spi/build: Remove SPI_SIRF from compile test
[deliverable/linux.git] / arch / arm / kernel / setup.c
1 /*
2 * linux/arch/arm/kernel/setup.c
3 *
4 * Copyright (C) 1995-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/of_platform.h>
22 #include <linux/init.h>
23 #include <linux/kexec.h>
24 #include <linux/of_fdt.h>
25 #include <linux/cpu.h>
26 #include <linux/interrupt.h>
27 #include <linux/smp.h>
28 #include <linux/proc_fs.h>
29 #include <linux/memblock.h>
30 #include <linux/bug.h>
31 #include <linux/compiler.h>
32 #include <linux/sort.h>
33
34 #include <asm/unified.h>
35 #include <asm/cp15.h>
36 #include <asm/cpu.h>
37 #include <asm/cputype.h>
38 #include <asm/elf.h>
39 #include <asm/procinfo.h>
40 #include <asm/psci.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <asm/smp_plat.h>
44 #include <asm/mach-types.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cachetype.h>
47 #include <asm/tlbflush.h>
48
49 #include <asm/prom.h>
50 #include <asm/mach/arch.h>
51 #include <asm/mach/irq.h>
52 #include <asm/mach/time.h>
53 #include <asm/system_info.h>
54 #include <asm/system_misc.h>
55 #include <asm/traps.h>
56 #include <asm/unwind.h>
57 #include <asm/memblock.h>
58 #include <asm/virt.h>
59
60 #include "atags.h"
61
62
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 char fpe_type[8];
65
66 static int __init fpe_setup(char *line)
67 {
68 memcpy(fpe_type, line, 8);
69 return 1;
70 }
71
72 __setup("fpe=", fpe_setup);
73 #endif
74
75 extern void paging_init(struct machine_desc *desc);
76 extern void sanity_check_meminfo(void);
77 extern enum reboot_mode reboot_mode;
78 extern void setup_dma_zone(struct machine_desc *desc);
79
80 unsigned int processor_id;
81 EXPORT_SYMBOL(processor_id);
82 unsigned int __machine_arch_type __read_mostly;
83 EXPORT_SYMBOL(__machine_arch_type);
84 unsigned int cacheid __read_mostly;
85 EXPORT_SYMBOL(cacheid);
86
87 unsigned int __atags_pointer __initdata;
88
89 unsigned int system_rev;
90 EXPORT_SYMBOL(system_rev);
91
92 unsigned int system_serial_low;
93 EXPORT_SYMBOL(system_serial_low);
94
95 unsigned int system_serial_high;
96 EXPORT_SYMBOL(system_serial_high);
97
98 unsigned int elf_hwcap __read_mostly;
99 EXPORT_SYMBOL(elf_hwcap);
100
101
102 #ifdef MULTI_CPU
103 struct processor processor __read_mostly;
104 #endif
105 #ifdef MULTI_TLB
106 struct cpu_tlb_fns cpu_tlb __read_mostly;
107 #endif
108 #ifdef MULTI_USER
109 struct cpu_user_fns cpu_user __read_mostly;
110 #endif
111 #ifdef MULTI_CACHE
112 struct cpu_cache_fns cpu_cache __read_mostly;
113 #endif
114 #ifdef CONFIG_OUTER_CACHE
115 struct outer_cache_fns outer_cache __read_mostly;
116 EXPORT_SYMBOL(outer_cache);
117 #endif
118
119 /*
120 * Cached cpu_architecture() result for use by assembler code.
121 * C code should use the cpu_architecture() function instead of accessing this
122 * variable directly.
