* We return a pointer for the caller's convenience, now we know it's
650 * safe to use. */
651 return from_guest_phys(addr);
652 }
653 /* A macro which transparently hands the line number to the real function. */
654 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
655
656 /* The Guest has given us the address of a "struct lguest_dma". We check it's
657 * OK and convert it to an iovec (which is a simple array of ptr/size
658 * pairs). */
659 static u32 *dma2iov(unsigned long dma, struct iovec iov[], unsigned *num)
660 {
661 unsigned int i;
662 struct lguest_dma *udma;
663
664 /* First we make sure that the array memory itself is valid. */
665 udma = check_pointer(dma, sizeof(*udma));
666 /* Now we check each element */
667 for (i = 0; i < LGUEST_MAX_DMA_SECTIONS; i++) {
668 /* A zero length ends the array. */
669 if (!udma->len[i])
670 break;
671
672 iov[i].iov_base = check_pointer(udma->addr[i], udma->len[i]);
673 iov[i].iov_len = udma->len[i];
674 }
675 *num = i;
676
677 /* We return the pointer to where the caller should write the amount of
678 * the buffer used. */
679 return &udma->used_len;
680 }
681
682 /* This routine gets a DMA buffer from the Guest for a given key, and converts
683 * it to an iovec array. It returns the interrupt the Guest wants when we're
684 * finished, and a pointer to the "used_len" field to fill in. */
685 static u32 *get_dma_buffer(int fd, void *key,
686 struct iovec iov[], unsigned int *num, u32 *irq)
687 {
688 unsigned long buf[] = { LHREQ_GETDMA, to_guest_phys(key) };
689 unsigned long udma;
690 u32 *res;
691
692 /* Ask the kernel for a DMA buffer corresponding to this key. */
693 udma = write(fd, buf, sizeof(buf));
694 /* They haven't registered any, or they're all used? */
695 if (udma == (unsigned long)-1)
696 return NULL;
697
698 /* Convert it into our iovec array */
699 res = dma2iov(udma, iov, num);
700 /* The kernel stashes irq in ->used_len to get it out to us. */
701 *irq = *res;
702 /* Return a pointer to ((struct lguest_dma *)udma)->used_len. */
703 return res;
704 }
705
706 /* This is a convenient routine to send the Guest an interrupt. */
707 static void trigger_irq(int fd, u32 irq)
708 {
709 unsigned long buf[] = { LHREQ_IRQ, irq };
710 if (write(fd, buf, sizeof(buf)) != 0)
711 err(1, "Triggering irq %i", irq);
712 }
713
714 /* This simply sets up an iovec array where we can put data to be discarded.
715 * This happens when the Guest doesn't want or can't handle the input: we have
716 * to get rid of it somewhere, and if we bury it in the ceiling space it will
717 * start to smell after a week. */
718 static void discard_iovec(struct iovec *iov, unsigned int *num)
719 {
720 static char discard_buf[1024];
721 *num = 1;
722 iov->iov_base = discard_buf;
723 iov->iov_len = sizeof(discard_buf);
724 }
725
726 /* Here is the input terminal setting we save, and the routine to restore them
727 * on exit so the user can see what they type next. */
728 static struct termios orig_term;
729 static void restore_term(void)
730 {
731 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
732 }
733
734 /* We associate some data with the console for our exit hack. */
735 struct console_abort
736 {
737 /* How many times have they hit ^C? */
738 int count;
739 /* When did they start? */
740 struct timeval start;
741 };
742
743 /* This is the routine which handles console input (ie. stdin). */
744 static bool handle_console_input(int fd, struct device *dev)
745 {
746 u32 irq = 0, *lenp;
747 int len;
748 unsigned int num;
749 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
750 struct console_abort *abort = dev->priv;
751
752 /* First we get the console buffer from the Guest. The key is dev->mem
753 * which was set to 0 in setup_console(). */
754 lenp = get_dma_buffer(fd, dev->mem, iov, &num, &irq);
755 if (!lenp) {
756 /* If it's not ready for input, warn and set up to discard. */
757 warn("console: no dma buffer!");
758 discard_iovec(iov, &num);
759 }
760
761 /* This is why we convert to iovecs: the readv() call uses them, and so
762 * it reads straight into the Guest's buffer. */
763 len = readv(dev->fd, iov, num);
764 if (len <= 0) {
765 /* This implies that the console is closed, is /dev/null, or
766 * something went terribly wrong. We still go through the rest
767 * of the logic, though, especially the exit handling below. */
768 warnx("Failed to get console input, ignoring console.");
769 len = 0;
770 }
771
772 /* If we read the data into the Guest, fill in the length and send the
773 * interrupt. */
774 if (lenp) {
775 *lenp = len;
776 trigger_irq(fd, irq);
777 }
778
779 /* Three ^C within one second? Exit.
