Merge branch 'drm-next' of git://people.freedesktop.org/~airlied/linux
[deliverable/linux.git] / arch / arm / common / bL_switcher.c
1 /*
2 * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver
3 *
4 * Created by: Nicolas Pitre, March 2012
5 * Copyright: (C) 2012-2013 Linaro Limited
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #include <linux/atomic.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/cpu_pm.h>
19 #include <linux/cpu.h>
20 #include <linux/cpumask.h>
21 #include <linux/kthread.h>
22 #include <linux/wait.h>
23 #include <linux/time.h>
24 #include <linux/clockchips.h>
25 #include <linux/hrtimer.h>
26 #include <linux/tick.h>
27 #include <linux/notifier.h>
28 #include <linux/mm.h>
29 #include <linux/mutex.h>
30 #include <linux/smp.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 #include <linux/sysfs.h>
34 #include <linux/irqchip/arm-gic.h>
35 #include <linux/moduleparam.h>
36
37 #include <asm/smp_plat.h>
38 #include <asm/cputype.h>
39 #include <asm/suspend.h>
40 #include <asm/mcpm.h>
41 #include <asm/bL_switcher.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/power_cpu_migrate.h>
45
46
47 /*
48 * Use our own MPIDR accessors as the generic ones in asm/cputype.h have
49 * __attribute_const__ and we don't want the compiler to assume any
50 * constness here as the value _does_ change along some code paths.
51 */
52
53 static int read_mpidr(void)
54 {
55 unsigned int id;
56 asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id));
57 return id & MPIDR_HWID_BITMASK;
58 }
59
60 /*
61 * Get a global nanosecond time stamp for tracing.
62 */
63 static s64 get_ns(void)
64 {
65 struct timespec ts;
66 getnstimeofday(&ts);
67 return timespec_to_ns(&ts);
68 }
69
70 /*
71 * bL switcher core code.
72 */
73
74 static void bL_do_switch(void *_arg)
75 {
76 unsigned ib_mpidr, ib_cpu, ib_cluster;
77 long volatile handshake, **handshake_ptr = _arg;
78
79 pr_debug("%s\n", __func__);
80
81 ib_mpidr = cpu_logical_map(smp_processor_id());
82 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
83 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
84
85 /* Advertise our handshake location */
86 if (handshake_ptr) {
87 handshake = 0;
88 *handshake_ptr = &handshake;
89 } else
90 handshake = -1;
91
92 /*
93 * Our state has been saved at this point. Let's release our
94 * inbound CPU.
95 */
96 mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume);
97 sev();
98
99 /*
100 * From this point, we must assume that our counterpart CPU might
101 * have taken over in its parallel world already, as if execution
102 * just returned from cpu_suspend(). It is therefore important to
103 * be very careful not to make any change the other guy is not
104 * expecting. This is why we need stack isolation.
105 *
106 * Fancy under cover tasks could be performed here. For now
107 * we have none.
108 */
109
110 /*
111 * Let's wait until our inbound is alive.
112 */
113 while (!handshake) {
114 wfe();
115 smp_mb();
116 }
117
118 /* Let's put ourself down. */
119 mcpm_cpu_power_down();
120
121 /* should never get here */
122 BUG();
123 }
124
125 /*
126 * Stack isolation. To ensure 'current' remains valid, we just use another
127 * piece of our thread's stack space which should be fairly lightly used.
128 * The selected area starts just above the thread_info structure located
129 * at the very bottom of the stack, aligned to a cache line, and indexed
130 * with the cluster number.
131 */
132 #define STACK_SIZE 512
133 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
134 static int bL_switchpoint(unsigned long _arg)
135 {
136 unsigned int mpidr = read_mpidr();
137 unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1);
138 void *stack = current_thread_info() + 1;
139 stack = PTR_ALIGN(stack, L1_CACHE_BYTES);
140 stack += clusterid * STACK_SIZE + STACK_SIZE;
141 call_with_stack(bL_do_switch, (void *)_arg, stack);
142 BUG();
143 }
144
145 /*
146 * Generic switcher interface
147 */
148
149 static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS];
150 static int bL_switcher_cpu_pairing[NR_CPUS];
151
152 /*
153 * bL_switch_to - Switch to a specific cluster for the current CPU
154 * @new_cluster_id: the ID of the cluster to switch to.
