Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[deliverable/linux.git] / arch / alpha / kernel / time.c
1 /*
2 * linux/arch/alpha/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995, 1999, 2000 Linus Torvalds
5 *
6 * This file contains the PC-specific time handling details:
7 * reading the RTC at bootup, etc..
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1995-03-26 Markus Kuhn
11 * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
12 * precision CMOS clock update
13 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
14 * "A Kernel Model for Precision Timekeeping" by Dave Mills
15 * 1997-01-09 Adrian Sun
16 * use interval timer if CONFIG_RTC=y
17 * 1997-10-29 John Bowman (bowman@math.ualberta.ca)
18 * fixed tick loss calculation in timer_interrupt
19 * (round system clock to nearest tick instead of truncating)
20 * fixed algorithm in time_init for getting time from CMOS clock
21 * 1999-04-16 Thorsten Kranzkowski (dl8bcu@gmx.net)
22 * fixed algorithm in do_gettimeofday() for calculating the precise time
23 * from processor cycle counter (now taking lost_ticks into account)
24 * 2000-08-13 Jan-Benedict Glaw <jbglaw@lug-owl.de>
25 * Fixed time_init to be aware of epoches != 1900. This prevents
26 * booting up in 2048 for me;) Code is stolen from rtc.c.
27 * 2003-06-03 R. Scott Bailey <scott.bailey@eds.com>
28 * Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
29 */
30 #include <linux/errno.h>
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/param.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/delay.h>
38 #include <linux/ioport.h>
39 #include <linux/irq.h>
40 #include <linux/interrupt.h>
41 #include <linux/init.h>
42 #include <linux/bcd.h>
43 #include <linux/profile.h>
44 #include <linux/irq_work.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/io.h>
48 #include <asm/hwrpb.h>
49 #include <asm/rtc.h>
50
51 #include <linux/mc146818rtc.h>
52 #include <linux/time.h>
53 #include <linux/timex.h>
54 #include <linux/clocksource.h>
55
56 #include "proto.h"
57 #include "irq_impl.h"
58
59 static int set_rtc_mmss(unsigned long);
60
61 DEFINE_SPINLOCK(rtc_lock);
62 EXPORT_SYMBOL(rtc_lock);
63
64 #define TICK_SIZE (tick_nsec / 1000)
65
66 /*
67 * Shift amount by which scaled_ticks_per_cycle is scaled. Shifting
68 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
69 * for large CPU clock rates.
70 */
71 #define FIX_SHIFT 48
72
73 /* lump static variables together for more efficient access: */
74 static struct {
75 /* cycle counter last time it got invoked */
76 __u32 last_time;
77 /* ticks/cycle * 2^48 */
78 unsigned long scaled_ticks_per_cycle;
79 /* partial unused tick */
80 unsigned long partial_tick;
81 } state;
82
83 unsigned long est_cycle_freq;
84
85 #ifdef CONFIG_IRQ_WORK
86
87 DEFINE_PER_CPU(u8, irq_work_pending);
88
89 #define set_irq_work_pending_flag() __get_cpu_var(irq_work_pending) = 1
90 #define test_irq_work_pending() __get_cpu_var(irq_work_pending)
91 #define clear_irq_work_pending() __get_cpu_var(irq_work_pending) = 0
92
93 void arch_irq_work_raise(void)
94 {
95 set_irq_work_pending_flag();
96 }
97
98 #else /* CONFIG_IRQ_WORK */
99
100 #define test_irq_work_pending() 0
101 #define clear_irq_work_pending()
102
103 #endif /* CONFIG_IRQ_WORK */
104
105
106 static inline __u32 rpcc(void)
107 {
108 return __builtin_alpha_rpcc();
109 }
110
111 int update_persistent_clock(struct timespec now)
112 {
113 return set_rtc_mmss(now.tv_sec);
114 }
115
116 void read_persistent_clock(struct timespec *ts)
117 {
118 unsigned int year, mon, day, hour, min, sec, epoch;
119
120 sec = CMOS_READ(RTC_SECONDS);
121 min = CMOS_READ(RTC_MINUTES);
122 hour = CMOS_READ(RTC_HOURS);
123 day = CMOS_READ(RTC_DAY_OF_MONTH);
124 mon = CMOS_READ(RTC_MONTH);
125 year = CMOS_READ(RTC_YEAR);
126
127 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
128 sec = bcd2bin(sec);
129 min = bcd2bin(min);