123 */
124 int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN;
125
126 struct stack {
127 u32 irq[3];
128 u32 abt[3];
129 u32 und[3];
130 } ____cacheline_aligned;
131
132 #ifndef CONFIG_CPU_V7M
133 static struct stack stacks[NR_CPUS];
134 #endif
135
136 char elf_platform[ELF_PLATFORM_SIZE];
137 EXPORT_SYMBOL(elf_platform);
138
139 static const char *cpu_name;
140 static const char *machine_name;
141 static char __initdata cmd_line[COMMAND_LINE_SIZE];
142 struct machine_desc *machine_desc __initdata;
143
144 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
145 #define ENDIANNESS ((char)endian_test.l)
146
147 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
148
149 /*
150 * Standard memory resources
151 */
152 static struct resource mem_res[] = {
153 {
154 .name = "Video RAM",
155 .start = 0,
156 .end = 0,
157 .flags = IORESOURCE_MEM
158 },
159 {
160 .name = "Kernel code",
161 .start = 0,
162 .end = 0,
163 .flags = IORESOURCE_MEM
164 },
165 {
166 .name = "Kernel data",
167 .start = 0,
168 .end = 0,
169 .flags = IORESOURCE_MEM
170 }
171 };
172
173 #define video_ram mem_res[0]
174 #define kernel_code mem_res[1]
175 #define kernel_data mem_res[2]
176
177 static struct resource io_res[] = {
178 {
179 .name = "reserved",
180 .start = 0x3bc,
181 .end = 0x3be,
182 .flags = IORESOURCE_IO | IORESOURCE_BUSY
183 },
184 {
185 .name = "reserved",
186 .start = 0x378,
187 .end = 0x37f,
188 .flags = IORESOURCE_IO | IORESOURCE_BUSY
189 },
190 {
191 .name = "reserved",
192 .start = 0x278,
193 .end = 0x27f,
194 .flags = IORESOURCE_IO | IORESOURCE_BUSY
195 }
196 };
197
198 #define lp0 io_res[0]
199 #define lp1 io_res[1]
200 #define lp2 io_res[2]
201
202 static const char *proc_arch[] = {
203 "undefined/unknown",
204 "3",
205 "4",
206 "4T",
207 "5",
208 "5T",
209 "5TE",
210 "5TEJ",
211 "6TEJ",
212 "7",
213 "7M",
214 "?(12)",
215 "?(13)",
216 "?(14)",
217 "?(15)",
218 "?(16)",
219 "?(17)",
220 };
221
222 #ifdef CONFIG_CPU_V7M
223 static int __get_cpu_architecture(void)
224 {
225 return CPU_ARCH_ARMv7M;
226 }
227 #else
228 static int __get_cpu_architecture(void)
229 {
230 int cpu_arch;
231
232 if ((read_cpuid_id() & 0x0008f000) == 0) {
233 cpu_arch = CPU_ARCH_UNKNOWN;
234 } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
235 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
236 } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
237 cpu_arch = (read_cpuid_id() >> 16) & 7;
238 if (cpu_arch)
239 cpu_arch += CPU_ARCH_ARMv3;
240 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
241 unsigned int mmfr0;
242
243 /* Revised CPUID format. Read the Memory Model Feature
244 * Register 0 and check for VMSAv7 or PMSAv7 */
245 asm("mrc p15, 0, %0, c0, c1, 4"
246 : "=r" (mmfr0));
247 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
248 (mmfr0 & 0x000000f0) >= 0x00000030)
249 cpu_arch = CPU_ARCH_ARMv7;
250 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
251 (mmfr0 & 0x000000f0) == 0x00000020)
252 cpu_arch = CPU_ARCH_ARMv6;
253 else
254 cpu_arch = CPU_ARCH_UNKNOWN;
255 } else
256 cpu_arch = CPU_ARCH_UNKNOWN;
257
258 return cpu_arch;
259 }
260 #endif
261
262 int __pure cpu_architecture(void)
263 {
264 BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN);
265
266 return __cpu_architecture;
267 }
268
269 static int cpu_has_aliasing_icache(unsigned int arch)
270 {
271 int aliasing_icache;
272 unsigned int id_reg, num_sets, line_size;
273
274 /* PIPT caches never alias. */
275 if (icache_is_pipt())
276 return 0;