155 *
156 * This function must be called on the CPU to be switched.
157 * Returns 0 on success, else a negative status code.
158 */
159 static int bL_switch_to(unsigned int new_cluster_id)
160 {
161 unsigned int mpidr, this_cpu, that_cpu;
162 unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster;
163 struct completion inbound_alive;
164 struct tick_device *tdev;
165 enum clock_event_mode tdev_mode;
166 long volatile *handshake_ptr;
167 int ipi_nr, ret;
168
169 this_cpu = smp_processor_id();
170 ob_mpidr = read_mpidr();
171 ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0);
172 ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1);
173 BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr);
174
175 if (new_cluster_id == ob_cluster)
176 return 0;
177
178 that_cpu = bL_switcher_cpu_pairing[this_cpu];
179 ib_mpidr = cpu_logical_map(that_cpu);
180 ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0);
181 ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1);
182
183 pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n",
184 this_cpu, ob_mpidr, ib_mpidr);
185
186 this_cpu = smp_processor_id();
187
188 /* Close the gate for our entry vectors */
189 mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL);
190 mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL);
191
192 /* Install our "inbound alive" notifier. */
193 init_completion(&inbound_alive);
194 ipi_nr = register_ipi_completion(&inbound_alive, this_cpu);
195 ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]);
196 mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr);
197
198 /*
199 * Let's wake up the inbound CPU now in case it requires some delay
200 * to come online, but leave it gated in our entry vector code.
201 */
202 ret = mcpm_cpu_power_up(ib_cpu, ib_cluster);
203 if (ret) {
204 pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret);
205 return ret;
206 }
207
208 /*
209 * Raise a SGI on the inbound CPU to make sure it doesn't stall
210 * in a possible WFI, such as in bL_power_down().
211 */
212 gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0);
213
214 /*
215 * Wait for the inbound to come up. This allows for other
216 * tasks to be scheduled in the mean time.
217 */
218 wait_for_completion(&inbound_alive);
219 mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0);
220
221 /*
222 * From this point we are entering the switch critical zone
223 * and can't take any interrupts anymore.
224 */
225 local_irq_disable();
226 local_fiq_disable();
227 trace_cpu_migrate_begin(get_ns(), ob_mpidr);
228
229 /* redirect GIC's SGIs to our counterpart */
230 gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]);
231
232 tdev = tick_get_device(this_cpu);
233 if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu)))
234 tdev = NULL;
235 if (tdev) {
236 tdev_mode = tdev->evtdev->mode;
237 clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN);
238 }
239
240 ret = cpu_pm_enter();
241
242 /* we can not tolerate errors at this point */
243 if (ret)
244 panic("%s: cpu_pm_enter() returned %d\n", __func__, ret);
245
246 /* Swap the physical CPUs in the logical map for this logical CPU. */
247 cpu_logical_map(this_cpu) = ib_mpidr;
248 cpu_logical_map(that_cpu) = ob_mpidr;
249
250 /* Let's do the actual CPU switch. */
251 ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint);
252 if (ret > 0)
253 panic("%s: cpu_suspend() returned %d\n", __func__, ret);
254
255 /* We are executing on the inbound CPU at this point */
256 mpidr = read_mpidr();
257 pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr);
258 BUG_ON(mpidr != ib_mpidr);
259
260 mcpm_cpu_powered_up();
261
262 ret = cpu_pm_exit();
263
264 if (tdev) {
265 clockevents_set_mode(tdev->evtdev, tdev_mode);
266 clockevents_program_event(tdev->evtdev,