130 hour = bcd2bin(hour);
131 day = bcd2bin(day);
132 mon = bcd2bin(mon);
133 year = bcd2bin(year);
134 }
135
136 /* PC-like is standard; used for year >= 70 */
137 epoch = 1900;
138 if (year < 20)
139 epoch = 2000;
140 else if (year >= 20 && year < 48)
141 /* NT epoch */
142 epoch = 1980;
143 else if (year >= 48 && year < 70)
144 /* Digital UNIX epoch */
145 epoch = 1952;
146
147 printk(KERN_INFO "Using epoch = %d\n", epoch);
148
149 if ((year += epoch) < 1970)
150 year += 100;
151
152 ts->tv_sec = mktime(year, mon, day, hour, min, sec);
153 ts->tv_nsec = 0;
154 }
155
156
157
158 /*
159 * timer_interrupt() needs to keep up the real-time clock,
160 * as well as call the "xtime_update()" routine every clocktick
161 */
162 irqreturn_t timer_interrupt(int irq, void *dev)
163 {
164 unsigned long delta;
165 __u32 now;
166 long nticks;
167
168 #ifndef CONFIG_SMP
169 /* Not SMP, do kernel PC profiling here. */
170 profile_tick(CPU_PROFILING);
171 #endif
172
173 /*
174 * Calculate how many ticks have passed since the last update,
175 * including any previous partial leftover. Save any resulting
176 * fraction for the next pass.
177 */
178 now = rpcc();
179 delta = now - state.last_time;
180 state.last_time = now;
181 delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
182 state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1);
183 nticks = delta >> FIX_SHIFT;
184
185 if (nticks)
186 xtime_update(nticks);
187
188 if (test_irq_work_pending()) {
189 clear_irq_work_pending();
190 irq_work_run();
191 }
192
193 #ifndef CONFIG_SMP
194 while (nticks--)
195 update_process_times(user_mode(get_irq_regs()));
196 #endif
197
198 return IRQ_HANDLED;
199 }
200
201 void __init
202 common_init_rtc(void)
203 {
204 unsigned char x;
205
206 /* Reset periodic interrupt frequency. */
207 x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
208 /* Test includes known working values on various platforms
209 where 0x26 is wrong; we refuse to change those. */
210 if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
211 printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
212 CMOS_WRITE(0x26, RTC_FREQ_SELECT);
213 }
214
215 /* Turn on periodic interrupts. */
216 x = CMOS_READ(RTC_CONTROL);
217 if (!(x & RTC_PIE)) {
218 printk("Turning on RTC interrupts.\n");
219 x |= RTC_PIE;
220 x &= ~(RTC_AIE | RTC_UIE);
221 CMOS_WRITE(x, RTC_CONTROL);
222 }
223 (void) CMOS_READ(RTC_INTR_FLAGS);
224
225 outb(0x36, 0x43); /* pit counter 0: system timer */
226 outb(0x00, 0x40);
227 outb(0x00, 0x40);
228
229 outb(0xb6, 0x43); /* pit counter 2: speaker */
230 outb(0x31, 0x42);
231 outb(0x13, 0x42);
232
233 init_rtc_irq();
234 }
235
236 unsigned int common_get_rtc_time(struct rtc_time *time)
237 {
238 return __get_rtc_time(time);
239 }
240
241 int common_set_rtc_time(struct rtc_time *time)
242 {
243 return __set_rtc_time(time);
244 }
245
246 /* Validate a computed cycle counter result against the known bounds for
247 the given processor core. There's too much brokenness in the way of
248 timing hardware for any one method to work everywhere. :-(
249
250 Return 0 if the result cannot be trusted, otherwise return the argument. */
251
252 static unsigned long __init
253 validate_cc_value(unsigned long cc)
254 {
255 static struct bounds {
256 unsigned int min, max;
257 } cpu_hz[] __initdata = {
258 [EV3_CPU] = { 50000000, 200000000 }, /* guess */
259 [EV4_CPU] = { 100000000, 300000000 },
260 [LCA4_CPU] = { 100000000, 300000000 }, /* guess */
261 [EV45_CPU] = { 200000000, 300000000 },
262 [EV5_CPU] = { 250000000, 433000000 },
263 [EV56_CPU] = { 333000000, 667000000 },
264 [PCA56_CPU] = { 400000000, 600000000 }, /* guess */
265 [PCA57_CPU] = { 500000000, 600000000 }, /* guess */
266 [EV6_CPU] = { 466000000, 600000000 },
267 [EV67_CPU] = { 600000000, 750000000 },
268 [EV68AL_CPU] = { 750000000, 940000000 },
269 [EV68CB_CPU] = { 1000000000, 1333333333 },
