Merge remote-tracking branches 'spi/topic/img-spfi', 'spi/topic/imx', 'spi/topic...
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68 BUG_ON(preemptible());
69 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74 * Must be called from non-preemptible context
75 */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78 BUG_ON(preemptible());
79 return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84 */
85 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
86 {
87 return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void)
91 {
92 return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 int kvm_arch_hardware_setup(void)
101 {
102 return 0;
103 }
104
105 void kvm_arch_check_processor_compat(void *rtn)
106 {
107 *(int *)rtn = 0;
108 }
109
110
111 /**
112 * kvm_arch_init_vm - initializes a VM data structure
113 * @kvm: pointer to the KVM struct
114 */
115 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
116 {
117 int ret = 0;
118
119 if (type)
120 return -EINVAL;
121
122 ret = kvm_alloc_stage2_pgd(kvm);
123 if (ret)
124 goto out_fail_alloc;
125
126 ret = create_hyp_mappings(kvm, kvm + 1);
127 if (ret)
128 goto out_free_stage2_pgd;
129
130 kvm_timer_init(kvm);
131
132 /* Mark the initial VMID generation invalid */
133 kvm->arch.vmid_gen = 0;
134
135 return ret;
136 out_free_stage2_pgd:
137 kvm_free_stage2_pgd(kvm);
138 out_fail_alloc:
139 return ret;
140 }
141
142 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
143 {
144 return VM_FAULT_SIGBUS;
145 }
146
147
148 /**
149 * kvm_arch_destroy_vm - destroy the VM data structure
150 * @kvm: pointer to the KVM struct
151 */
152 void kvm_arch_destroy_vm(struct kvm *kvm)
153 {
154 int i;
155
156 kvm_free_stage2_pgd(kvm);
157
158 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
159 if (kvm->vcpus[i]) {
160 kvm_arch_vcpu_free(kvm->vcpus[i]);
161 kvm->vcpus[i] = NULL;
162 }
163 }
164
165 kvm_vgic_destroy(kvm);
166 }
167
168 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
169 {
170 int r;
171 switch (ext) {
172 case KVM_CAP_IRQCHIP:
173 r = vgic_present;
174 break;
175 case KVM_CAP_DEVICE_CTRL:
176 case KVM_CAP_USER_MEMORY:
177 case KVM_CAP_SYNC_MMU:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179 case KVM_CAP_ONE_REG:
180 case KVM_CAP_ARM_PSCI:
181 case KVM_CAP_ARM_PSCI_0_2:
182 case KVM_CAP_READONLY_MEM:
183 r = 1;
184 break;
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 break;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 r = 1;
190 break;
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
193 break;
194 case KVM_CAP_MAX_VCPUS:
195 r = KVM_MAX_VCPUS;
196 break;
197 default:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
199 break;
200 }
201 return r;
202 }
203
204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
206 {
207 return -EINVAL;
208 }
209
210
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213 int err;
214 struct kvm_vcpu *vcpu;
215
216 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217 err = -EBUSY;
218 goto out;
219 }
220
221 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
222 if (!vcpu) {
223 err = -ENOMEM;
224 goto out;
225 }
226
227 err = kvm_vcpu_init(vcpu, kvm, id);
228 if (err)
229 goto free_vcpu;
230
231 err = create_hyp_mappings(vcpu, vcpu + 1);
232 if (err)
233 goto vcpu_uninit;
234
235 return vcpu;
236 vcpu_uninit:
237 kvm_vcpu_uninit(vcpu);
238 free_vcpu:
239 kmem_cache_free(kvm_vcpu_cache, vcpu);
240 out:
241 return ERR_PTR(err);
242 }
243
244 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
245 {
246 return 0;
247 }
248
249 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
250 {
251 kvm_mmu_free_memory_caches(vcpu);
252 kvm_timer_vcpu_terminate(vcpu);
253 kvm_vgic_vcpu_destroy(vcpu);
254 kmem_cache_free(kvm_vcpu_cache, vcpu);
255 }
256
257 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
258 {
259 kvm_arch_vcpu_free(vcpu);
260 }
261
262 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
263 {
264 return 0;
265 }
266
267 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
268 {
269 /* Force users to call KVM_ARM_VCPU_INIT */
270 vcpu->arch.target = -1;
271 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
272
273 /* Set up the timer */
274 kvm_timer_vcpu_init(vcpu);
275
276 return 0;
277 }
278
279 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
280 {
281 vcpu->cpu = cpu;
282 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
283
284 kvm_arm_set_running_vcpu(vcpu);
285 }
286
287 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
288 {
289 /*
290 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
291 * if the vcpu is no longer assigned to a cpu. This is used for the
292 * optimized make_all_cpus_request path.