277
278 /* arch specifies the register format */
279 switch (arch) {
280 case CPU_ARCH_ARMv7:
281 asm("mcr p15, 2, %0, c0, c0, 0 @ set CSSELR"
282 : /* No output operands */
283 : "r" (1));
284 isb();
285 asm("mrc p15, 1, %0, c0, c0, 0 @ read CCSIDR"
286 : "=r" (id_reg));
287 line_size = 4 << ((id_reg & 0x7) + 2);
288 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
289 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
290 break;
291 case CPU_ARCH_ARMv6:
292 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
293 break;
294 default:
295 /* I-cache aliases will be handled by D-cache aliasing code */
296 aliasing_icache = 0;
297 }
298
299 return aliasing_icache;
300 }
301
302 static void __init cacheid_init(void)
303 {
304 unsigned int arch = cpu_architecture();
305
306 if (arch == CPU_ARCH_ARMv7M) {
307 cacheid = 0;
308 } else if (arch >= CPU_ARCH_ARMv6) {
309 unsigned int cachetype = read_cpuid_cachetype();
310 if ((cachetype & (7 << 29)) == 4 << 29) {
311 /* ARMv7 register format */
312 arch = CPU_ARCH_ARMv7;
313 cacheid = CACHEID_VIPT_NONALIASING;
314 switch (cachetype & (3 << 14)) {
315 case (1 << 14):
316 cacheid |= CACHEID_ASID_TAGGED;
317 break;
318 case (3 << 14):
319 cacheid |= CACHEID_PIPT;
320 break;
321 }
322 } else {
323 arch = CPU_ARCH_ARMv6;
324 if (cachetype & (1 << 23))
325 cacheid = CACHEID_VIPT_ALIASING;
326 else
327 cacheid = CACHEID_VIPT_NONALIASING;
328 }
329 if (cpu_has_aliasing_icache(arch))
330 cacheid |= CACHEID_VIPT_I_ALIASING;
331 } else {
332 cacheid = CACHEID_VIVT;
333 }
334
335 printk("CPU: %s data cache, %s instruction cache\n",
336 cache_is_vivt() ? "VIVT" :
337 cache_is_vipt_aliasing() ? "VIPT aliasing" :
338 cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing" : "unknown",
339 cache_is_vivt() ? "VIVT" :
340 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
341 icache_is_vipt_aliasing() ? "VIPT aliasing" :
342 icache_is_pipt() ? "PIPT" :
343 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
344 }
345
346 /*
347 * These functions re-use the assembly code in head.S, which
348 * already provide the required functionality.
349 */
350 extern struct proc_info_list *lookup_processor_type(unsigned int);
351
352 void __init early_print(const char *str, ...)
353 {
354 extern void printascii(const char *);
355 char buf[256];
356 va_list ap;
357
358 va_start(ap, str);
359 vsnprintf(buf, sizeof(buf), str, ap);
360 va_end(ap);
361
362 #ifdef CONFIG_DEBUG_LL
363 printascii(buf);
364 #endif
365 printk("%s", buf);
366 }
367
368 static void __init cpuid_init_hwcaps(void)
369 {
370 unsigned int divide_instrs, vmsa;
371
372 if (cpu_architecture() < CPU_ARCH_ARMv7)
373 return;
374
375 divide_instrs = (read_cpuid_ext(CPUID_EXT_ISAR0) & 0x0f000000) >> 24;
376
377 switch (divide_instrs) {
378 case 2:
379 elf_hwcap |= HWCAP_IDIVA;
380 case 1:
381 elf_hwcap |= HWCAP_IDIVT;
382 }
383
384 /* LPAE implies atomic ldrd/strd instructions */
385 vmsa = (read_cpuid_ext(CPUID_EXT_MMFR0) & 0xf) >> 0;
386 if (vmsa >= 5)
387 elf_hwcap |= HWCAP_LPAE;
388 }
389
390 static void __init feat_v6_fixup(void)
391 {
392 int id = read_cpuid_id();
393
394 if ((id & 0xff0f0000) != 0x41070000)
395 return;
396
397 /*
398 * HWCAP_TLS is available only on 1136 r1p0 and later,
399 * see also kuser_get_tls_init.
400 */
401 if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
402 elf_hwcap &= ~HWCAP_TLS;
403 }
404
405 /*
406 * cpu_init - initialise one CPU.
407 *
408 * cpu_init sets up the per-CPU stacks.