780 *
781 * This is such a hack, but works surprisingly well. Each ^C has to be
782 * in a buffer by itself, so they can't be too fast. But we check that
783 * we get three within about a second, so they can't be too slow. */
784 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
785 if (!abort->count++)
786 gettimeofday(&abort->start, NULL);
787 else if (abort->count == 3) {
788 struct timeval now;
789 gettimeofday(&now, NULL);
790 if (now.tv_sec <= abort->start.tv_sec+1) {
791 unsigned long args[] = { LHREQ_BREAK, 0 };
792 /* Close the fd so Waker will know it has to
793 * exit. */
794 close(waker_fd);
795 /* Just in case waker is blocked in BREAK, send
796 * unbreak now. */
797 write(fd, args, sizeof(args));
798 exit(2);
799 }
800 abort->count = 0;
801 }
802 } else
803 /* Any other key resets the abort counter. */
804 abort->count = 0;
805
806 /* Now, if we didn't read anything, put the input terminal back and
807 * return failure (meaning, don't call us again). */
808 if (!len) {
809 restore_term();
810 return false;
811 }
812 /* Everything went OK! */
813 return true;
814 }
815
816 /* Handling console output is much simpler than input. */
817 static u32 handle_console_output(int fd, const struct iovec *iov,
818 unsigned num, struct device*dev)
819 {
820 /* Whatever the Guest sends, write it to standard output. Return the
821 * number of bytes written. */
822 return writev(STDOUT_FILENO, iov, num);
823 }
824
825 /* Guest->Host network output is also pretty easy. */
826 static u32 handle_tun_output(int fd, const struct iovec *iov,
827 unsigned num, struct device *dev)
828 {
829 /* We put a flag in the "priv" pointer of the network device, and set
830 * it as soon as we see output. We'll see why in handle_tun_input() */
831 *(bool *)dev->priv = true;
832 /* Whatever packet the Guest sent us, write it out to the tun
833 * device. */
834 return writev(dev->fd, iov, num);
835 }
836
837 /* This matches the peer_key() in lguest_net.c. The key for any given slot
838 * is the address of the network device's page plus 4 * the slot number. */
839 static unsigned long peer_offset(unsigned int peernum)
840 {
841 return 4 * peernum;
842 }
843
844 /* This is where we handle a packet coming in from the tun device */
845 static bool handle_tun_input(int fd, struct device *dev)
846 {
847 u32 irq = 0, *lenp;
848 int len;
849 unsigned num;
850 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
851
852 /* First we get a buffer the Guest has bound to its key. */
853 lenp = get_dma_buffer(fd, dev->mem+peer_offset(NET_PEERNUM), iov, &num,
854 &irq);
855 if (!lenp) {
856 /* Now, it's expected that if we try to send a packet too
857 * early, the Guest won't be ready yet. This is why we set a
858 * flag when the Guest sends its first packet. If it's sent a
859 * packet we assume it should be ready to receive them.
