Merge tag 'md/4.8-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/shli/md
[deliverable/linux.git] / arch / arm / include / asm / kvm_mmu.h
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #ifndef __ARM_KVM_MMU_H__
20 #define __ARM_KVM_MMU_H__
21
22 #include <asm/memory.h>
23 #include <asm/page.h>
24
25 /*
26 * We directly use the kernel VA for the HYP, as we can directly share
27 * the mapping (HTTBR "covers" TTBR1).
28 */
29 #define kern_hyp_va(kva) (kva)
30
31 /*
32 * KVM_MMU_CACHE_MIN_PAGES is the number of stage2 page table translation levels.
33 */
34 #define KVM_MMU_CACHE_MIN_PAGES 2
35
36 #ifndef __ASSEMBLY__
37
38 #include <linux/highmem.h>
39 #include <asm/cacheflush.h>
40 #include <asm/pgalloc.h>
41 #include <asm/stage2_pgtable.h>
42
43 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
44 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
45 void free_hyp_pgds(void);
46
47 void stage2_unmap_vm(struct kvm *kvm);
48 int kvm_alloc_stage2_pgd(struct kvm *kvm);
49 void kvm_free_stage2_pgd(struct kvm *kvm);
50 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
51 phys_addr_t pa, unsigned long size, bool writable);
52
53 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
54
55 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
56
57 phys_addr_t kvm_mmu_get_httbr(void);
58 phys_addr_t kvm_get_idmap_vector(void);
59 phys_addr_t kvm_get_idmap_start(void);
60 int kvm_mmu_init(void);
61 void kvm_clear_hyp_idmap(void);
62
63 static inline void kvm_set_pmd(pmd_t *pmd, pmd_t new_pmd)
64 {
65 *pmd = new_pmd;
66 flush_pmd_entry(pmd);
67 }
68
69 static inline void kvm_set_pte(pte_t *pte, pte_t new_pte)
70 {
71 *pte = new_pte;
72 /*
73 * flush_pmd_entry just takes a void pointer and cleans the necessary
74 * cache entries, so we can reuse the function for ptes.
75 */
76 flush_pmd_entry(pte);
77 }
78
79 static inline void kvm_clean_pgd(pgd_t *pgd)
80 {
81 clean_dcache_area(pgd, PTRS_PER_S2_PGD * sizeof(pgd_t));
82 }
83
84 static inline void kvm_clean_pmd(pmd_t *pmd)
85 {
86 clean_dcache_area(pmd, PTRS_PER_PMD * sizeof(pmd_t));
87 }
88
89 static inline void kvm_clean_pmd_entry(pmd_t *pmd)
90 {
91 clean_pmd_entry(pmd);
92 }
93
94 static inline void kvm_clean_pte(pte_t *pte)
95 {
96 clean_pte_table(pte);
97 }
98
99 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
100 {
101 pte_val(pte) |= L_PTE_S2_RDWR;
102 return pte;
103 }
104
105 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
106 {
107 pmd_val(pmd) |= L_PMD_S2_RDWR;
108 return pmd;
109 }
110
111 static inline void kvm_set_s2pte_readonly(pte_t *pte)
112 {
113 pte_val(*pte) = (pte_val(*pte) & ~L_PTE_S2_RDWR) | L_PTE_S2_RDONLY;
114 }
115
116 static inline bool kvm_s2pte_readonly(pte_t *pte)
117 {
118 return (pte_val(*pte) & L_PTE_S2_RDWR) == L_PTE_S2_RDONLY;
119 }
120
121 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
122 {
123 pmd_val(*pmd) = (pmd_val(*pmd) & ~L_PMD_S2_RDWR) | L_PMD_S2_RDONLY;
124 }
125
126 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
127 {
128 return (pmd_val(*pmd) & L_PMD_S2_RDWR) == L_PMD_S2_RDONLY;
129 }
130
131 static inline bool kvm_page_empty(void *ptr)
132 {
133 struct page *ptr_page = virt_to_page(ptr);
134 return page_count(ptr_page) == 1;
135 }
136
137 #define kvm_pte_table_empty(kvm, ptep) kvm_page_empty(ptep)
138 #define kvm_pmd_table_empty(kvm, pmdp) kvm_page_empty(pmdp)