409 */
410 void notrace cpu_init(void)
411 {
412 #ifndef CONFIG_CPU_V7M
413 unsigned int cpu = smp_processor_id();
414 struct stack *stk = &stacks[cpu];
415
416 if (cpu >= NR_CPUS) {
417 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
418 BUG();
419 }
420
421 /*
422 * This only works on resume and secondary cores. For booting on the
423 * boot cpu, smp_prepare_boot_cpu is called after percpu area setup.
424 */
425 set_my_cpu_offset(per_cpu_offset(cpu));
426
427 cpu_proc_init();
428
429 /*
430 * Define the placement constraint for the inline asm directive below.
431 * In Thumb-2, msr with an immediate value is not allowed.
432 */
433 #ifdef CONFIG_THUMB2_KERNEL
434 #define PLC "r"
435 #else
436 #define PLC "I"
437 #endif
438
439 /*
440 * setup stacks for re-entrant exception handlers
441 */
442 __asm__ (
443 "msr cpsr_c, %1\n\t"
444 "add r14, %0, %2\n\t"
445 "mov sp, r14\n\t"
446 "msr cpsr_c, %3\n\t"
447 "add r14, %0, %4\n\t"
448 "mov sp, r14\n\t"
449 "msr cpsr_c, %5\n\t"
450 "add r14, %0, %6\n\t"
451 "mov sp, r14\n\t"
452 "msr cpsr_c, %7"
453 :
454 : "r" (stk),
455 PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
456 "I" (offsetof(struct stack, irq[0])),
457 PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
458 "I" (offsetof(struct stack, abt[0])),
459 PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
460 "I" (offsetof(struct stack, und[0])),
461 PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
462 : "r14");
463 #endif
464 }
465
466 u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID };
467
468 void __init smp_setup_processor_id(void)
469 {
470 int i;
471 u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0;
472 u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
473
474 cpu_logical_map(0) = cpu;
475 for (i = 1; i < nr_cpu_ids; ++i)
476 cpu_logical_map(i) = i == cpu ? 0 : i;
477
478 /*
479 * clear __my_cpu_offset on boot CPU to avoid hang caused by
480 * using percpu variable early, for example, lockdep will
481 * access percpu variable inside lock_release
482 */
483 set_my_cpu_offset(0);
484
485 printk(KERN_INFO "Booting Linux on physical CPU 0x%x\n", mpidr);
486 }
487
488 struct mpidr_hash mpidr_hash;
489 #ifdef CONFIG_SMP
490 /**
491 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
492 * level in order to build a linear index from an
493 * MPIDR value. Resulting algorithm is a collision
494 * free hash carried out through shifting and ORing
495 */
496 static void __init smp_build_mpidr_hash(void)
497 {
498 u32 i, affinity;
499 u32 fs[3], bits[3], ls, mask = 0;
500 /*
501 * Pre-scan the list of MPIDRS and filter out bits that do
502 * not contribute to affinity levels, ie they never toggle.
503 */
504 for_each_possible_cpu(i)
505 mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
506 pr_debug("mask of set bits 0x%x\n", mask);
507 /*
508 * Find and stash the last and first bit set at all affinity levels to
509 * check how many bits are required to represent them.
510 */
511 for (i = 0; i < 3; i++) {
512 affinity = MPIDR_AFFINITY_LEVEL(mask, i);
513 /*
514 * Find the MSB bit and LSB bits position
515 * to determine how many bits are required
516 * to express the affinity level.
517 */
518 ls = fls(affinity);
519 fs[i] = affinity ? ffs(affinity) - 1 : 0;
520 bits[i] = ls - fs[i];
521 }
522 /*
523 * An index can be created from the MPIDR by isolating the
524 * significant bits at each affinity level and by shifting
525 * them in order to compress the 24 bits values space to a
526 * compressed set of values. This is equivalent to hashing
527 * the MPIDR through shifting and ORing. It is a collision free
528 * hash though not minimal since some levels might contain a number
529 * of CPUs that is not an exact power of 2 and their bit
530 * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}.