293 */
294 vcpu->cpu = -1;
295
296 kvm_arm_set_running_vcpu(NULL);
297 }
298
299 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
300 struct kvm_guest_debug *dbg)
301 {
302 return -EINVAL;
303 }
304
305
306 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
307 struct kvm_mp_state *mp_state)
308 {
309 return -EINVAL;
310 }
311
312 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
313 struct kvm_mp_state *mp_state)
314 {
315 return -EINVAL;
316 }
317
318 /**
319 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
320 * @v: The VCPU pointer
321 *
322 * If the guest CPU is not waiting for interrupts or an interrupt line is
323 * asserted, the CPU is by definition runnable.
324 */
325 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
326 {
327 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
328 }
329
330 /* Just ensure a guest exit from a particular CPU */
331 static void exit_vm_noop(void *info)
332 {
333 }
334
335 void force_vm_exit(const cpumask_t *mask)
336 {
337 smp_call_function_many(mask, exit_vm_noop, NULL, true);
338 }
339
340 /**
341 * need_new_vmid_gen - check that the VMID is still valid
342 * @kvm: The VM's VMID to checkt
343 *
344 * return true if there is a new generation of VMIDs being used
345 *
346 * The hardware supports only 256 values with the value zero reserved for the
347 * host, so we check if an assigned value belongs to a previous generation,
348 * which which requires us to assign a new value. If we're the first to use a
349 * VMID for the new generation, we must flush necessary caches and TLBs on all
350 * CPUs.
351 */
352 static bool need_new_vmid_gen(struct kvm *kvm)
353 {
354 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
355 }
356
357 /**
358 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
359 * @kvm The guest that we are about to run
360 *
361 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
362 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
363 * caches and TLBs.
364 */
365 static void update_vttbr(struct kvm *kvm)
366 {
367 phys_addr_t pgd_phys;
368 u64 vmid;
369
370 if (!need_new_vmid_gen(kvm))
371 return;
372
373 spin_lock(&kvm_vmid_lock);
374
375 /*
376 * We need to re-check the vmid_gen here to ensure that if another vcpu
377 * already allocated a valid vmid for this vm, then this vcpu should
378 * use the same vmid.
379 */
380 if (!need_new_vmid_gen(kvm)) {
381 spin_unlock(&kvm_vmid_lock);
382 return;
383 }
384
385 /* First user of a new VMID generation? */
386 if (unlikely(kvm_next_vmid == 0)) {
387 atomic64_inc(&kvm_vmid_gen);
388 kvm_next_vmid = 1;
389
390 /*
391 * On SMP we know no other CPUs can use this CPU's or each
392 * other's VMID after force_vm_exit returns since the
393 * kvm_vmid_lock blocks them from reentry to the guest.
394 */
395 force_vm_exit(cpu_all_mask);
396 /*
397 * Now broadcast TLB + ICACHE invalidation over the inner
398 * shareable domain to make sure all data structures are
399 * clean.
400 */
401 kvm_call_hyp(__kvm_flush_vm_context);
402 }
403
404 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
405 kvm->arch.vmid = kvm_next_vmid;
406 kvm_next_vmid++;
407
408 /* update vttbr to be used with the new vmid */
409 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
410 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
411 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
412 kvm->arch.vttbr = pgd_phys | vmid;
413
414 spin_unlock(&kvm_vmid_lock);
415 }
416
417 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
418 {
419 struct kvm *kvm = vcpu->kvm;
420 int ret;
421
422 if (likely(vcpu->arch.has_run_once))
423 return 0;
424
425 vcpu->arch.has_run_once = true;
426
427 /*
428 * Map the VGIC hardware resources before running a vcpu the first
429 * time on this VM.
430 */
431 if (unlikely(!vgic_ready(kvm))) {
432 ret = kvm_vgic_map_resources(kvm);
433 if (ret)
434 return ret;
435 }
436
437 /*
438 * Enable the arch timers only if we have an in-kernel VGIC
439 * and it has been properly initialized, since we cannot handle
440 * interrupts from the virtual timer with a userspace gic.
