arm64: KVM: Introduce per-vcpu kvm device controls
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <asm/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56 static unsigned long hyp_default_vectors;
57
58 /* Per-CPU variable containing the currently running vcpu. */
59 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
60
61 /* The VMID used in the VTTBR */
62 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
63 static u32 kvm_next_vmid;
64 static unsigned int kvm_vmid_bits __read_mostly;
65 static DEFINE_SPINLOCK(kvm_vmid_lock);
66
67 static bool vgic_present;
68
69 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
70 {
71 BUG_ON(preemptible());
72 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
73 }
74
75 /**
76 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
77 * Must be called from non-preemptible context
78 */
79 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
80 {
81 BUG_ON(preemptible());
82 return __this_cpu_read(kvm_arm_running_vcpu);
83 }
84
85 /**
86 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
87 */
88 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
89 {
90 return &kvm_arm_running_vcpu;
91 }
92
93 int kvm_arch_hardware_enable(void)
94 {
95 return 0;
96 }
97
98 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
99 {
100 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_check_processor_compat(void *rtn)
109 {
110 *(int *)rtn = 0;
111 }
112
113
114 /**
115 * kvm_arch_init_vm - initializes a VM data structure
116 * @kvm: pointer to the KVM struct
117 */
118 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
119 {
120 int ret = 0;
121
122 if (type)
123 return -EINVAL;
124
125 ret = kvm_alloc_stage2_pgd(kvm);
126 if (ret)
127 goto out_fail_alloc;
128
129 ret = create_hyp_mappings(kvm, kvm + 1);
130 if (ret)
131 goto out_free_stage2_pgd;
132
133 kvm_vgic_early_init(kvm);
134 kvm_timer_init(kvm);
135
136 /* Mark the initial VMID generation invalid */
137 kvm->arch.vmid_gen = 0;
138
139 /* The maximum number of VCPUs is limited by the host's GIC model */
140 kvm->arch.max_vcpus = vgic_present ?
141 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
142
143 return ret;
144 out_free_stage2_pgd:
145 kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147 return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152 return VM_FAULT_SIGBUS;
153 }
154
155
156 /**
157 * kvm_arch_destroy_vm - destroy the VM data structure
158 * @kvm: pointer to the KVM struct
159 */
160 void kvm_arch_destroy_vm(struct kvm *kvm)
161 {
162 int i;
163
164 kvm_free_stage2_pgd(kvm);
165
166 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
167 if (kvm->vcpus[i]) {
168 kvm_arch_vcpu_free(kvm->vcpus[i]);
169 kvm->vcpus[i] = NULL;
170 }
171 }
172
173 kvm_vgic_destroy(kvm);
174 }
175
176 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
177 {
178 int r;
179 switch (ext) {
180 case KVM_CAP_IRQCHIP:
181 r = vgic_present;
182 break;
183 case KVM_CAP_IOEVENTFD:
184 case KVM_CAP_DEVICE_CTRL:
185 case KVM_CAP_USER_MEMORY:
186 case KVM_CAP_SYNC_MMU:
187 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
188 case KVM_CAP_ONE_REG:
189 case KVM_CAP_ARM_PSCI:
190 case KVM_CAP_ARM_PSCI_0_2:
191 case KVM_CAP_READONLY_MEM:
192 case KVM_CAP_MP_STATE:
193 r = 1;
194 break;
195 case KVM_CAP_COALESCED_MMIO:
196 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
197 break;
198 case KVM_CAP_ARM_SET_DEVICE_ADDR:
199 r = 1;
200 break;
201 case KVM_CAP_NR_VCPUS:
202 r = num_online_cpus();
203 break;
204 case KVM_CAP_MAX_VCPUS:
205 r = KVM_MAX_VCPUS;
206 break;
207 default:
208 r = kvm_arch_dev_ioctl_check_extension(ext);
209 break;
210 }
211 return r;
212 }
213
214 long kvm_arch_dev_ioctl(struct file *filp,
215 unsigned int ioctl, unsigned long arg)
216 {
217 return -EINVAL;
218 }
219
220
221 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
222 {
223 int err;
224 struct kvm_vcpu *vcpu;
225
226 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
227 err = -EBUSY;
228 goto out;
229 }
230
231 if (id >= kvm->arch.max_vcpus) {
232 err = -EINVAL;
233 goto out;
234 }
235
236 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
237 if (!vcpu) {
238 err = -ENOMEM;