531 */
532 mpidr_hash.shift_aff[0] = fs[0];
533 mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0];
534 mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] -
535 (bits[1] + bits[0]);
536 mpidr_hash.mask = mask;
537 mpidr_hash.bits = bits[2] + bits[1] + bits[0];
538 pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n",
539 mpidr_hash.shift_aff[0],
540 mpidr_hash.shift_aff[1],
541 mpidr_hash.shift_aff[2],
542 mpidr_hash.mask,
543 mpidr_hash.bits);
544 /*
545 * 4x is an arbitrary value used to warn on a hash table much bigger
546 * than expected on most systems.
547 */
548 if (mpidr_hash_size() > 4 * num_possible_cpus())
549 pr_warn("Large number of MPIDR hash buckets detected\n");
550 sync_cache_w(&mpidr_hash);
551 }
552 #endif
553
554 static void __init setup_processor(void)
555 {
556 struct proc_info_list *list;
557
558 /*
559 * locate processor in the list of supported processor
560 * types. The linker builds this table for us from the
561 * entries in arch/arm/mm/proc-*.S
562 */
563 list = lookup_processor_type(read_cpuid_id());
564 if (!list) {
565 printk("CPU configuration botched (ID %08x), unable "
566 "to continue.\n", read_cpuid_id());
567 while (1);
568 }
569
570 cpu_name = list->cpu_name;
571 __cpu_architecture = __get_cpu_architecture();
572
573 #ifdef MULTI_CPU
574 processor = *list->proc;
575 #endif
576 #ifdef MULTI_TLB
577 cpu_tlb = *list->tlb;
578 #endif
579 #ifdef MULTI_USER
580 cpu_user = *list->user;
581 #endif
582 #ifdef MULTI_CACHE
583 cpu_cache = *list->cache;
584 #endif
585
586 printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
587 cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
588 proc_arch[cpu_architecture()], cr_alignment);
589
590 snprintf(init_utsname()->machine, __NEW_UTS_LEN + 1, "%s%c",
591 list->arch_name, ENDIANNESS);
592 snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c",
593 list->elf_name, ENDIANNESS);
594 elf_hwcap = list->elf_hwcap;
595
596 cpuid_init_hwcaps();
597
598 #ifndef CONFIG_ARM_THUMB
599 elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT);
600 #endif
601
602 feat_v6_fixup();
603
604 cacheid_init();
605 cpu_init();
606 }
607
608 void __init dump_machine_table(void)
609 {
610 struct machine_desc *p;
611
612 early_print("Available machine support:\n\nID (hex)\tNAME\n");
613 for_each_machine_desc(p)
614 early_print("%08x\t%s\n", p->nr, p->name);
615
616 early_print("\nPlease check your kernel config and/or bootloader.\n");
617
618 while (true)
619 /* can't use cpu_relax() here as it may require MMU setup */;
620 }
621
622 int __init arm_add_memory(phys_addr_t start, phys_addr_t size)
623 {
624 struct membank *bank = &meminfo.bank[meminfo.nr_banks];
625
626 if (meminfo.nr_banks >= NR_BANKS) {
627 printk(KERN_CRIT "NR_BANKS too low, "
628 "ignoring memory at 0x%08llx\n", (long long)start);
629 return -EINVAL;
630 }
631
632 /*
633 * Ensure that start/size are aligned to a page boundary.
634 * Size is appropriately rounded down, start is rounded up.
635 */
636 size -= start & ~PAGE_MASK;
637 bank->start = PAGE_ALIGN(start);
638
639 #ifndef CONFIG_ARM_LPAE
640 if (bank->start + size < bank->start) {
641 printk(KERN_CRIT "Truncating memory at 0x%08llx to fit in "
642 "32-bit physical address space\n", (long long)start);
643 /*
644 * To ensure bank->start + bank->size is representable in
645 * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB.
646 * This means we lose a page after masking.
647 */
648 size = ULONG_MAX - bank->start;
649 }
650 #endif
651
652 bank->size = size & ~(phys_addr_t)(PAGE_SIZE - 1);
653
654 /*
655 * Check whether this memory region has non-zero size or
656 * invalid node number.