267 tdev->evtdev->next_event, 1);
268 }
269
270 trace_cpu_migrate_finish(get_ns(), ib_mpidr);
271 local_fiq_enable();
272 local_irq_enable();
273
274 *handshake_ptr = 1;
275 dsb_sev();
276
277 if (ret)
278 pr_err("%s exiting with error %d\n", __func__, ret);
279 return ret;
280 }
281
282 struct bL_thread {
283 spinlock_t lock;
284 struct task_struct *task;
285 wait_queue_head_t wq;
286 int wanted_cluster;
287 struct completion started;
288 bL_switch_completion_handler completer;
289 void *completer_cookie;
290 };
291
292 static struct bL_thread bL_threads[NR_CPUS];
293
294 static int bL_switcher_thread(void *arg)
295 {
296 struct bL_thread *t = arg;
297 struct sched_param param = { .sched_priority = 1 };
298 int cluster;
299 bL_switch_completion_handler completer;
300 void *completer_cookie;
301
302 sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
303 complete(&t->started);
304
305 do {
306 if (signal_pending(current))
307 flush_signals(current);
308 wait_event_interruptible(t->wq,
309 t->wanted_cluster != -1 ||
310 kthread_should_stop());
311
312 spin_lock(&t->lock);
313 cluster = t->wanted_cluster;
314 completer = t->completer;
315 completer_cookie = t->completer_cookie;
316 t->wanted_cluster = -1;
317 t->completer = NULL;
318 spin_unlock(&t->lock);
319
320 if (cluster != -1) {
321 bL_switch_to(cluster);
322
323 if (completer)
324 completer(completer_cookie);
325 }
326 } while (!kthread_should_stop());
327
328 return 0;
329 }
330
331 static struct task_struct *bL_switcher_thread_create(int cpu, void *arg)
332 {
333 struct task_struct *task;
334
335 task = kthread_create_on_node(bL_switcher_thread, arg,
336 cpu_to_node(cpu), "kswitcher_%d", cpu);
337 if (!IS_ERR(task)) {
338 kthread_bind(task, cpu);
339 wake_up_process(task);
340 } else
341 pr_err("%s failed for CPU %d\n", __func__, cpu);
342 return task;
343 }
344
345 /*
346 * bL_switch_request_cb - Switch to a specific cluster for the given CPU,
347 * with completion notification via a callback
348 *
349 * @cpu: the CPU to switch
350 * @new_cluster_id: the ID of the cluster to switch to.
351 * @completer: switch completion callback. if non-NULL,
352 * @completer(@completer_cookie) will be called on completion of
353 * the switch, in non-atomic context.
354 * @completer_cookie: opaque context argument for @completer.
355 *
356 * This function causes a cluster switch on the given CPU by waking up
357 * the appropriate switcher thread. This function may or may not return
358 * before the switch has occurred.
359 *
360 * If a @completer callback function is supplied, it will be called when
361 * the switch is complete. This can be used to determine asynchronously
362 * when the switch is complete, regardless of when bL_switch_request()
363 * returns. When @completer is supplied, no new switch request is permitted
364 * for the affected CPU until after the switch is complete, and @completer
365 * has returned.
366 */
367 int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id,
368 bL_switch_completion_handler completer,
369 void *completer_cookie)
370 {
371 struct bL_thread *t;
372
373 if (cpu >= ARRAY_SIZE(bL_threads)) {
374 pr_err("%s: cpu %d out of bounds\n", __func__, cpu);
375 return -EINVAL;
376 }
377
378 t = &bL_threads[cpu];
379
380 if (IS_ERR(t->task))
381 return PTR_ERR(t->task);
382 if (!t->task)
383 return -ESRCH;
384
385 spin_lock(&t->lock);
386 if (t->completer) {
387 spin_unlock(&t->lock);
388 return -EBUSY;
389 }
390 t->completer = completer;
391 t->completer_cookie = completer_cookie;
392 t->wanted_cluster = new_cluster_id;
393 spin_unlock(&t->lock);
394 wake_up(&t->wq);
395 return 0;
396 }
397 EXPORT_SYMBOL_GPL(bL_switch_request_cb);
398
399 /*
400 * Activation and configuration code.