239 goto out;
240 }
241
242 err = kvm_vcpu_init(vcpu, kvm, id);
243 if (err)
244 goto free_vcpu;
245
246 err = create_hyp_mappings(vcpu, vcpu + 1);
247 if (err)
248 goto vcpu_uninit;
249
250 return vcpu;
251 vcpu_uninit:
252 kvm_vcpu_uninit(vcpu);
253 free_vcpu:
254 kmem_cache_free(kvm_vcpu_cache, vcpu);
255 out:
256 return ERR_PTR(err);
257 }
258
259 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
260 {
261 kvm_vgic_vcpu_early_init(vcpu);
262 }
263
264 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
265 {
266 kvm_mmu_free_memory_caches(vcpu);
267 kvm_timer_vcpu_terminate(vcpu);
268 kvm_vgic_vcpu_destroy(vcpu);
269 kvm_pmu_vcpu_destroy(vcpu);
270 kmem_cache_free(kvm_vcpu_cache, vcpu);
271 }
272
273 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
274 {
275 kvm_arch_vcpu_free(vcpu);
276 }
277
278 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
279 {
280 return kvm_timer_should_fire(vcpu);
281 }
282
283 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
284 {
285 kvm_timer_schedule(vcpu);
286 }
287
288 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
289 {
290 kvm_timer_unschedule(vcpu);
291 }
292
293 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
294 {
295 /* Force users to call KVM_ARM_VCPU_INIT */
296 vcpu->arch.target = -1;
297 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
298
299 /* Set up the timer */
300 kvm_timer_vcpu_init(vcpu);
301
302 kvm_arm_reset_debug_ptr(vcpu);
303
304 return 0;
305 }
306
307 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
308 {
309 vcpu->cpu = cpu;
310 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
311
312 kvm_arm_set_running_vcpu(vcpu);
313 }
314
315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
316 {
317 /*
318 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
319 * if the vcpu is no longer assigned to a cpu. This is used for the
320 * optimized make_all_cpus_request path.
321 */
322 vcpu->cpu = -1;
323
324 kvm_arm_set_running_vcpu(NULL);
325 }
326
327 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
328 struct kvm_mp_state *mp_state)
329 {
330 if (vcpu->arch.power_off)
331 mp_state->mp_state = KVM_MP_STATE_STOPPED;
332 else
333 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
334
335 return 0;
336 }
337
338 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
339 struct kvm_mp_state *mp_state)
340 {
341 switch (mp_state->mp_state) {
342 case KVM_MP_STATE_RUNNABLE:
343 vcpu->arch.power_off = false;
344 break;
345 case KVM_MP_STATE_STOPPED:
346 vcpu->arch.power_off = true;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 return 0;
353 }
354
355 /**
356 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
357 * @v: The VCPU pointer
358 *
359 * If the guest CPU is not waiting for interrupts or an interrupt line is
360 * asserted, the CPU is by definition runnable.
361 */
362 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
363 {
364 return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
365 && !v->arch.power_off && !v->arch.pause);
366 }
367
368 /* Just ensure a guest exit from a particular CPU */
369 static void exit_vm_noop(void *info)
370 {
371 }
372
373 void force_vm_exit(const cpumask_t *mask)
374 {
375 smp_call_function_many(mask, exit_vm_noop, NULL, true);
376 }
377
378 /**
379 * need_new_vmid_gen - check that the VMID is still valid
380 * @kvm: The VM's VMID to checkt
381 *
382 * return true if there is a new generation of VMIDs being used
383 *
384 * The hardware supports only 256 values with the value zero reserved for the
385 * host, so we check if an assigned value belongs to a previous generation,
386 * which which requires us to assign a new value. If we're the first to use a
387 * VMID for the new generation, we must flush necessary caches and TLBs on all
388 * CPUs.
389 */
390 static bool need_new_vmid_gen(struct kvm *kvm)
391 {
392 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
393 }
394
395 /**
396 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
397 * @kvm The guest that we are about to run
398 *
399 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
400 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
401 * caches and TLBs.