657 */
658 if (bank->size == 0)
659 return -EINVAL;
660
661 meminfo.nr_banks++;
662 return 0;
663 }
664
665 /*
666 * Pick out the memory size. We look for mem=size@start,
667 * where start and size are "size[KkMm]"
668 */
669 static int __init early_mem(char *p)
670 {
671 static int usermem __initdata = 0;
672 phys_addr_t size;
673 phys_addr_t start;
674 char *endp;
675
676 /*
677 * If the user specifies memory size, we
678 * blow away any automatically generated
679 * size.
680 */
681 if (usermem == 0) {
682 usermem = 1;
683 meminfo.nr_banks = 0;
684 }
685
686 start = PHYS_OFFSET;
687 size = memparse(p, &endp);
688 if (*endp == '@')
689 start = memparse(endp + 1, NULL);
690
691 arm_add_memory(start, size);
692
693 return 0;
694 }
695 early_param("mem", early_mem);
696
697 static void __init request_standard_resources(struct machine_desc *mdesc)
698 {
699 struct memblock_region *region;
700 struct resource *res;
701
702 kernel_code.start = virt_to_phys(_text);
703 kernel_code.end = virt_to_phys(_etext - 1);
704 kernel_data.start = virt_to_phys(_sdata);
705 kernel_data.end = virt_to_phys(_end - 1);
706
707 for_each_memblock(memory, region) {
708 res = alloc_bootmem_low(sizeof(*res));
709 res->name = "System RAM";
710 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
711 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
712 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
713
714 request_resource(&iomem_resource, res);
715
716 if (kernel_code.start >= res->start &&
717 kernel_code.end <= res->end)
718 request_resource(res, &kernel_code);
719 if (kernel_data.start >= res->start &&
720 kernel_data.end <= res->end)
721 request_resource(res, &kernel_data);
722 }
723
724 if (mdesc->video_start) {
725 video_ram.start = mdesc->video_start;
726 video_ram.end = mdesc->video_end;
727 request_resource(&iomem_resource, &video_ram);
728 }
729
730 /*
731 * Some machines don't have the possibility of ever
732 * possessing lp0, lp1 or lp2
733 */
734 if (mdesc->reserve_lp0)
735 request_resource(&ioport_resource, &lp0);
736 if (mdesc->reserve_lp1)
737 request_resource(&ioport_resource, &lp1);
738 if (mdesc->reserve_lp2)
739 request_resource(&ioport_resource, &lp2);
740 }
741
742 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
743 struct screen_info screen_info = {
744 .orig_video_lines = 30,
745 .orig_video_cols = 80,
746 .orig_video_mode = 0,
747 .orig_video_ega_bx = 0,
748 .orig_video_isVGA = 1,
749 .orig_video_points = 8
750 };
751 #endif
752
753 static int __init customize_machine(void)
754 {
755 /*
756 * customizes platform devices, or adds new ones
757 * On DT based machines, we fall back to populating the
758 * machine from the device tree, if no callback is provided,
759 * otherwise we would always need an init_machine callback.
760 */
761 if (machine_desc->init_machine)
762 machine_desc->init_machine();
763 #ifdef CONFIG_OF
764 else
765 of_platform_populate(NULL, of_default_bus_match_table,
766 NULL, NULL);
767 #endif
768 return 0;
769 }
770 arch_initcall(customize_machine);
771
772 static int __init init_machine_late(void)
773 {
774 if (machine_desc->init_late)
775 machine_desc->init_late();
776 return 0;
777 }
778 late_initcall(init_machine_late);
779
780 #ifdef CONFIG_KEXEC
781 static inline unsigned long long get_total_mem(void)
782 {
783 unsigned long total;
784
785 total = max_low_pfn - min_low_pfn;
786 return total << PAGE_SHIFT;
787 }
788
789 /**
790 * reserve_crashkernel() - reserves memory are for crash kernel
791 *
792 * This function reserves memory area given in "crashkernel=" kernel command
793 * line parameter. The memory reserved is used by a dump capture kernel when
794 * primary kernel is crashing.