270 /* None of the following are shipping as of 2001-11-01. */
271 [EV68CX_CPU] = { 1000000000, 1700000000 }, /* guess */
272 [EV69_CPU] = { 1000000000, 1700000000 }, /* guess */
273 [EV7_CPU] = { 800000000, 1400000000 }, /* guess */
274 [EV79_CPU] = { 1000000000, 2000000000 }, /* guess */
275 };
276
277 /* Allow for some drift in the crystal. 10MHz is more than enough. */
278 const unsigned int deviation = 10000000;
279
280 struct percpu_struct *cpu;
281 unsigned int index;
282
283 cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
284 index = cpu->type & 0xffffffff;
285
286 /* If index out of bounds, no way to validate. */
287 if (index >= ARRAY_SIZE(cpu_hz))
288 return cc;
289
290 /* If index contains no data, no way to validate. */
291 if (cpu_hz[index].max == 0)
292 return cc;
293
294 if (cc < cpu_hz[index].min - deviation
295 || cc > cpu_hz[index].max + deviation)
296 return 0;
297
298 return cc;
299 }
300
301
302 /*
303 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
304 * arch/i386/time.c.
305 */
306
307 #define CALIBRATE_LATCH 0xffff
308 #define TIMEOUT_COUNT 0x100000
309
310 static unsigned long __init
311 calibrate_cc_with_pit(void)
312 {
313 int cc, count = 0;
314
315 /* Set the Gate high, disable speaker */
316 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
317
318 /*
319 * Now let's take care of CTC channel 2
320 *
321 * Set the Gate high, program CTC channel 2 for mode 0,
322 * (interrupt on terminal count mode), binary count,
323 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
324 */
325 outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
326 outb(CALIBRATE_LATCH & 0xff, 0x42); /* LSB of count */
327 outb(CALIBRATE_LATCH >> 8, 0x42); /* MSB of count */
328
329 cc = rpcc();
330 do {
331 count++;
332 } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
333 cc = rpcc() - cc;
334
335 /* Error: ECTCNEVERSET or ECPUTOOFAST. */
336 if (count <= 1 || count == TIMEOUT_COUNT)
337 return 0;
338
339 return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
340 }
341
342 /* The Linux interpretation of the CMOS clock register contents:
343 When the Update-In-Progress (UIP) flag goes from 1 to 0, the
344 RTC registers show the second which has precisely just started.
345 Let's hope other operating systems interpret the RTC the same way. */
346
347 static unsigned long __init
348 rpcc_after_update_in_progress(void)
349 {
350 do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
351 do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
352
353 return rpcc();
354 }
355
356 #ifndef CONFIG_SMP
357 /* Until and unless we figure out how to get cpu cycle counters
358 in sync and keep them there, we can't use the rpcc. */
359 static cycle_t read_rpcc(struct clocksource *cs)
360 {
361 cycle_t ret = (cycle_t)rpcc();
362 return ret;
363 }
364
365 static struct clocksource clocksource_rpcc = {
366 .name = "rpcc",
367 .rating = 300,
368 .read = read_rpcc,
369 .mask = CLOCKSOURCE_MASK(32),
370 .flags = CLOCK_SOURCE_IS_CONTINUOUS
371 };
372
373 static inline void register_rpcc_clocksource(long cycle_freq)
374 {
375 clocksource_register_hz(&clocksource_rpcc, cycle_freq);
376 }
377 #else /* !CONFIG_SMP */
378 static inline void register_rpcc_clocksource(long cycle_freq)
379 {
380 }
381 #endif /* !CONFIG_SMP */
382
383 void __init
384 time_init(void)
385 {
386 unsigned int cc1, cc2;
387 unsigned long cycle_freq, tolerance;
388 long diff;
389
390 /* Calibrate CPU clock -- attempt #1. */
391 if (!est_cycle_freq)
392 est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
393
394 cc1 = rpcc();
395
396 /* Calibrate CPU clock -- attempt #2. */
397 if (!est_cycle_freq) {
398 cc1 = rpcc_after_update_in_progress();
399 cc2 = rpcc_after_update_in_progress();
400 est_cycle_freq = validate_cc_value(cc2 - cc1);
401 cc1 = cc2;
402 }
403
404 cycle_freq = hwrpb->cycle_freq;
405 if (est_cycle_freq) {