401 */
402
403 static DEFINE_MUTEX(bL_switcher_activation_lock);
404 static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier);
405 static unsigned int bL_switcher_active;
406 static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS];
407 static cpumask_t bL_switcher_removed_logical_cpus;
408
409 int bL_switcher_register_notifier(struct notifier_block *nb)
410 {
411 return blocking_notifier_chain_register(&bL_activation_notifier, nb);
412 }
413 EXPORT_SYMBOL_GPL(bL_switcher_register_notifier);
414
415 int bL_switcher_unregister_notifier(struct notifier_block *nb)
416 {
417 return blocking_notifier_chain_unregister(&bL_activation_notifier, nb);
418 }
419 EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier);
420
421 static int bL_activation_notify(unsigned long val)
422 {
423 int ret;
424
425 ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL);
426 if (ret & NOTIFY_STOP_MASK)
427 pr_err("%s: notifier chain failed with status 0x%x\n",
428 __func__, ret);
429 return notifier_to_errno(ret);
430 }
431
432 static void bL_switcher_restore_cpus(void)
433 {
434 int i;
435
436 for_each_cpu(i, &bL_switcher_removed_logical_cpus)
437 cpu_up(i);
438 }
439
440 static int bL_switcher_halve_cpus(void)
441 {
442 int i, j, cluster_0, gic_id, ret;
443 unsigned int cpu, cluster, mask;
444 cpumask_t available_cpus;
445
446 /* First pass to validate what we have */
447 mask = 0;
448 for_each_online_cpu(i) {
449 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
450 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
451 if (cluster >= 2) {
452 pr_err("%s: only dual cluster systems are supported\n", __func__);
453 return -EINVAL;
454 }
455 if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER))
456 return -EINVAL;
457 mask |= (1 << cluster);
458 }
459 if (mask != 3) {
460 pr_err("%s: no CPU pairing possible\n", __func__);
461 return -EINVAL;
462 }
463
464 /*
465 * Now let's do the pairing. We match each CPU with another CPU
466 * from a different cluster. To get a uniform scheduling behavior
467 * without fiddling with CPU topology and compute capacity data,
468 * we'll use logical CPUs initially belonging to the same cluster.
469 */
470 memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing));
471 cpumask_copy(&available_cpus, cpu_online_mask);
472 cluster_0 = -1;
473 for_each_cpu(i, &available_cpus) {
474 int match = -1;
475 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
476 if (cluster_0 == -1)
477 cluster_0 = cluster;
478 if (cluster != cluster_0)
479 continue;
480 cpumask_clear_cpu(i, &available_cpus);
481 for_each_cpu(j, &available_cpus) {
482 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1);
483 /*
484 * Let's remember the last match to create "odd"
485 * pairings on purpose in order for other code not
486 * to assume any relation between physical and
487 * logical CPU numbers.
488 */
489 if (cluster != cluster_0)
490 match = j;
491 }
492 if (match != -1) {
493 bL_switcher_cpu_pairing[i] = match;
494 cpumask_clear_cpu(match, &available_cpus);
495 pr_info("CPU%d paired with CPU%d\n", i, match);
496 }
497 }
498
499 /*
500 * Now we disable the unwanted CPUs i.e. everything that has no
501 * pairing information (that includes the pairing counterparts).
502 */
503 cpumask_clear(&bL_switcher_removed_logical_cpus);
504 for_each_online_cpu(i) {
505 cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0);
506 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1);
507
508 /* Let's take note of the GIC ID for this CPU */
509 gic_id = gic_get_cpu_id(i);