402 */
403 static void update_vttbr(struct kvm *kvm)
404 {
405 phys_addr_t pgd_phys;
406 u64 vmid;
407
408 if (!need_new_vmid_gen(kvm))
409 return;
410
411 spin_lock(&kvm_vmid_lock);
412
413 /*
414 * We need to re-check the vmid_gen here to ensure that if another vcpu
415 * already allocated a valid vmid for this vm, then this vcpu should
416 * use the same vmid.
417 */
418 if (!need_new_vmid_gen(kvm)) {
419 spin_unlock(&kvm_vmid_lock);
420 return;
421 }
422
423 /* First user of a new VMID generation? */
424 if (unlikely(kvm_next_vmid == 0)) {
425 atomic64_inc(&kvm_vmid_gen);
426 kvm_next_vmid = 1;
427
428 /*
429 * On SMP we know no other CPUs can use this CPU's or each
430 * other's VMID after force_vm_exit returns since the
431 * kvm_vmid_lock blocks them from reentry to the guest.
432 */
433 force_vm_exit(cpu_all_mask);
434 /*
435 * Now broadcast TLB + ICACHE invalidation over the inner
436 * shareable domain to make sure all data structures are
437 * clean.
438 */
439 kvm_call_hyp(__kvm_flush_vm_context);
440 }
441
442 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
443 kvm->arch.vmid = kvm_next_vmid;
444 kvm_next_vmid++;
445 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
446
447 /* update vttbr to be used with the new vmid */
448 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
449 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
450 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
451 kvm->arch.vttbr = pgd_phys | vmid;
452
453 spin_unlock(&kvm_vmid_lock);
454 }
455
456 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
457 {
458 struct kvm *kvm = vcpu->kvm;
459 int ret;
460
461 if (likely(vcpu->arch.has_run_once))
462 return 0;
463
464 vcpu->arch.has_run_once = true;
465
466 /*
467 * Map the VGIC hardware resources before running a vcpu the first
468 * time on this VM.
469 */
470 if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
471 ret = kvm_vgic_map_resources(kvm);
472 if (ret)
473 return ret;
474 }
475
476 /*
477 * Enable the arch timers only if we have an in-kernel VGIC
478 * and it has been properly initialized, since we cannot handle
479 * interrupts from the virtual timer with a userspace gic.
480 */
481 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
482 kvm_timer_enable(kvm);
483
484 return 0;
485 }
486
487 bool kvm_arch_intc_initialized(struct kvm *kvm)
488 {
489 return vgic_initialized(kvm);
490 }
491
492 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
493 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
494
495 static void kvm_arm_halt_guest(struct kvm *kvm)
496 {
497 int i;
498 struct kvm_vcpu *vcpu;
499
500 kvm_for_each_vcpu(i, vcpu, kvm)
501 vcpu->arch.pause = true;
502 force_vm_exit(cpu_all_mask);
503 }
504
505 static void kvm_arm_resume_guest(struct kvm *kvm)
506 {
507 int i;
508 struct kvm_vcpu *vcpu;
509
510 kvm_for_each_vcpu(i, vcpu, kvm) {
511 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
512
513 vcpu->arch.pause = false;
514 wake_up_interruptible(wq);
515 }
516 }
517
518 static void vcpu_sleep(struct kvm_vcpu *vcpu)
519 {
520 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
521
522 wait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
523 (!vcpu->arch.pause)));
524 }
525
526 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
527 {
528 return vcpu->arch.target >= 0;
529 }
530
531 /**
532 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
533 * @vcpu: The VCPU pointer
534 * @run: The kvm_run structure pointer used for userspace state exchange
535 *
536 * This function is called through the VCPU_RUN ioctl called from user space. It
537 * will execute VM code in a loop until the time slice for the process is used
538 * or some emulation is needed from user space in which case the function will
539 * return with return value 0 and with the kvm_run structure filled in with the
540 * required data for the requested emulation.
541 */
542 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
543 {
544 int ret;
545 sigset_t sigsaved;
546
547 if (unlikely(!kvm_vcpu_initialized(vcpu)))
548 return -ENOEXEC;
549
550 ret = kvm_vcpu_first_run_init(vcpu);
551 if (ret)
552 return ret;
553
554 if (run->exit_reason == KVM_EXIT_MMIO) {
555 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
556 if (ret)
557 return ret;
558 }
559
560 if (vcpu->sigset_active)
561 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
562
563 ret = 1;
564 run->exit_reason = KVM_EXIT_UNKNOWN;
565 while (ret > 0) {
566 /*
567 * Check conditions before entering the guest
568 */
569 cond_resched();
570
571 update_vttbr(vcpu->kvm);
572
573 if (vcpu->arch.power_off || vcpu->arch.pause)
574 vcpu_sleep(vcpu);
575
576 /*
577 * Preparing the interrupts to be injected also
578 * involves poking the GIC, which must be done in a
579 * non-preemptible context.