441 */
442 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
443 kvm_timer_enable(kvm);
444
445 return 0;
446 }
447
448 static void vcpu_pause(struct kvm_vcpu *vcpu)
449 {
450 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
451
452 wait_event_interruptible(*wq, !vcpu->arch.pause);
453 }
454
455 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
456 {
457 return vcpu->arch.target >= 0;
458 }
459
460 /**
461 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
462 * @vcpu: The VCPU pointer
463 * @run: The kvm_run structure pointer used for userspace state exchange
464 *
465 * This function is called through the VCPU_RUN ioctl called from user space. It
466 * will execute VM code in a loop until the time slice for the process is used
467 * or some emulation is needed from user space in which case the function will
468 * return with return value 0 and with the kvm_run structure filled in with the
469 * required data for the requested emulation.
470 */
471 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
472 {
473 int ret;
474 sigset_t sigsaved;
475
476 if (unlikely(!kvm_vcpu_initialized(vcpu)))
477 return -ENOEXEC;
478
479 ret = kvm_vcpu_first_run_init(vcpu);
480 if (ret)
481 return ret;
482
483 if (run->exit_reason == KVM_EXIT_MMIO) {
484 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
485 if (ret)
486 return ret;
487 }
488
489 if (vcpu->sigset_active)
490 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
491
492 ret = 1;
493 run->exit_reason = KVM_EXIT_UNKNOWN;
494 while (ret > 0) {
495 /*
496 * Check conditions before entering the guest
497 */
498 cond_resched();
499
500 update_vttbr(vcpu->kvm);
501
502 if (vcpu->arch.pause)
503 vcpu_pause(vcpu);
504
505 kvm_vgic_flush_hwstate(vcpu);
506 kvm_timer_flush_hwstate(vcpu);
507
508 local_irq_disable();
509
510 /*
511 * Re-check atomic conditions
512 */
513 if (signal_pending(current)) {
514 ret = -EINTR;
515 run->exit_reason = KVM_EXIT_INTR;
516 }
517
518 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
519 local_irq_enable();
520 kvm_timer_sync_hwstate(vcpu);
521 kvm_vgic_sync_hwstate(vcpu);
522 continue;
523 }
524
525 /**************************************************************
526 * Enter the guest
527 */
528 trace_kvm_entry(*vcpu_pc(vcpu));
529 kvm_guest_enter();
530 vcpu->mode = IN_GUEST_MODE;
531
532 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
533
534 vcpu->mode = OUTSIDE_GUEST_MODE;
535 kvm_guest_exit();
536 trace_kvm_exit(*vcpu_pc(vcpu));
537 /*
538 * We may have taken a host interrupt in HYP mode (ie
539 * while executing the guest). This interrupt is still
540 * pending, as we haven't serviced it yet!
541 *
542 * We're now back in SVC mode, with interrupts
543 * disabled. Enabling the interrupts now will have
544 * the effect of taking the interrupt again, in SVC
545 * mode this time.
546 */
547 local_irq_enable();
548
549 /*
550 * Back from guest
551 *************************************************************/
552
553 kvm_timer_sync_hwstate(vcpu);
554 kvm_vgic_sync_hwstate(vcpu);
555
556 ret = handle_exit(vcpu, run, ret);
557 }
558
559 if (vcpu->sigset_active)
560 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
561 return ret;
562 }
563
564 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
565 {
566 int bit_index;
567 bool set;
568 unsigned long *ptr;
569
570 if (number == KVM_ARM_IRQ_CPU_IRQ)
571 bit_index = __ffs(HCR_VI);
572 else /* KVM_ARM_IRQ_CPU_FIQ */
573 bit_index = __ffs(HCR_VF);
574
575 ptr = (unsigned long *)&vcpu->arch.irq_lines;
576 if (level)
577 set = test_and_set_bit(bit_index, ptr);
578 else
579 set = test_and_clear_bit(bit_index, ptr);
580
581 /*
582 * If we didn't change anything, no need to wake up or kick other CPUs
583 */
584 if (set == level)
585 return 0;
586
587 /*
588 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
589 * trigger a world-switch round on the running physical CPU to set the
590 * virtual IRQ/FIQ fields in the HCR appropriately.