860 *
861 * Actually, this is what the status bits in the descriptor are
862 * for: we should *use* them. FIXME! */
863 if (*(bool *)dev->priv)
864 warn("network: no dma buffer!");
865 discard_iovec(iov, &num);
866 }
867
868 /* Read the packet from the device directly into the Guest's buffer. */
869 len = readv(dev->fd, iov, num);
870 if (len <= 0)
871 err(1, "reading network");
872
873 /* Write the used_len, and trigger the interrupt for the Guest */
874 if (lenp) {
875 *lenp = len;
876 trigger_irq(fd, irq);
877 }
878 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
879 ((u8 *)iov[0].iov_base)[0], ((u8 *)iov[0].iov_base)[1],
880 lenp ? "sent" : "discarded");
881 /* All good. */
882 return true;
883 }
884
885 /* The last device handling routine is block output: the Guest has sent a DMA
886 * to the block device. It will have placed the command it wants in the
887 * "struct lguest_block_page". */
888 static u32 handle_block_output(int fd, const struct iovec *iov,
889 unsigned num, struct device *dev)
890 {
891 struct lguest_block_page *p = dev->mem;
892 u32 irq, *lenp;
893 unsigned int len, reply_num;
894 struct iovec reply[LGUEST_MAX_DMA_SECTIONS];
895 off64_t device_len, off = (off64_t)p->sector * 512;
896
897 /* First we extract the device length from the dev->priv pointer. */
898 device_len = *(off64_t *)dev->priv;
899
900 /* We first check that the read or write is within the length of the
901 * block file. */
902 if (off >= device_len)
903 errx(1, "Bad offset %llu vs %llu", off, device_len);
904 /* Move to the right location in the block file. This shouldn't fail,
905 * but best to check. */
906 if (lseek64(dev->fd, off, SEEK_SET) != off)
907 err(1, "Bad seek to sector %i", p->sector);
908
909 verbose("Block: %s at offset %llu\n", p->type ? "WRITE" : "READ", off);
910
911 /* They were supposed to bind a reply buffer at key equal to the start
912 * of the block device memory. We need this to tell them when the
913 * request is finished. */
914 lenp = get_dma_buffer(fd, dev->mem, reply, &reply_num, &irq);
915 if (!lenp)
916 err(1, "Block request didn't give us a dma buffer");
917
918 if (p->type) {
919 /* A write request. The DMA they sent contained the data, so
920 * write it out. */
921 len = writev(dev->fd, iov, num);
922 /* Grr... Now we know how long the "struct lguest_dma" they
923 * sent was, we make sure they didn't try to write over the end
924 * of the block file (possibly extending it). */
925 if (off + len > device_len) {
926 /* Trim it back to the correct length */
927 ftruncate64(dev->fd, device_len);
928 /* Die, bad Guest, die. */
929 errx(1, "Write past end %llu+%u", off, len);
930 }
931 /* The reply length is 0: we just send back an empty DMA to
932 * interrupt them and tell them the write is finished. */
933 *lenp = 0;
934 } else {
935 /* A read request. They sent an empty DMA to start the
936 * request, and we put the read contents into the reply
937 * buffer. */
938 len = readv(dev->fd, reply, reply_num);
939 *lenp = len;
940 }
941
942 /* The result is 1 (done), 2 if there was an error (short read or
943 * write). */
944 p->result = 1 + (p->bytes != len);
945 /* Now tell them we've used their reply buffer. */
946 trigger_irq(fd, irq);
947
948 /* We're supposed to return the number of bytes of the output buffer we
949 * used. But the block device uses the "result" field instead, so we
950 * don't bother. */
951 return 0;
952 }
953
954 /* This is the generic routine we call when the Guest sends some DMA out. */
955 static void handle_output(int fd, unsigned long dma, unsigned long key,
956 struct device_list *devices)
957 {
958 struct device *i;
959 u32 *lenp;
960 struct iovec iov[LGUEST_MAX_DMA_SECTIONS];
961 unsigned num = 0;
962
963 /* Convert the "struct lguest_dma" they're sending to a "struct
964 * iovec". */
965 lenp = dma2iov(dma, iov, &num);
966
967 /* Check each device: if they expect output to this key, tell them to
968 * handle it. */
969 for (i = devices->dev; i; i = i->next) {
970 if (i->handle_output && key == i->watch_key) {
971 /* We write the result straight into the used_len field
972 * for them. */
973 *lenp = i->handle_output(fd, iov, num, i);
974 return;
975 }
976 }
977
978 /* This can happen: the kernel sends any SEND_DMA which doesn't match
979 * another Guest to us. It could be that another Guest just left a
980 * network, for example. But it's unusual. */
981 warnx("Pending dma %p, key %p", (void *)dma, (void *)key);
982 }
983
984 /* This is called when the waker wakes us up: check for incoming file
985 * descriptors. */
986 static void handle_input(int fd, struct device_list *devices)
987 {
988 /* select() wants a zeroed timeval to mean "don't wait". */
989 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
990
991 for (;;) {
992 struct device *i;
993 fd_set fds = devices->infds;
994
995 /* If nothing is ready, we're done. */
996 if (select(devices->max_infd+1, &fds, NULL, NULL, &poll) == 0)
997 break;
998
999 /* Otherwise, call the device(s) which have readable
1000 * file descriptors and a method of handling them. */
1001 for (i = devices->dev; i; i = i->next) {
1002 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
1003 /* If handle_input() returns false, it means we
1004 * should no longer service it.