580 */
581 preempt_disable();
582 kvm_pmu_flush_hwstate(vcpu);
583 kvm_timer_flush_hwstate(vcpu);
584 kvm_vgic_flush_hwstate(vcpu);
585
586 local_irq_disable();
587
588 /*
589 * Re-check atomic conditions
590 */
591 if (signal_pending(current)) {
592 ret = -EINTR;
593 run->exit_reason = KVM_EXIT_INTR;
594 }
595
596 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
597 vcpu->arch.power_off || vcpu->arch.pause) {
598 local_irq_enable();
599 kvm_pmu_sync_hwstate(vcpu);
600 kvm_timer_sync_hwstate(vcpu);
601 kvm_vgic_sync_hwstate(vcpu);
602 preempt_enable();
603 continue;
604 }
605
606 kvm_arm_setup_debug(vcpu);
607
608 /**************************************************************
609 * Enter the guest
610 */
611 trace_kvm_entry(*vcpu_pc(vcpu));
612 __kvm_guest_enter();
613 vcpu->mode = IN_GUEST_MODE;
614
615 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
616
617 vcpu->mode = OUTSIDE_GUEST_MODE;
618 vcpu->stat.exits++;
619 /*
620 * Back from guest
621 *************************************************************/
622
623 kvm_arm_clear_debug(vcpu);
624
625 /*
626 * We may have taken a host interrupt in HYP mode (ie
627 * while executing the guest). This interrupt is still
628 * pending, as we haven't serviced it yet!
629 *
630 * We're now back in SVC mode, with interrupts
631 * disabled. Enabling the interrupts now will have
632 * the effect of taking the interrupt again, in SVC
633 * mode this time.
634 */
635 local_irq_enable();
636
637 /*
638 * We do local_irq_enable() before calling kvm_guest_exit() so
639 * that if a timer interrupt hits while running the guest we
640 * account that tick as being spent in the guest. We enable
641 * preemption after calling kvm_guest_exit() so that if we get
642 * preempted we make sure ticks after that is not counted as
643 * guest time.
644 */
645 kvm_guest_exit();
646 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
647
648 /*
649 * We must sync the PMU and timer state before the vgic state so
650 * that the vgic can properly sample the updated state of the
651 * interrupt line.
652 */
653 kvm_pmu_sync_hwstate(vcpu);
654 kvm_timer_sync_hwstate(vcpu);
655
656 kvm_vgic_sync_hwstate(vcpu);
657
658 preempt_enable();
659
660 ret = handle_exit(vcpu, run, ret);
661 }
662
663 if (vcpu->sigset_active)
664 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
665 return ret;
666 }
667
668 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
669 {
670 int bit_index;
671 bool set;
672 unsigned long *ptr;
673
674 if (number == KVM_ARM_IRQ_CPU_IRQ)
675 bit_index = __ffs(HCR_VI);
676 else /* KVM_ARM_IRQ_CPU_FIQ */
677 bit_index = __ffs(HCR_VF);
678
679 ptr = (unsigned long *)&vcpu->arch.irq_lines;
680 if (level)
681 set = test_and_set_bit(bit_index, ptr);
682 else
683 set = test_and_clear_bit(bit_index, ptr);
684
685 /*
686 * If we didn't change anything, no need to wake up or kick other CPUs
687 */
688 if (set == level)
689 return 0;
690
691 /*
692 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
693 * trigger a world-switch round on the running physical CPU to set the
694 * virtual IRQ/FIQ fields in the HCR appropriately.