591 */
592 kvm_vcpu_kick(vcpu);
593
594 return 0;
595 }
596
597 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
598 bool line_status)
599 {
600 u32 irq = irq_level->irq;
601 unsigned int irq_type, vcpu_idx, irq_num;
602 int nrcpus = atomic_read(&kvm->online_vcpus);
603 struct kvm_vcpu *vcpu = NULL;
604 bool level = irq_level->level;
605
606 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
607 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
608 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
609
610 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
611
612 switch (irq_type) {
613 case KVM_ARM_IRQ_TYPE_CPU:
614 if (irqchip_in_kernel(kvm))
615 return -ENXIO;
616
617 if (vcpu_idx >= nrcpus)
618 return -EINVAL;
619
620 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
621 if (!vcpu)
622 return -EINVAL;
623
624 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
625 return -EINVAL;
626
627 return vcpu_interrupt_line(vcpu, irq_num, level);
628 case KVM_ARM_IRQ_TYPE_PPI:
629 if (!irqchip_in_kernel(kvm))
630 return -ENXIO;
631
632 if (vcpu_idx >= nrcpus)
633 return -EINVAL;
634
635 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
636 if (!vcpu)
637 return -EINVAL;
638
639 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
640 return -EINVAL;
641
642 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
643 case KVM_ARM_IRQ_TYPE_SPI:
644 if (!irqchip_in_kernel(kvm))
645 return -ENXIO;
646
647 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
648 irq_num > KVM_ARM_IRQ_GIC_MAX)
649 return -EINVAL;
650
651 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
652 }
653
654 return -EINVAL;
655 }
656
657 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
658 const struct kvm_vcpu_init *init)
659 {
660 unsigned int i;
661 int phys_target = kvm_target_cpu();
662
663 if (init->target != phys_target)
664 return -EINVAL;
665
666 /*
667 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
668 * use the same target.
669 */
670 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
671 return -EINVAL;
672
673 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
674 for (i = 0; i < sizeof(init->features) * 8; i++) {
675 bool set = (init->features[i / 32] & (1 << (i % 32)));
676
677 if (set && i >= KVM_VCPU_MAX_FEATURES)
678 return -ENOENT;
679
680 /*
681 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
682 * use the same feature set.
683 */
684 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
685 test_bit(i, vcpu->arch.features) != set)
686 return -EINVAL;
687
688 if (set)
689 set_bit(i, vcpu->arch.features);
690 }
691
692 vcpu->arch.target = phys_target;
693
694 /* Now we know what it is, we can reset it. */
695 return kvm_reset_vcpu(vcpu);
696 }
697
698
699 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
700 struct kvm_vcpu_init *init)
701 {
702 int ret;
703
704 ret = kvm_vcpu_set_target(vcpu, init);
705 if (ret)
706 return ret;
707
708 /*
709 * Ensure a rebooted VM will fault in RAM pages and detect if the
710 * guest MMU is turned off and flush the caches as needed.
711 */
712 if (vcpu->arch.has_run_once)
713 stage2_unmap_vm(vcpu->kvm);
714
715 vcpu_reset_hcr(vcpu);
716
717 /*
718 * Handle the "start in power-off" case by marking the VCPU as paused.
719 */
720 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
721 vcpu->arch.pause = true;
722 else
723 vcpu->arch.pause = false;
724
725 return 0;
726 }
727
728 long kvm_arch_vcpu_ioctl(struct file *filp,
729 unsigned int ioctl, unsigned long arg)
730 {
731 struct kvm_vcpu *vcpu = filp->private_data;
732 void __user *argp = (void __user *)arg;
733
734 switch (ioctl) {
735 case KVM_ARM_VCPU_INIT: {
736 struct kvm_vcpu_init init;
737
738 if (copy_from_user(&init, argp, sizeof(init)))
739 return -EFAULT;
740
741 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
742 }
743 case KVM_SET_ONE_REG:
744 case KVM_GET_ONE_REG: {
745 struct kvm_one_reg reg;
746
747 if (unlikely(!kvm_vcpu_initialized(vcpu)))
748 return -ENOEXEC;
749
750 if (copy_from_user(&reg, argp, sizeof(reg)))
751 return -EFAULT;
752 if (ioctl == KVM_SET_ONE_REG)
753 return kvm_arm_set_reg(vcpu, &reg);
754 else