1005 * handle_console_input() does this. */
1006 if (!i->handle_input(fd, i)) {
1007 /* Clear it from the set of input file
1008 * descriptors kept at the head of the
1009 * device list. */
1010 FD_CLR(i->fd, &devices->infds);
1011 /* Tell waker to ignore it too... */
1012 write(waker_fd, &i->fd, sizeof(i->fd));
1013 }
1014 }
1015 }
1016 }
1017 }
1018
1019 /*L:190
1020 * Device Setup
1021 *
1022 * All devices need a descriptor so the Guest knows it exists, and a "struct
1023 * device" so the Launcher can keep track of it. We have common helper
1024 * routines to allocate them.
1025 *
1026 * This routine allocates a new "struct lguest_device_desc" from descriptor
1027 * table in the devices array just above the Guest's normal memory. */
1028 static struct lguest_device_desc *
1029 new_dev_desc(struct lguest_device_desc *descs,
1030 u16 type, u16 features, u16 num_pages)
1031 {
1032 unsigned int i;
1033
1034 for (i = 0; i < LGUEST_MAX_DEVICES; i++) {
1035 if (!descs[i].type) {
1036 descs[i].type = type;
1037 descs[i].features = features;
1038 descs[i].num_pages = num_pages;
1039 /* If they said the device needs memory, we allocate
1040 * that now. */
1041 if (num_pages) {
1042 unsigned long pa;
1043 pa = to_guest_phys(get_pages(num_pages));
1044 descs[i].pfn = pa / getpagesize();
1045 }
1046 return &descs[i];
1047 }
1048 }
1049 errx(1, "too many devices");
1050 }
1051
1052 /* This monster routine does all the creation and setup of a new device,
1053 * including caling new_dev_desc() to allocate the descriptor and device
1054 * memory. */
1055 static struct device *new_device(struct device_list *devices,
1056 u16 type, u16 num_pages, u16 features,
1057 int fd,
1058 bool (*handle_input)(int, struct device *),
1059 unsigned long watch_off,
1060 u32 (*handle_output)(int,
1061 const struct iovec *,
1062 unsigned,
1063 struct device *))
1064 {
1065 struct device *dev = malloc(sizeof(*dev));
1066
1067 /* Append to device list. Prepending to a single-linked list is
1068 * easier, but the user expects the devices to be arranged on the bus
1069 * in command-line order. The first network device on the command line
1070 * is eth0, the first block device /dev/lgba, etc. */
1071 *devices->lastdev = dev;
1072 dev->next = NULL;
1073 devices->lastdev = &dev->next;
1074
1075 /* Now we populate the fields one at a time. */
1076 dev->fd = fd;
1077 /* If we have an input handler for this file descriptor, then we add it
1078 * to the device_list's fdset and maxfd. */
1079 if (handle_input)
1080 set_fd(dev->fd, devices);
1081 dev->desc = new_dev_desc(devices->descs, type, features, num_pages);
1082 dev->mem = from_guest_phys(dev->desc->pfn * getpagesize());
1083 dev->handle_input = handle_input;
1084 dev->watch_key = to_guest_phys(dev->mem) + watch_off;
1085 dev->handle_output = handle_output;
1086 return dev;
1087 }
1088
1089 /* Our first setup routine is the console. It's a fairly simple device, but
1090 * UNIX tty handling makes it uglier than it could be. */
1091 static void setup_console(struct device_list *devices)
1092 {
1093 struct device *dev;
1094
1095 /* If we can save the initial standard input settings... */
1096 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1097 struct termios term = orig_term;
1098 /* Then we turn off echo, line buffering and ^C etc. We want a
1099 * raw input stream to the Guest. */
1100 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1101 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1102 /* If we exit gracefully, the original settings will be
1103 * restored so the user can see what they're typing. */
1104 atexit(restore_term);
1105 }
1106
1107 /* We don't currently require any memory for the console, so we ask for
1108 * 0 pages. */
1109 dev = new_device(devices, LGUEST_DEVICE_T_CONSOLE, 0, 0,
1110 STDIN_FILENO, handle_console_input,
1111 LGUEST_CONSOLE_DMA_KEY, handle_console_output);
1112 /* We store the console state in dev->priv, and initialize it. */
1113 dev->priv = malloc(sizeof(struct console_abort));
1114 ((struct console_abort *)dev->priv)->count = 0;
1115 verbose("device %p: console\n",
1116 (void *)(dev->desc->pfn * getpagesize()));
1117 }
1118
1119 /* Setting up a block file is also fairly straightforward. */
1120 static void setup_block_file(const char *filename, struct device_list *devices)
1121 {
1122 int fd;
1123 struct device *dev;
1124 off64_t *device_len;
1125 struct lguest_block_page *p;
1126