695 */
696 kvm_vcpu_kick(vcpu);
697
698 return 0;
699 }
700
701 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
702 bool line_status)
703 {
704 u32 irq = irq_level->irq;
705 unsigned int irq_type, vcpu_idx, irq_num;
706 int nrcpus = atomic_read(&kvm->online_vcpus);
707 struct kvm_vcpu *vcpu = NULL;
708 bool level = irq_level->level;
709
710 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
711 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
712 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
713
714 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
715
716 switch (irq_type) {
717 case KVM_ARM_IRQ_TYPE_CPU:
718 if (irqchip_in_kernel(kvm))
719 return -ENXIO;
720
721 if (vcpu_idx >= nrcpus)
722 return -EINVAL;
723
724 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
725 if (!vcpu)
726 return -EINVAL;
727
728 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
729 return -EINVAL;
730
731 return vcpu_interrupt_line(vcpu, irq_num, level);
732 case KVM_ARM_IRQ_TYPE_PPI:
733 if (!irqchip_in_kernel(kvm))
734 return -ENXIO;
735
736 if (vcpu_idx >= nrcpus)
737 return -EINVAL;
738
739 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
740 if (!vcpu)
741 return -EINVAL;
742
743 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
744 return -EINVAL;
745
746 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
747 case KVM_ARM_IRQ_TYPE_SPI:
748 if (!irqchip_in_kernel(kvm))
749 return -ENXIO;
750
751 if (irq_num < VGIC_NR_PRIVATE_IRQS)
752 return -EINVAL;
753
754 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
755 }
756
757 return -EINVAL;
758 }
759
760 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
761 const struct kvm_vcpu_init *init)
762 {
763 unsigned int i;
764 int phys_target = kvm_target_cpu();
765
766 if (init->target != phys_target)
767 return -EINVAL;
768
769 /*
770 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
771 * use the same target.
772 */
773 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
774 return -EINVAL;
775
776 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
777 for (i = 0; i < sizeof(init->features) * 8; i++) {
778 bool set = (init->features[i / 32] & (1 << (i % 32)));
779
780 if (set && i >= KVM_VCPU_MAX_FEATURES)
781 return -ENOENT;
782
783 /*
784 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
785 * use the same feature set.
786 */
787 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
788 test_bit(i, vcpu->arch.features) != set)
789 return -EINVAL;
790
791 if (set)
792 set_bit(i, vcpu->arch.features);
793 }
794
795 vcpu->arch.target = phys_target;
796
797 /* Now we know what it is, we can reset it. */
798 return kvm_reset_vcpu(vcpu);
799 }
800
801
802 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
803 struct kvm_vcpu_init *init)
804 {
805 int ret;
806
807 ret = kvm_vcpu_set_target(vcpu, init);
808 if (ret)
809 return ret;
810
811 /*
812 * Ensure a rebooted VM will fault in RAM pages and detect if the
813 * guest MMU is turned off and flush the caches as needed.
814 */
815 if (vcpu->arch.has_run_once)
816 stage2_unmap_vm(vcpu->kvm);
817
818 vcpu_reset_hcr(vcpu);
819
820 /*
821 * Handle the "start in power-off" case.
822 */
823 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
824 vcpu->arch.power_off = true;
825 else
826 vcpu->arch.power_off = false;
827
828 return 0;
829 }
830
831 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
832 struct kvm_device_attr *attr)
833 {
834 int ret = -ENXIO;
835
836 switch (attr->group) {
837 default:
838 break;
839 }
840
841 return ret;
842 }
843
844 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
845 struct kvm_device_attr *attr)
846 {
847 int ret = -ENXIO;
848
849 switch (attr->group) {
850 default:
851 break;
852 }
853
854 return ret;
855 }
856
857 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
858 struct kvm_device_attr *attr)
859 {
860 int ret = -ENXIO;
861
862 switch (attr->group) {
863 default:
864 break;
865 }
866
867 return ret;
868 }
869
870 long kvm_arch_vcpu_ioctl(struct file *filp,
871 unsigned int ioctl, unsigned long arg)