755 return kvm_arm_get_reg(vcpu, &reg);
756 }
757 case KVM_GET_REG_LIST: {
758 struct kvm_reg_list __user *user_list = argp;
759 struct kvm_reg_list reg_list;
760 unsigned n;
761
762 if (unlikely(!kvm_vcpu_initialized(vcpu)))
763 return -ENOEXEC;
764
765 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
766 return -EFAULT;
767 n = reg_list.n;
768 reg_list.n = kvm_arm_num_regs(vcpu);
769 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
770 return -EFAULT;
771 if (n < reg_list.n)
772 return -E2BIG;
773 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
774 }
775 default:
776 return -EINVAL;
777 }
778 }
779
780 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
781 {
782 return -EINVAL;
783 }
784
785 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
786 struct kvm_arm_device_addr *dev_addr)
787 {
788 unsigned long dev_id, type;
789
790 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
791 KVM_ARM_DEVICE_ID_SHIFT;
792 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
793 KVM_ARM_DEVICE_TYPE_SHIFT;
794
795 switch (dev_id) {
796 case KVM_ARM_DEVICE_VGIC_V2:
797 if (!vgic_present)
798 return -ENXIO;
799 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
800 default:
801 return -ENODEV;
802 }
803 }
804
805 long kvm_arch_vm_ioctl(struct file *filp,
806 unsigned int ioctl, unsigned long arg)
807 {
808 struct kvm *kvm = filp->private_data;
809 void __user *argp = (void __user *)arg;
810
811 switch (ioctl) {
812 case KVM_CREATE_IRQCHIP: {
813 if (vgic_present)
814 return kvm_vgic_create(kvm);
815 else
816 return -ENXIO;
817 }
818 case KVM_ARM_SET_DEVICE_ADDR: {
819 struct kvm_arm_device_addr dev_addr;
820
821 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
822 return -EFAULT;
823 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
824 }
825 case KVM_ARM_PREFERRED_TARGET: {
826 int err;
827 struct kvm_vcpu_init init;
828
829 err = kvm_vcpu_preferred_target(&init);
830 if (err)
831 return err;
832
833 if (copy_to_user(argp, &init, sizeof(init)))
834 return -EFAULT;
835
836 return 0;
837 }
838 default:
839 return -EINVAL;
840 }
841 }
842
843 static void cpu_init_hyp_mode(void *dummy)
844 {
845 phys_addr_t boot_pgd_ptr;
846 phys_addr_t pgd_ptr;
847 unsigned long hyp_stack_ptr;
848 unsigned long stack_page;
849 unsigned long vector_ptr;
850
851 /* Switch from the HYP stub to our own HYP init vector */
852 __hyp_set_vectors(kvm_get_idmap_vector());
853
854 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
855 pgd_ptr = kvm_mmu_get_httbr();
856 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
857 hyp_stack_ptr = stack_page + PAGE_SIZE;
858 vector_ptr = (unsigned long)__kvm_hyp_vector;
859
860 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
861 }
862
863 static int hyp_init_cpu_notify(struct notifier_block *self,
864 unsigned long action, void *cpu)
865 {
866 switch (action) {
867 case CPU_STARTING:
868 case CPU_STARTING_FROZEN:
869 if (__hyp_get_vectors() == hyp_default_vectors)
870 cpu_init_hyp_mode(NULL);
871 break;
872 }
873
874 return NOTIFY_OK;
875 }
876
877 static struct notifier_block hyp_init_cpu_nb = {
878 .notifier_call = hyp_init_cpu_notify,
879 };
880
881 #ifdef CONFIG_CPU_PM
882 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
883 unsigned long cmd,
884 void *v)
885 {
886 if (cmd == CPU_PM_EXIT &&
887 __hyp_get_vectors() == hyp_default_vectors) {
888 cpu_init_hyp_mode(NULL);
889 return NOTIFY_OK;
890 }
891
892 return NOTIFY_DONE;
893 }
894
895 static struct notifier_block hyp_init_cpu_pm_nb = {
896 .notifier_call = hyp_init_cpu_pm_notifier,
897 };
898
899 static void __init hyp_cpu_pm_init(void)
900 {
901 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
902 }
903 #else
904 static inline void hyp_cpu_pm_init(void)
905 {
906 }
907 #endif
908
909 /**
910 * Inits Hyp-mode on all online CPUs
911 */
912 static int init_hyp_mode(void)
913 {
914 int cpu;
915 int err = 0;
916
917 /*
918 * Allocate Hyp PGD and setup Hyp identity mapping
919 */
920 err = kvm_mmu_init();
921 if (err)
922 goto out_err;
923
924 /*
925 * It is probably enough to obtain the default on one
926 * CPU. It's unlikely to be different on the others.