1127 /* We open with O_LARGEFILE because otherwise we get stuck at 2G. We
1128 * open with O_DIRECT because otherwise our benchmarks go much too
1129 * fast. */
1130 fd = open_or_die(filename, O_RDWR|O_LARGEFILE|O_DIRECT);
1131
1132 /* We want one page, and have no input handler (the block file never
1133 * has anything interesting to say to us). Our timing will be quite
1134 * random, so it should be a reasonable randomness source. */
1135 dev = new_device(devices, LGUEST_DEVICE_T_BLOCK, 1,
1136 LGUEST_DEVICE_F_RANDOMNESS,
1137 fd, NULL, 0, handle_block_output);
1138
1139 /* We store the device size in the private area */
1140 device_len = dev->priv = malloc(sizeof(*device_len));
1141 /* This is the safe way of establishing the size of our device: it
1142 * might be a normal file or an actual block device like /dev/hdb. */
1143 *device_len = lseek64(fd, 0, SEEK_END);
1144
1145 /* The device memory is a "struct lguest_block_page". It's zeroed
1146 * already, we just need to put in the device size. Block devices
1147 * think in sectors (ie. 512 byte chunks), so we translate here. */
1148 p = dev->mem;
1149 p->num_sectors = *device_len/512;
1150 verbose("device %p: block %i sectors\n",
1151 (void *)(dev->desc->pfn * getpagesize()), p->num_sectors);
1152 }
1153
1154 /*
1155 * Network Devices.
1156 *
1157 * Setting up network devices is quite a pain, because we have three types.
1158 * First, we have the inter-Guest network. This is a file which is mapped into
1159 * the address space of the Guests who are on the network. Because it is a
1160 * shared mapping, the same page underlies all the devices, and they can send
1161 * DMA to each other.
1162 *
1163 * Remember from our network driver, the Guest is told what slot in the page it
1164 * is to use. We use exclusive fnctl locks to reserve a slot. If another
1165 * Guest is using a slot, the lock will fail and we try another. Because fnctl
1166 * locks are cleaned up automatically when we die, this cleverly means that our
1167 * reservation on the slot will vanish if we crash. */
1168 static unsigned int find_slot(int netfd, const char *filename)
1169 {
1170 struct flock fl;
1171
1172 fl.l_type = F_WRLCK;
1173 fl.l_whence = SEEK_SET;
1174 fl.l_len = 1;
1175 /* Try a 1 byte lock in each possible position number */
1176 for (fl.l_start = 0;
1177 fl.l_start < getpagesize()/sizeof(struct lguest_net);
1178 fl.l_start++) {
1179 /* If we succeed, return the slot number. */
1180 if (fcntl(netfd, F_SETLK, &fl) == 0)
1181 return fl.l_start;
1182 }
1183 errx(1, "No free slots in network file %s", filename);
1184 }
1185
1186 /* This function sets up the network file */
1187 static void setup_net_file(const char *filename,
1188 struct device_list *devices)
1189 {
1190 int netfd;
1191 struct device *dev;
1192
1193 /* We don't use open_or_die() here: for friendliness we create the file
1194 * if it doesn't already exist. */
1195 netfd = open(filename, O_RDWR, 0);
1196 if (netfd < 0) {
1197 if (errno == ENOENT) {
1198 netfd = open(filename, O_RDWR|O_CREAT, 0600);
1199 if (netfd >= 0) {
1200 /* If we succeeded, initialize the file with a
1201 * blank page. */
1202 char page[getpagesize()];
1203 memset(page, 0, sizeof(page));
1204 write(netfd, page, sizeof(page));
1205 }
1206 }
1207 if (netfd < 0)
1208 err(1, "cannot open net file '%s'", filename);
1209 }
1210
1211 /* We need 1 page, and the features indicate the slot to use and that
1212 * no checksum is needed. We never touch this device again; it's
1213 * between the Guests on the network, so we don't register input or
1214 * output handlers. */
1215 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
1216 find_slot(netfd, filename)|LGUEST_NET_F_NOCSUM,
1217 -1, NULL, 0, NULL);
1218
1219 /* Map the shared file. */
1220 if (mmap(dev->mem, getpagesize(), PROT_READ|PROT_WRITE,
1221 MAP_FIXED|MAP_SHARED, netfd, 0) != dev->mem)
1222 err(1, "could not mmap '%s'", filename);
1223 verbose("device %p: shared net %s, peer %i\n",
1224 (void *)(dev->desc->pfn * getpagesize()), filename,
1225 dev->desc->features & ~LGUEST_NET_F_NOCSUM);
1226 }
1227 /*:*/
1228
1229 static u32 str2ip(const char *ipaddr)
1230 {
1231 unsigned int byte[4];
1232
1233 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1234 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1235 }
1236
1237 /* This code is "adapted" from libbridge: it attaches the Host end of the
1238 * network device to the bridge device specified by the command line.