872 {
873 struct kvm_vcpu *vcpu = filp->private_data;
874 void __user *argp = (void __user *)arg;
875 struct kvm_device_attr attr;
876
877 switch (ioctl) {
878 case KVM_ARM_VCPU_INIT: {
879 struct kvm_vcpu_init init;
880
881 if (copy_from_user(&init, argp, sizeof(init)))
882 return -EFAULT;
883
884 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
885 }
886 case KVM_SET_ONE_REG:
887 case KVM_GET_ONE_REG: {
888 struct kvm_one_reg reg;
889
890 if (unlikely(!kvm_vcpu_initialized(vcpu)))
891 return -ENOEXEC;
892
893 if (copy_from_user(&reg, argp, sizeof(reg)))
894 return -EFAULT;
895 if (ioctl == KVM_SET_ONE_REG)
896 return kvm_arm_set_reg(vcpu, &reg);
897 else
898 return kvm_arm_get_reg(vcpu, &reg);
899 }
900 case KVM_GET_REG_LIST: {
901 struct kvm_reg_list __user *user_list = argp;
902 struct kvm_reg_list reg_list;
903 unsigned n;
904
905 if (unlikely(!kvm_vcpu_initialized(vcpu)))
906 return -ENOEXEC;
907
908 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
909 return -EFAULT;
910 n = reg_list.n;
911 reg_list.n = kvm_arm_num_regs(vcpu);
912 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
913 return -EFAULT;
914 if (n < reg_list.n)
915 return -E2BIG;
916 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
917 }
918 case KVM_SET_DEVICE_ATTR: {
919 if (copy_from_user(&attr, argp, sizeof(attr)))
920 return -EFAULT;
921 return kvm_arm_vcpu_set_attr(vcpu, &attr);
922 }
923 case KVM_GET_DEVICE_ATTR: {
924 if (copy_from_user(&attr, argp, sizeof(attr)))
925 return -EFAULT;
926 return kvm_arm_vcpu_get_attr(vcpu, &attr);
927 }
928 case KVM_HAS_DEVICE_ATTR: {
929 if (copy_from_user(&attr, argp, sizeof(attr)))
930 return -EFAULT;
931 return kvm_arm_vcpu_has_attr(vcpu, &attr);
932 }
933 default:
934 return -EINVAL;
935 }
936 }
937
938 /**
939 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
940 * @kvm: kvm instance
941 * @log: slot id and address to which we copy the log
942 *
943 * Steps 1-4 below provide general overview of dirty page logging. See
944 * kvm_get_dirty_log_protect() function description for additional details.
945 *
946 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
947 * always flush the TLB (step 4) even if previous step failed and the dirty
948 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
949 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
950 * writes will be marked dirty for next log read.
951 *
952 * 1. Take a snapshot of the bit and clear it if needed.
953 * 2. Write protect the corresponding page.
954 * 3. Copy the snapshot to the userspace.
955 * 4. Flush TLB's if needed.
956 */
957 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
958 {
959 bool is_dirty = false;
960 int r;
961
962 mutex_lock(&kvm->slots_lock);
963
964 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
965
966 if (is_dirty)
967 kvm_flush_remote_tlbs(kvm);
968
969 mutex_unlock(&kvm->slots_lock);
970 return r;
971 }
972
973 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
974 struct kvm_arm_device_addr *dev_addr)
975 {
976 unsigned long dev_id, type;
977
978 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
979 KVM_ARM_DEVICE_ID_SHIFT;
980 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
981 KVM_ARM_DEVICE_TYPE_SHIFT;
982
983 switch (dev_id) {
984 case KVM_ARM_DEVICE_VGIC_V2:
985 if (!vgic_present)
986 return -ENXIO;
987 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
988 default:
989 return -ENODEV;
990 }
991 }
992
993 long kvm_arch_vm_ioctl(struct file *filp,
994 unsigned int ioctl, unsigned long arg)
995 {
996 struct kvm *kvm = filp->private_data;
997 void __user *argp = (void __user *)arg;
998
999 switch (ioctl) {
1000 case KVM_CREATE_IRQCHIP: {
1001 if (!vgic_present)
1002 return -ENXIO;
1003 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1004 }
1005 case KVM_ARM_SET_DEVICE_ADDR: {
1006 struct kvm_arm_device_addr dev_addr;
1007
1008 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1009 return -EFAULT;
1010 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1011 }
1012 case KVM_ARM_PREFERRED_TARGET: {
1013 int err;