795 */
796 static void __init reserve_crashkernel(void)
797 {
798 unsigned long long crash_size, crash_base;
799 unsigned long long total_mem;
800 int ret;
801
802 total_mem = get_total_mem();
803 ret = parse_crashkernel(boot_command_line, total_mem,
804 &crash_size, &crash_base);
805 if (ret)
806 return;
807
808 ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
809 if (ret < 0) {
810 printk(KERN_WARNING "crashkernel reservation failed - "
811 "memory is in use (0x%lx)\n", (unsigned long)crash_base);
812 return;
813 }
814
815 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
816 "for crashkernel (System RAM: %ldMB)\n",
817 (unsigned long)(crash_size >> 20),
818 (unsigned long)(crash_base >> 20),
819 (unsigned long)(total_mem >> 20));
820
821 crashk_res.start = crash_base;
822 crashk_res.end = crash_base + crash_size - 1;
823 insert_resource(&iomem_resource, &crashk_res);
824 }
825 #else
826 static inline void reserve_crashkernel(void) {}
827 #endif /* CONFIG_KEXEC */
828
829 static int __init meminfo_cmp(const void *_a, const void *_b)
830 {
831 const struct membank *a = _a, *b = _b;
832 long cmp = bank_pfn_start(a) - bank_pfn_start(b);
833 return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
834 }
835
836 void __init hyp_mode_check(void)
837 {
838 #ifdef CONFIG_ARM_VIRT_EXT
839 if (is_hyp_mode_available()) {
840 pr_info("CPU: All CPU(s) started in HYP mode.\n");
841 pr_info("CPU: Virtualization extensions available.\n");
842 } else if (is_hyp_mode_mismatched()) {
843 pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n",
844 __boot_cpu_mode & MODE_MASK);
845 pr_warn("CPU: This may indicate a broken bootloader or firmware.\n");
846 } else
847 pr_info("CPU: All CPU(s) started in SVC mode.\n");
848 #endif
849 }
850
851 void __init setup_arch(char **cmdline_p)
852 {
853 struct machine_desc *mdesc;
854
855 setup_processor();
856 mdesc = setup_machine_fdt(__atags_pointer);
857 if (!mdesc)
858 mdesc = setup_machine_tags(__atags_pointer, __machine_arch_type);
859 machine_desc = mdesc;
860 machine_name = mdesc->name;
861
862 setup_dma_zone(mdesc);
863
864 if (mdesc->reboot_mode != REBOOT_HARD)
865 reboot_mode = mdesc->reboot_mode;
866
867 init_mm.start_code = (unsigned long) _text;
868 init_mm.end_code = (unsigned long) _etext;
869 init_mm.end_data = (unsigned long) _edata;
870 init_mm.brk = (unsigned long) _end;
871
872 /* populate cmd_line too for later use, preserving boot_command_line */
873 strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
874 *cmdline_p = cmd_line;
875
876 parse_early_param();
877
878 sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
879 sanity_check_meminfo();
880 arm_memblock_init(&meminfo, mdesc);
881
882 paging_init(mdesc);
883 request_standard_resources(mdesc);
884
885 if (mdesc->restart)
886 arm_pm_restart = mdesc->restart;
887
888 unflatten_device_tree();
889
890 arm_dt_init_cpu_maps();
891 psci_init();
892 #ifdef CONFIG_SMP
893 if (is_smp()) {
894 if (!mdesc->smp_init || !mdesc->smp_init()) {
895 if (psci_smp_available())
896 smp_set_ops(&psci_smp_ops);
897 else if (mdesc->smp)
898 smp_set_ops(mdesc->smp);
899 }
900 smp_init_cpus();
901 smp_build_mpidr_hash();
902 }
903 #endif
904
905 if (!is_smp())
906 hyp_mode_check();
907
908 reserve_crashkernel();
909
910 #ifdef CONFIG_MULTI_IRQ_HANDLER
911 handle_arch_irq = mdesc->handle_irq;
912 #endif
913
914 #ifdef CONFIG_VT
915 #if defined(CONFIG_VGA_CONSOLE)
916 conswitchp = &vga_con;
917 #elif defined(CONFIG_DUMMY_CONSOLE)