1239 *
1240 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1241 * dislike bridging), and I just try not to break it. */
1242 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1243 {
1244 int ifidx;
1245 struct ifreq ifr;
1246
1247 if (!*br_name)
1248 errx(1, "must specify bridge name");
1249
1250 ifidx = if_nametoindex(if_name);
1251 if (!ifidx)
1252 errx(1, "interface %s does not exist!", if_name);
1253
1254 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1255 ifr.ifr_ifindex = ifidx;
1256 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1257 err(1, "can't add %s to bridge %s", if_name, br_name);
1258 }
1259
1260 /* This sets up the Host end of the network device with an IP address, brings
1261 * it up so packets will flow, the copies the MAC address into the hwaddr
1262 * pointer (in practice, the Host's slot in the network device's memory). */
1263 static void configure_device(int fd, const char *devname, u32 ipaddr,
1264 unsigned char hwaddr[6])
1265 {
1266 struct ifreq ifr;
1267 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1268
1269 /* Don't read these incantations. Just cut & paste them like I did! */
1270 memset(&ifr, 0, sizeof(ifr));
1271 strcpy(ifr.ifr_name, devname);
1272 sin->sin_family = AF_INET;
1273 sin->sin_addr.s_addr = htonl(ipaddr);
1274 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1275 err(1, "Setting %s interface address", devname);
1276 ifr.ifr_flags = IFF_UP;
1277 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1278 err(1, "Bringing interface %s up", devname);
1279
1280 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1281 * above). IF means Interface, and HWADDR is hardware address.
1282 * Simple! */
1283 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1284 err(1, "getting hw address for %s", devname);
1285 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1286 }
1287
1288 /*L:195 The other kind of network is a Host<->Guest network. This can either
1289 * use briding or routing, but the principle is the same: it uses the "tun"
1290 * device to inject packets into the Host as if they came in from a normal
1291 * network card. We just shunt packets between the Guest and the tun
1292 * device. */
1293 static void setup_tun_net(const char *arg, struct device_list *devices)
1294 {
1295 struct device *dev;
1296 struct ifreq ifr;
1297 int netfd, ipfd;
1298 u32 ip;
1299 const char *br_name = NULL;
1300
1301 /* We open the /dev/net/tun device and tell it we want a tap device. A
1302 * tap device is like a tun device, only somehow different. To tell
1303 * the truth, I completely blundered my way through this code, but it
1304 * works now! */
1305 netfd = open_or_die("/dev/net/tun", O_RDWR);
1306 memset(&ifr, 0, sizeof(ifr));
1307 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1308 strcpy(ifr.ifr_name, "tap%d");
1309 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1310 err(1, "configuring /dev/net/tun");
1311 /* We don't need checksums calculated for packets coming in this
1312 * device: trust us! */
1313 ioctl(netfd, TUNSETNOCSUM, 1);
1314
1315 /* We create the net device with 1 page, using the features field of
1316 * the descriptor to tell the Guest it is in slot 1 (NET_PEERNUM), and
1317 * that the device has fairly random timing. We do *not* specify
1318 * LGUEST_NET_F_NOCSUM: these packets can reach the real world.