510 if (gic_id < 0) {
511 pr_err("%s: bad GIC ID for CPU %d\n", __func__, i);
512 bL_switcher_restore_cpus();
513 return -EINVAL;
514 }
515 bL_gic_id[cpu][cluster] = gic_id;
516 pr_info("GIC ID for CPU %u cluster %u is %u\n",
517 cpu, cluster, gic_id);
518
519 if (bL_switcher_cpu_pairing[i] != -1) {
520 bL_switcher_cpu_original_cluster[i] = cluster;
521 continue;
522 }
523
524 ret = cpu_down(i);
525 if (ret) {
526 bL_switcher_restore_cpus();
527 return ret;
528 }
529 cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus);
530 }
531
532 return 0;
533 }
534
535 /* Determine the logical CPU a given physical CPU is grouped on. */
536 int bL_switcher_get_logical_index(u32 mpidr)
537 {
538 int cpu;
539
540 if (!bL_switcher_active)
541 return -EUNATCH;
542
543 mpidr &= MPIDR_HWID_BITMASK;
544 for_each_online_cpu(cpu) {
545 int pairing = bL_switcher_cpu_pairing[cpu];
546 if (pairing == -1)
547 continue;
548 if ((mpidr == cpu_logical_map(cpu)) ||
549 (mpidr == cpu_logical_map(pairing)))
550 return cpu;
551 }
552 return -EINVAL;
553 }
554
555 static void bL_switcher_trace_trigger_cpu(void *__always_unused info)
556 {
557 trace_cpu_migrate_current(get_ns(), read_mpidr());
558 }
559
560 int bL_switcher_trace_trigger(void)
561 {
562 int ret;
563
564 preempt_disable();
565
566 bL_switcher_trace_trigger_cpu(NULL);
567 ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true);
568
569 preempt_enable();
570
571 return ret;
572 }
573 EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger);
574
575 static int bL_switcher_enable(void)
576 {
577 int cpu, ret;
578
579 mutex_lock(&bL_switcher_activation_lock);
580 lock_device_hotplug();
581 if (bL_switcher_active) {
582 unlock_device_hotplug();
583 mutex_unlock(&bL_switcher_activation_lock);
584 return 0;
585 }
586
587 pr_info("big.LITTLE switcher initializing\n");
588
589 ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE);
590 if (ret)
591 goto error;
592
593 ret = bL_switcher_halve_cpus();
594 if (ret)
595 goto error;
596
597 bL_switcher_trace_trigger();
598
599 for_each_online_cpu(cpu) {
600 struct bL_thread *t = &bL_threads[cpu];
601 spin_lock_init(&t->lock);
602 init_waitqueue_head(&t->wq);
603 init_completion(&t->started);
604 t->wanted_cluster = -1;
605 t->task = bL_switcher_thread_create(cpu, t);
606 }
607
608 bL_switcher_active = 1;
609 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
610 pr_info("big.LITTLE switcher initialized\n");
611 goto out;
612
613 error:
614 pr_warn("big.LITTLE switcher initialization failed\n");
615 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
616
617 out:
618 unlock_device_hotplug();
619 mutex_unlock(&bL_switcher_activation_lock);
620 return ret;
621 }
622
623 #ifdef CONFIG_SYSFS
624
625 static void bL_switcher_disable(void)
626 {
627 unsigned int cpu, cluster;
628 struct bL_thread *t;
629 struct task_struct *task;
630
631 mutex_lock(&bL_switcher_activation_lock);
632 lock_device_hotplug();
633
634 if (!bL_switcher_active)
635 goto out;
636
637 if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) {
638 bL_activation_notify(BL_NOTIFY_POST_ENABLE);
639 goto out;
640 }
641
642 bL_switcher_active = 0;
643
644 /*
645 * To deactivate the switcher, we must shut down the switcher
646 * threads to prevent any other requests from being accepted.
647 * Then, if the final cluster for given logical CPU is not the
648 * same as the original one, we'll recreate a switcher thread
649 * just for the purpose of switching the CPU back without any
650 * possibility for interference from external requests.