139 #define kvm_pud_table_empty(kvm, pudp) false
140
141 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
142 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
143 #define hyp_pud_table_empty(pudp) false
144
145 struct kvm;
146
147 #define kvm_flush_dcache_to_poc(a,l) __cpuc_flush_dcache_area((a), (l))
148
149 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
150 {
151 return (vcpu_cp15(vcpu, c1_SCTLR) & 0b101) == 0b101;
152 }
153
154 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
155 kvm_pfn_t pfn,
156 unsigned long size,
157 bool ipa_uncached)
158 {
159 /*
160 * If we are going to insert an instruction page and the icache is
161 * either VIPT or PIPT, there is a potential problem where the host
162 * (or another VM) may have used the same page as this guest, and we
163 * read incorrect data from the icache. If we're using a PIPT cache,
164 * we can invalidate just that page, but if we are using a VIPT cache
165 * we need to invalidate the entire icache - damn shame - as written
166 * in the ARM ARM (DDI 0406C.b - Page B3-1393).
167 *
168 * VIVT caches are tagged using both the ASID and the VMID and doesn't
169 * need any kind of flushing (DDI 0406C.b - Page B3-1392).
170 *
171 * We need to do this through a kernel mapping (using the
172 * user-space mapping has proved to be the wrong
173 * solution). For that, we need to kmap one page at a time,
174 * and iterate over the range.
175 */
176
177 bool need_flush = !vcpu_has_cache_enabled(vcpu) || ipa_uncached;
178
179 VM_BUG_ON(size & ~PAGE_MASK);
180
181 if (!need_flush && !icache_is_pipt())
182 goto vipt_cache;
183
184 while (size) {
185 void *va = kmap_atomic_pfn(pfn);
186
187 if (need_flush)
188 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
189
190 if (icache_is_pipt())
191 __cpuc_coherent_user_range((unsigned long)va,
192 (unsigned long)va + PAGE_SIZE);
193
194 size -= PAGE_SIZE;
195 pfn++;
196
197 kunmap_atomic(va);
198 }
199
200 vipt_cache:
201 if (!icache_is_pipt() && !icache_is_vivt_asid_tagged()) {
202 /* any kind of VIPT cache */
203 __flush_icache_all();
204 }
205 }
206
207 static inline void __kvm_flush_dcache_pte(pte_t pte)
208 {
209 void *va = kmap_atomic(pte_page(pte));
210
211 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
212
213 kunmap_atomic(va);
214 }
215
216 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
217 {
218 unsigned long size = PMD_SIZE;
219 kvm_pfn_t pfn = pmd_pfn(pmd);
220
221 while (size) {
222 void *va = kmap_atomic_pfn(pfn);
223
224 kvm_flush_dcache_to_poc(va, PAGE_SIZE);
225
226 pfn++;
227 size -= PAGE_SIZE;
228
229 kunmap_atomic(va);
230 }
231 }
232
233 static inline void __kvm_flush_dcache_pud(pud_t pud)
234 {
235 }
236
237 #define kvm_virt_to_phys(x) virt_to_idmap((unsigned long)(x))
238
239 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
240 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
241
242 static inline bool __kvm_cpu_uses_extended_idmap(void)
243 {
244 return false;
245 }
246
247 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
248 pgd_t *hyp_pgd,
249 pgd_t *merged_hyp_pgd,
250 unsigned long hyp_idmap_start) { }
251
252 static inline unsigned int kvm_get_vmid_bits(void)
253 {
254 return 8;
255 }
256
257 #endif /* !__ASSEMBLY__ */
258
259 #endif /* __ARM_KVM_MMU_H__ */
This page took 0.046731 seconds and 6 git commands to generate.