1319 *
1320 * We will put our MAC address is slot 0 for the Guest to see, so
1321 * it will send packets to us using the key "peer_offset(0)": */
1322 dev = new_device(devices, LGUEST_DEVICE_T_NET, 1,
1323 NET_PEERNUM|LGUEST_DEVICE_F_RANDOMNESS, netfd,
1324 handle_tun_input, peer_offset(0), handle_tun_output);
1325
1326 /* We keep a flag which says whether we've seen packets come out from
1327 * this network device. */
1328 dev->priv = malloc(sizeof(bool));
1329 *(bool *)dev->priv = false;
1330
1331 /* We need a socket to perform the magic network ioctls to bring up the
1332 * tap interface, connect to the bridge etc. Any socket will do! */
1333 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1334 if (ipfd < 0)
1335 err(1, "opening IP socket");
1336
1337 /* If the command line was --tunnet=bridge:<name> do bridging. */
1338 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1339 ip = INADDR_ANY;
1340 br_name = arg + strlen(BRIDGE_PFX);
1341 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1342 } else /* It is an IP address to set up the device with */
1343 ip = str2ip(arg);
1344
1345 /* We are peer 0, ie. first slot, so we hand dev->mem to this routine
1346 * to write the MAC address at the start of the device memory. */
1347 configure_device(ipfd, ifr.ifr_name, ip, dev->mem);
1348
1349 /* Set "promisc" bit: we want every single packet if we're going to
1350 * bridge to other machines (and otherwise it doesn't matter). */
1351 *((u8 *)dev->mem) |= 0x1;
1352
1353 close(ipfd);
1354
1355 verbose("device %p: tun net %u.%u.%u.%u\n",
1356 (void *)(dev->desc->pfn * getpagesize()),
1357 (u8)(ip>>24), (u8)(ip>>16), (u8)(ip>>8), (u8)ip);
1358 if (br_name)
1359 verbose("attached to bridge: %s\n", br_name);
1360 }
1361 /* That's the end of device setup. */
1362
1363 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1364 * its input and output, and finally, lays it to rest. */
1365 static void __attribute__((noreturn))
1366 run_guest(int lguest_fd, struct device_list *device_list)
1367 {
1368 for (;;) {
1369 unsigned long args[] = { LHREQ_BREAK, 0 };
1370 unsigned long arr[2];
1371 int readval;
1372
1373 /* We read from the /dev/lguest device to run the Guest. */
1374 readval = read(lguest_fd, arr, sizeof(arr));
1375
1376 /* The read can only really return sizeof(arr) (the Guest did a
1377 * SEND_DMA to us), or an error. */
1378
1379 /* For a successful read, arr[0] is the address of the "struct
1380 * lguest_dma", and arr[1] is the key the Guest sent to. */
1381 if (readval == sizeof(arr)) {
1382 handle_output(lguest_fd, arr[0], arr[1], device_list);
1383 continue;
1384 /* ENOENT means the Guest died. Reading tells us why. */
1385 } else if (errno == ENOENT) {
1386 char reason[1024] = { 0 };
1387 read(lguest_fd, reason, sizeof(reason)-1);
1388 errx(1, "%s", reason);
1389 /* EAGAIN means the waker wanted us to look at some input.
1390 * Anything else means a bug or incompatible change. */
1391 } else if (errno != EAGAIN)
1392 err(1, "Running guest failed");
1393
1394 /* Service input, then unset the BREAK which releases
1395 * the Waker. */
1396 handle_input(lguest_fd, device_list);
1397 if (write(lguest_fd, args, sizeof(args)) < 0)
1398 err(1, "Resetting break");
1399 }
1400 }
1401 /*
1402 * This is the end of the Launcher.
1403 *
1404 * But wait! We've seen I/O from the Launcher, and we've seen I/O from the
1405 * Drivers. If we were to see the Host kernel I/O code, our understanding
1406 * would be complete... :*/
1407
1408 static struct option opts[] = {
1409 { "verbose", 0, NULL, 'v' },
1410 { "sharenet", 1, NULL, 's' },
1411 { "tunnet", 1, NULL, 't' },
1412 { "block", 1, NULL, 'b' },
1413 { "initrd", 1, NULL, 'i' },
1414 { NULL },
1415 };
1416 static void usage(void)
1417 {
1418 errx(1, "Usage: lguest [--verbose] "
1419 "[--sharenet=<filename>|--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1420 "|--block=<filename>|--initrd=<filename>]...\n"
1421 "<mem-in-mb> vmlinux [args...]");
1422 }
1423
1424 /*L:105 The main routine is where the real work begins: */
1425 int main(int argc, char *argv[])
1426 {
1427 /* Memory, top-level pagetable, code startpoint, PAGE_OFFSET and size
1428 * of the (optional) initrd. */
1429 unsigned long mem = 0, pgdir, start, page_offset, initrd_size = 0;
1430 /* A temporary and the /dev/lguest file descriptor. */
1431 int i, c, lguest_fd;
1432 /* The list of Guest devices, based on command line arguments. */
1433 struct device_list device_list;
1434 /* The boot information for the Guest. */
1435 void *boot;
1436 /* If they specify an initrd file to load. */