927 */
928 hyp_default_vectors = __hyp_get_vectors();
929
930 /*
931 * Allocate stack pages for Hypervisor-mode
932 */
933 for_each_possible_cpu(cpu) {
934 unsigned long stack_page;
935
936 stack_page = __get_free_page(GFP_KERNEL);
937 if (!stack_page) {
938 err = -ENOMEM;
939 goto out_free_stack_pages;
940 }
941
942 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
943 }
944
945 /*
946 * Map the Hyp-code called directly from the host
947 */
948 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
949 if (err) {
950 kvm_err("Cannot map world-switch code\n");
951 goto out_free_mappings;
952 }
953
954 /*
955 * Map the Hyp stack pages
956 */
957 for_each_possible_cpu(cpu) {
958 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
959 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
960
961 if (err) {
962 kvm_err("Cannot map hyp stack\n");
963 goto out_free_mappings;
964 }
965 }
966
967 /*
968 * Map the host CPU structures
969 */
970 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
971 if (!kvm_host_cpu_state) {
972 err = -ENOMEM;
973 kvm_err("Cannot allocate host CPU state\n");
974 goto out_free_mappings;
975 }
976
977 for_each_possible_cpu(cpu) {
978 kvm_cpu_context_t *cpu_ctxt;
979
980 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
981 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
982
983 if (err) {
984 kvm_err("Cannot map host CPU state: %d\n", err);
985 goto out_free_context;
986 }
987 }
988
989 /*
990 * Execute the init code on each CPU.
991 */
992 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
993
994 /*
995 * Init HYP view of VGIC
996 */
997 err = kvm_vgic_hyp_init();
998 if (err)
999 goto out_free_context;
1000
1001 #ifdef CONFIG_KVM_ARM_VGIC
1002 vgic_present = true;
1003 #endif
1004
1005 /*
1006 * Init HYP architected timer support
1007 */
1008 err = kvm_timer_hyp_init();
1009 if (err)
1010 goto out_free_mappings;
1011
1012 #ifndef CONFIG_HOTPLUG_CPU
1013 free_boot_hyp_pgd();
1014 #endif
1015
1016 kvm_perf_init();
1017
1018 kvm_info("Hyp mode initialized successfully\n");
1019
1020 return 0;
1021 out_free_context:
1022 free_percpu(kvm_host_cpu_state);
1023 out_free_mappings:
1024 free_hyp_pgds();
1025 out_free_stack_pages:
1026 for_each_possible_cpu(cpu)
1027 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1028 out_err:
1029 kvm_err("error initializing Hyp mode: %d\n", err);
1030 return err;
1031 }
1032
1033 static void check_kvm_target_cpu(void *ret)
1034 {
1035 *(int *)ret = kvm_target_cpu();
1036 }
1037
1038 /**
1039 * Initialize Hyp-mode and memory mappings on all CPUs.
1040 */
1041 int kvm_arch_init(void *opaque)
1042 {
1043 int err;
1044 int ret, cpu;
1045
1046 if (!is_hyp_mode_available()) {
1047 kvm_err("HYP mode not available\n");
1048 return -ENODEV;
1049 }
1050
1051 for_each_online_cpu(cpu) {
1052 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1053 if (ret < 0) {
1054 kvm_err("Error, CPU %d not supported!\n", cpu);
1055 return -ENODEV;
1056 }
1057 }
1058
1059 cpu_notifier_register_begin();
1060
1061 err = init_hyp_mode();
1062 if (err)
1063 goto out_err;
1064
1065 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1066 if (err) {
1067 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1068 goto out_err;
1069 }
1070
1071 cpu_notifier_register_done();
1072
1073 hyp_cpu_pm_init();
1074
1075 kvm_coproc_table_init();
1076 return 0;
1077 out_err:
1078 cpu_notifier_register_done();
1079 return err;
1080 }
1081
1082 /* NOP: Compiling as a module not supported */
1083 void kvm_arch_exit(void)
1084 {
1085 kvm_perf_teardown();
1086 }
1087
1088 static int arm_init(void)
1089 {
1090 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1091 return rc;
1092 }
1093
1094 module_init(arm_init);
This page took 0.089429 seconds and 5 git commands to generate.