406 /* If the given value is within 250 PPM of what we calculated,
407 accept it. Otherwise, use what we found. */
408 tolerance = cycle_freq / 4000;
409 diff = cycle_freq - est_cycle_freq;
410 if (diff < 0)
411 diff = -diff;
412 if ((unsigned long)diff > tolerance) {
413 cycle_freq = est_cycle_freq;
414 printk("HWRPB cycle frequency bogus. "
415 "Estimated %lu Hz\n", cycle_freq);
416 } else {
417 est_cycle_freq = 0;
418 }
419 } else if (! validate_cc_value (cycle_freq)) {
420 printk("HWRPB cycle frequency bogus, "
421 "and unable to estimate a proper value!\n");
422 }
423
424 /* From John Bowman <bowman@math.ualberta.ca>: allow the values
425 to settle, as the Update-In-Progress bit going low isn't good
426 enough on some hardware. 2ms is our guess; we haven't found
427 bogomips yet, but this is close on a 500Mhz box. */
428 __delay(1000000);
429
430
431 if (HZ > (1<<16)) {
432 extern void __you_loose (void);
433 __you_loose();
434 }
435
436 register_rpcc_clocksource(cycle_freq);
437
438 state.last_time = cc1;
439 state.scaled_ticks_per_cycle
440 = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
441 state.partial_tick = 0L;
442
443 /* Startup the timer source. */
444 alpha_mv.init_rtc();
445 }
446
447 /*
448 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
449 * called 500 ms after the second nowtime has started, because when
450 * nowtime is written into the registers of the CMOS clock, it will
451 * jump to the next second precisely 500 ms later. Check the Motorola
452 * MC146818A or Dallas DS12887 data sheet for details.
453 *
454 * BUG: This routine does not handle hour overflow properly; it just
455 * sets the minutes. Usually you won't notice until after reboot!
456 */
457
458
459 static int
460 set_rtc_mmss(unsigned long nowtime)
461 {
462 int retval = 0;
463 int real_seconds, real_minutes, cmos_minutes;
464 unsigned char save_control, save_freq_select;
465
466 /* irq are locally disabled here */
467 spin_lock(&rtc_lock);
468 /* Tell the clock it's being set */
469 save_control = CMOS_READ(RTC_CONTROL);
470 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
471
472 /* Stop and reset prescaler */
473 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
474 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
475
476 cmos_minutes = CMOS_READ(RTC_MINUTES);
477 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
478 cmos_minutes = bcd2bin(cmos_minutes);
479
480 /*
481 * since we're only adjusting minutes and seconds,
482 * don't interfere with hour overflow. This avoids
483 * messing with unknown time zones but requires your
484 * RTC not to be off by more than 15 minutes
485 */
486 real_seconds = nowtime % 60;
487 real_minutes = nowtime / 60;
488 if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
489 /* correct for half hour time zone */
490 real_minutes += 30;
491 }
492 real_minutes %= 60;
493
494 if (abs(real_minutes - cmos_minutes) < 30) {
495 if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
496 real_seconds = bin2bcd(real_seconds);
497 real_minutes = bin2bcd(real_minutes);
498 }
499 CMOS_WRITE(real_seconds,RTC_SECONDS);
500 CMOS_WRITE(real_minutes,RTC_MINUTES);
501 } else {
502 printk_once(KERN_NOTICE
503 "set_rtc_mmss: can't update from %d to %d\n",
504 cmos_minutes, real_minutes);
505 retval = -1;
506 }
507
508 /* The following flags have to be released exactly in this order,
509 * otherwise the DS12887 (popular MC146818A clone with integrated
510 * battery and quartz) will not reset the oscillator and will not
511 * update precisely 500 ms later. You won't find this mentioned in
512 * the Dallas Semiconductor data sheets, but who believes data
513 * sheets anyway ... -- Markus Kuhn
514 */
515 CMOS_WRITE(save_control, RTC_CONTROL);
516 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
517 spin_unlock(&rtc_lock);
518
519 return retval;
520 }
This page took 0.063759 seconds and 6 git commands to generate.