1014 struct kvm_vcpu_init init;
1015
1016 err = kvm_vcpu_preferred_target(&init);
1017 if (err)
1018 return err;
1019
1020 if (copy_to_user(argp, &init, sizeof(init)))
1021 return -EFAULT;
1022
1023 return 0;
1024 }
1025 default:
1026 return -EINVAL;
1027 }
1028 }
1029
1030 static void cpu_init_stage2(void *dummy)
1031 {
1032 __cpu_init_stage2();
1033 }
1034
1035 static void cpu_init_hyp_mode(void *dummy)
1036 {
1037 phys_addr_t boot_pgd_ptr;
1038 phys_addr_t pgd_ptr;
1039 unsigned long hyp_stack_ptr;
1040 unsigned long stack_page;
1041 unsigned long vector_ptr;
1042
1043 /* Switch from the HYP stub to our own HYP init vector */
1044 __hyp_set_vectors(kvm_get_idmap_vector());
1045
1046 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1047 pgd_ptr = kvm_mmu_get_httbr();
1048 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1049 hyp_stack_ptr = stack_page + PAGE_SIZE;
1050 vector_ptr = (unsigned long)__kvm_hyp_vector;
1051
1052 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1053 __cpu_init_stage2();
1054
1055 kvm_arm_init_debug();
1056 }
1057
1058 static int hyp_init_cpu_notify(struct notifier_block *self,
1059 unsigned long action, void *cpu)
1060 {
1061 switch (action) {
1062 case CPU_STARTING:
1063 case CPU_STARTING_FROZEN:
1064 if (__hyp_get_vectors() == hyp_default_vectors)
1065 cpu_init_hyp_mode(NULL);
1066 break;
1067 }
1068
1069 return NOTIFY_OK;
1070 }
1071
1072 static struct notifier_block hyp_init_cpu_nb = {
1073 .notifier_call = hyp_init_cpu_notify,
1074 };
1075
1076 #ifdef CONFIG_CPU_PM
1077 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1078 unsigned long cmd,
1079 void *v)
1080 {
1081 if (cmd == CPU_PM_EXIT &&
1082 __hyp_get_vectors() == hyp_default_vectors) {
1083 cpu_init_hyp_mode(NULL);
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088 }
1089
1090 static struct notifier_block hyp_init_cpu_pm_nb = {
1091 .notifier_call = hyp_init_cpu_pm_notifier,
1092 };
1093
1094 static void __init hyp_cpu_pm_init(void)
1095 {
1096 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1097 }
1098 #else
1099 static inline void hyp_cpu_pm_init(void)
1100 {
1101 }
1102 #endif
1103
1104 static void teardown_common_resources(void)
1105 {
1106 free_percpu(kvm_host_cpu_state);
1107 }
1108
1109 static int init_common_resources(void)
1110 {
1111 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1112 if (!kvm_host_cpu_state) {
1113 kvm_err("Cannot allocate host CPU state\n");
1114 return -ENOMEM;
1115 }
1116
1117 return 0;
1118 }
1119
1120 static int init_subsystems(void)
1121 {
1122 int err;
1123
1124 /*
1125 * Init HYP view of VGIC
1126 */
1127 err = kvm_vgic_hyp_init();
1128 switch (err) {
1129 case 0:
1130 vgic_present = true;
1131 break;
1132 case -ENODEV:
1133 case -ENXIO:
1134 vgic_present = false;
1135 break;
1136 default:
1137 return err;
1138 }
1139
1140 /*
1141 * Init HYP architected timer support
1142 */
1143 err = kvm_timer_hyp_init();
1144 if (err)
1145 return err;
1146
1147 kvm_perf_init();
1148 kvm_coproc_table_init();
1149
1150 return 0;
1151 }
1152
1153 static void teardown_hyp_mode(void)
1154 {
1155 int cpu;
1156
1157 if (is_kernel_in_hyp_mode())
1158 return;
1159
1160 free_hyp_pgds();
1161 for_each_possible_cpu(cpu)
1162 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1163 }
1164
1165 static int init_vhe_mode(void)
1166 {
1167 /*
1168 * Execute the init code on each CPU.
1169 */
1170 on_each_cpu(cpu_init_stage2, NULL, 1);
1171
1172 /* set size of VMID supported by CPU */
1173 kvm_vmid_bits = kvm_get_vmid_bits();
1174 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1175
1176 kvm_info("VHE mode initialized successfully\n");
1177 return 0;
1178 }
1179
1180 /**
1181 * Inits Hyp-mode on all online CPUs
1182 */
1183 static int init_hyp_mode(void)
1184 {
1185 int cpu;
1186 int err = 0;
1187
1188 /*
1189 * Allocate Hyp PGD and setup Hyp identity mapping
1190 */
1191 err = kvm_mmu_init();
1192 if (err)
1193 goto out_err;
1194
1195 /*
1196 * It is probably enough to obtain the default on one
1197 * CPU. It's unlikely to be different on the others.