918 conswitchp = &dummy_con;
919 #endif
920 #endif
921
922 if (mdesc->init_early)
923 mdesc->init_early();
924 }
925
926
927 static int __init topology_init(void)
928 {
929 int cpu;
930
931 for_each_possible_cpu(cpu) {
932 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
933 cpuinfo->cpu.hotpluggable = 1;
934 register_cpu(&cpuinfo->cpu, cpu);
935 }
936
937 return 0;
938 }
939 subsys_initcall(topology_init);
940
941 #ifdef CONFIG_HAVE_PROC_CPU
942 static int __init proc_cpu_init(void)
943 {
944 struct proc_dir_entry *res;
945
946 res = proc_mkdir("cpu", NULL);
947 if (!res)
948 return -ENOMEM;
949 return 0;
950 }
951 fs_initcall(proc_cpu_init);
952 #endif
953
954 static const char *hwcap_str[] = {
955 "swp",
956 "half",
957 "thumb",
958 "26bit",
959 "fastmult",
960 "fpa",
961 "vfp",
962 "edsp",
963 "java",
964 "iwmmxt",
965 "crunch",
966 "thumbee",
967 "neon",
968 "vfpv3",
969 "vfpv3d16",
970 "tls",
971 "vfpv4",
972 "idiva",
973 "idivt",
974 "lpae",
975 NULL
976 };
977
978 static int c_show(struct seq_file *m, void *v)
979 {
980 int i, j;
981 u32 cpuid;
982
983 for_each_online_cpu(i) {
984 /*
985 * glibc reads /proc/cpuinfo to determine the number of
986 * online processors, looking for lines beginning with
987 * "processor". Give glibc what it expects.
988 */
989 seq_printf(m, "processor\t: %d\n", i);
990 cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id();
991 seq_printf(m, "model name\t: %s rev %d (%s)\n",
992 cpu_name, cpuid & 15, elf_platform);
993
994 #if defined(CONFIG_SMP)
995 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
996 per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
997 (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
998 #else
999 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
1000 loops_per_jiffy / (500000/HZ),
1001 (loops_per_jiffy / (5000/HZ)) % 100);
1002 #endif
1003 /* dump out the processor features */
1004 seq_puts(m, "Features\t: ");
1005
1006 for (j = 0; hwcap_str[j]; j++)
1007 if (elf_hwcap & (1 << j))
1008 seq_printf(m, "%s ", hwcap_str[j]);
1009
1010 seq_printf(m, "\nCPU implementer\t: 0x%02x\n", cpuid >> 24);
1011 seq_printf(m, "CPU architecture: %s\n",
1012 proc_arch[cpu_architecture()]);
1013
1014 if ((cpuid & 0x0008f000) == 0x00000000) {
1015 /* pre-ARM7 */
1016 seq_printf(m, "CPU part\t: %07x\n", cpuid >> 4);
1017 } else {
1018 if ((cpuid & 0x0008f000) == 0x00007000) {
1019 /* ARM7 */
1020 seq_printf(m, "CPU variant\t: 0x%02x\n",
1021 (cpuid >> 16) & 127);
1022 } else {
1023 /* post-ARM7 */
1024 seq_printf(m, "CPU variant\t: 0x%x\n",
1025 (cpuid >> 20) & 15);
1026 }
1027 seq_printf(m, "CPU part\t: 0x%03x\n",
1028 (cpuid >> 4) & 0xfff);
1029 }
1030 seq_printf(m, "CPU revision\t: %d\n\n", cpuid & 15);
1031 }
1032
1033 seq_printf(m, "Hardware\t: %s\n", machine_name);
1034 seq_printf(m, "Revision\t: %04x\n", system_rev);
1035 seq_printf(m, "Serial\t\t: %08x%08x\n",
1036 system_serial_high, system_serial_low);
1037
1038 return 0;
1039 }
1040
1041 static void *c_start(struct seq_file *m, loff_t *pos)
1042 {
1043 return *pos < 1 ? (void *)1 : NULL;
1044 }
1045
1046 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1047 {
1048 ++*pos;
1049 return NULL;
1050 }
1051
1052 static void c_stop(struct seq_file *m, void *v)
1053 {
1054 }
1055
1056 const struct seq_operations cpuinfo_op = {
1057 .start = c_start,
1058 .next = c_next,
1059 .stop = c_stop,
1060 .show = c_show
1061 };
This page took 0.063826 seconds and 5 git commands to generate.