1437 const char *initrd_name = NULL;
1438
1439 /* First we initialize the device list. Since console and network
1440 * device receive input from a file descriptor, we keep an fdset
1441 * (infds) and the maximum fd number (max_infd) with the head of the
1442 * list. We also keep a pointer to the last device, for easy appending
1443 * to the list. */
1444 device_list.max_infd = -1;
1445 device_list.dev = NULL;
1446 device_list.lastdev = &device_list.dev;
1447 FD_ZERO(&device_list.infds);
1448
1449 /* We need to know how much memory so we can set up the device
1450 * descriptor and memory pages for the devices as we parse the command
1451 * line. So we quickly look through the arguments to find the amount
1452 * of memory now. */
1453 for (i = 1; i < argc; i++) {
1454 if (argv[i][0] != '-') {
1455 mem = atoi(argv[i]) * 1024 * 1024;
1456 /* We start by mapping anonymous pages over all of
1457 * guest-physical memory range. This fills it with 0,
1458 * and ensures that the Guest won't be killed when it
1459 * tries to access it. */
1460 guest_base = map_zeroed_pages(mem / getpagesize()
1461 + DEVICE_PAGES);
1462 guest_limit = mem;
1463 guest_max = mem + DEVICE_PAGES*getpagesize();
1464 device_list.descs = get_pages(1);
1465 break;
1466 }
1467 }
1468
1469 /* The options are fairly straight-forward */
1470 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1471 switch (c) {
1472 case 'v':
1473 verbose = true;
1474 break;
1475 case 's':
1476 setup_net_file(optarg, &device_list);
1477 break;
1478 case 't':
1479 setup_tun_net(optarg, &device_list);
1480 break;
1481 case 'b':
1482 setup_block_file(optarg, &device_list);
1483 break;
1484 case 'i':
1485 initrd_name = optarg;
1486 break;
1487 default:
1488 warnx("Unknown argument %s", argv[optind]);
1489 usage();
1490 }
1491 }
1492 /* After the other arguments we expect memory and kernel image name,
1493 * followed by command line arguments for the kernel. */
1494 if (optind + 2 > argc)
1495 usage();
1496
1497 verbose("Guest base is at %p\n", guest_base);
1498
1499 /* We always have a console device */
1500 setup_console(&device_list);
1501
1502 /* Now we load the kernel */
1503 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY),
1504 &page_offset);
1505
1506 /* Boot information is stashed at physical address 0 */
1507 boot = from_guest_phys(0);
1508
1509 /* Map the initrd image if requested (at top of physical memory) */
1510 if (initrd_name) {
1511 initrd_size = load_initrd(initrd_name, mem);
1512 /* These are the location in the Linux boot header where the
1513 * start and size of the initrd are expected to be found. */
1514 *(unsigned long *)(boot+0x218) = mem - initrd_size;
1515 *(unsigned long *)(boot+0x21c) = initrd_size;
1516 /* The bootloader type 0xFF means "unknown"; that's OK. */
1517 *(unsigned char *)(boot+0x210) = 0xFF;
1518 }
1519
1520 /* Set up the initial linear pagetables, starting below the initrd. */
1521 pgdir = setup_pagetables(mem, initrd_size, page_offset);
1522
1523 /* The Linux boot header contains an "E820" memory map: ours is a
1524 * simple, single region. */
1525 *(char*)(boot+E820NR) = 1;
1526 *((struct e820entry *)(boot+E820MAP))
1527 = ((struct e820entry) { 0, mem, E820_RAM });
1528 /* The boot header contains a command line pointer: we put the command
1529 * line after the boot header (at address 4096) */
1530 *(u32 *)(boot + 0x228) = 4096;
1531 concat(boot + 4096, argv+optind+2);
1532
1533 /* The guest type value of "1" tells the Guest it's under lguest. */
1534 *(int *)(boot + 0x23c) = 1;
1535
1536 /* We tell the kernel to initialize the Guest: this returns the open
1537 * /dev/lguest file descriptor. */
1538 lguest_fd = tell_kernel(pgdir, start, page_offset);
1539
1540 /* We fork off a child process, which wakes the Launcher whenever one
1541 * of the input file descriptors needs attention. Otherwise we would
1542 * run the Guest until it tries to output something. */
1543 waker_fd = setup_waker(lguest_fd, &device_list);
1544
1545 /* Finally, run the Guest. This doesn't return. */
1546 run_guest(lguest_fd, &device_list);
1547 }
1548 /*:*/
1549
1550 /*M:999
1551 * Mastery is done: you now know everything I do.
1552 *
1553 * But surely you have seen code, features and bugs in your wanderings which
1554 * you now yearn to attack? That is the real game, and I look forward to you
1555 * patching and forking lguest into the Your-Name-Here-visor.
1556 *
1557 * Farewell, and good coding!
1558 * Rusty Russell.
1559 */
This page took 0.066037 seconds and 6 git commands to generate.