651 */
652 for_each_online_cpu(cpu) {
653 t = &bL_threads[cpu];
654 task = t->task;
655 t->task = NULL;
656 if (!task || IS_ERR(task))
657 continue;
658 kthread_stop(task);
659 /* no more switch may happen on this CPU at this point */
660 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
661 if (cluster == bL_switcher_cpu_original_cluster[cpu])
662 continue;
663 init_completion(&t->started);
664 t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu];
665 task = bL_switcher_thread_create(cpu, t);
666 if (!IS_ERR(task)) {
667 wait_for_completion(&t->started);
668 kthread_stop(task);
669 cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1);
670 if (cluster == bL_switcher_cpu_original_cluster[cpu])
671 continue;
672 }
673 /* If execution gets here, we're in trouble. */
674 pr_crit("%s: unable to restore original cluster for CPU %d\n",
675 __func__, cpu);
676 pr_crit("%s: CPU %d can't be restored\n",
677 __func__, bL_switcher_cpu_pairing[cpu]);
678 cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu],
679 &bL_switcher_removed_logical_cpus);
680 }
681
682 bL_switcher_restore_cpus();
683 bL_switcher_trace_trigger();
684
685 bL_activation_notify(BL_NOTIFY_POST_DISABLE);
686
687 out:
688 unlock_device_hotplug();
689 mutex_unlock(&bL_switcher_activation_lock);
690 }
691
692 static ssize_t bL_switcher_active_show(struct kobject *kobj,
693 struct kobj_attribute *attr, char *buf)
694 {
695 return sprintf(buf, "%u\n", bL_switcher_active);
696 }
697
698 static ssize_t bL_switcher_active_store(struct kobject *kobj,
699 struct kobj_attribute *attr, const char *buf, size_t count)
700 {
701 int ret;
702
703 switch (buf[0]) {
704 case '0':
705 bL_switcher_disable();
706 ret = 0;
707 break;
708 case '1':
709 ret = bL_switcher_enable();
710 break;
711 default:
712 ret = -EINVAL;
713 }
714
715 return (ret >= 0) ? count : ret;
716 }
717
718 static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj,
719 struct kobj_attribute *attr, const char *buf, size_t count)
720 {
721 int ret = bL_switcher_trace_trigger();
722
723 return ret ? ret : count;
724 }
725
726 static struct kobj_attribute bL_switcher_active_attr =
727 __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store);
728
729 static struct kobj_attribute bL_switcher_trace_trigger_attr =
730 __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store);
731
732 static struct attribute *bL_switcher_attrs[] = {
733 &bL_switcher_active_attr.attr,
734 &bL_switcher_trace_trigger_attr.attr,
735 NULL,
736 };
737
738 static struct attribute_group bL_switcher_attr_group = {
739 .attrs = bL_switcher_attrs,
740 };
741
742 static struct kobject *bL_switcher_kobj;
743
744 static int __init bL_switcher_sysfs_init(void)
745 {
746 int ret;
747
748 bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj);
749 if (!bL_switcher_kobj)
750 return -ENOMEM;
751 ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group);
752 if (ret)
753 kobject_put(bL_switcher_kobj);
754 return ret;
755 }
756
757 #endif /* CONFIG_SYSFS */
758
759 bool bL_switcher_get_enabled(void)
760 {
761 mutex_lock(&bL_switcher_activation_lock);
762
763 return bL_switcher_active;
764 }
765 EXPORT_SYMBOL_GPL(bL_switcher_get_enabled);
766
767 void bL_switcher_put_enabled(void)
768 {
769 mutex_unlock(&bL_switcher_activation_lock);
770 }
771 EXPORT_SYMBOL_GPL(bL_switcher_put_enabled);
772
773 /*
774 * Veto any CPU hotplug operation on those CPUs we've removed
775 * while the switcher is active.
776 * We're just not ready to deal with that given the trickery involved.
777 */
778 static int bL_switcher_hotplug_callback(struct notifier_block *nfb,
779 unsigned long action, void *hcpu)
780 {
781 if (bL_switcher_active) {
782 int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu];
783 switch (action & 0xf) {
784 case CPU_UP_PREPARE:
785 case CPU_DOWN_PREPARE:
786 if (pairing == -1)
787 return NOTIFY_BAD;
788 }
789 }
790 return NOTIFY_DONE;
791 }
792
793 static bool no_bL_switcher;
794 core_param(no_bL_switcher, no_bL_switcher, bool, 0644);
795
796 static int __init bL_switcher_init(void)
797 {
798 int ret;
799
800 if (MAX_NR_CLUSTERS != 2) {
801 pr_err("%s: only dual cluster systems are supported\n", __func__);
802 return -EINVAL;
803 }
804
805 cpu_notifier(bL_switcher_hotplug_callback, 0);
806
807 if (!no_bL_switcher) {
808 ret = bL_switcher_enable();
809 if (ret)
810 return ret;
811 }
812
813 #ifdef CONFIG_SYSFS
814 ret = bL_switcher_sysfs_init();
815 if (ret)
816 pr_err("%s: unable to create sysfs entry\n", __func__);
817 #endif
818
819 return 0;
820 }
821
822 late_initcall(bL_switcher_init);
This page took 0.058114 seconds and 5 git commands to generate.