1198 */
1199 hyp_default_vectors = __hyp_get_vectors();
1200
1201 /*
1202 * Allocate stack pages for Hypervisor-mode
1203 */
1204 for_each_possible_cpu(cpu) {
1205 unsigned long stack_page;
1206
1207 stack_page = __get_free_page(GFP_KERNEL);
1208 if (!stack_page) {
1209 err = -ENOMEM;
1210 goto out_err;
1211 }
1212
1213 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1214 }
1215
1216 /*
1217 * Map the Hyp-code called directly from the host
1218 */
1219 err = create_hyp_mappings(__hyp_text_start, __hyp_text_end);
1220 if (err) {
1221 kvm_err("Cannot map world-switch code\n");
1222 goto out_err;
1223 }
1224
1225 err = create_hyp_mappings(__start_rodata, __end_rodata);
1226 if (err) {
1227 kvm_err("Cannot map rodata section\n");
1228 goto out_err;
1229 }
1230
1231 /*
1232 * Map the Hyp stack pages
1233 */
1234 for_each_possible_cpu(cpu) {
1235 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1236 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1237
1238 if (err) {
1239 kvm_err("Cannot map hyp stack\n");
1240 goto out_err;
1241 }
1242 }
1243
1244 for_each_possible_cpu(cpu) {
1245 kvm_cpu_context_t *cpu_ctxt;
1246
1247 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1248 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1249
1250 if (err) {
1251 kvm_err("Cannot map host CPU state: %d\n", err);
1252 goto out_err;
1253 }
1254 }
1255
1256 /*
1257 * Execute the init code on each CPU.
1258 */
1259 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1260
1261 #ifndef CONFIG_HOTPLUG_CPU
1262 free_boot_hyp_pgd();
1263 #endif
1264
1265 cpu_notifier_register_begin();
1266
1267 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1268
1269 cpu_notifier_register_done();
1270
1271 if (err) {
1272 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1273 goto out_err;
1274 }
1275
1276 hyp_cpu_pm_init();
1277
1278 /* set size of VMID supported by CPU */
1279 kvm_vmid_bits = kvm_get_vmid_bits();
1280 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1281
1282 kvm_info("Hyp mode initialized successfully\n");
1283
1284 return 0;
1285
1286 out_err:
1287 teardown_hyp_mode();
1288 kvm_err("error initializing Hyp mode: %d\n", err);
1289 return err;
1290 }
1291
1292 static void check_kvm_target_cpu(void *ret)
1293 {
1294 *(int *)ret = kvm_target_cpu();
1295 }
1296
1297 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1298 {
1299 struct kvm_vcpu *vcpu;
1300 int i;
1301
1302 mpidr &= MPIDR_HWID_BITMASK;
1303 kvm_for_each_vcpu(i, vcpu, kvm) {
1304 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1305 return vcpu;
1306 }
1307 return NULL;
1308 }
1309
1310 /**
1311 * Initialize Hyp-mode and memory mappings on all CPUs.
1312 */
1313 int kvm_arch_init(void *opaque)
1314 {
1315 int err;
1316 int ret, cpu;
1317
1318 if (!is_hyp_mode_available()) {
1319 kvm_err("HYP mode not available\n");
1320 return -ENODEV;
1321 }
1322
1323 for_each_online_cpu(cpu) {
1324 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1325 if (ret < 0) {
1326 kvm_err("Error, CPU %d not supported!\n", cpu);
1327 return -ENODEV;
1328 }
1329 }
1330
1331 err = init_common_resources();
1332 if (err)
1333 return err;
1334
1335 if (is_kernel_in_hyp_mode())
1336 err = init_vhe_mode();
1337 else
1338 err = init_hyp_mode();
1339 if (err)
1340 goto out_err;
1341
1342 err = init_subsystems();
1343 if (err)
1344 goto out_hyp;
1345
1346 return 0;
1347
1348 out_hyp:
1349 teardown_hyp_mode();
1350 out_err:
1351 teardown_common_resources();
1352 return err;
1353 }
1354
1355 /* NOP: Compiling as a module not supported */
1356 void kvm_arch_exit(void)
1357 {
1358 kvm_perf_teardown();
1359 }
1360
1361 static int arm_init(void)
1362 {
1363 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1364 return rc;
1365 }
1366
1367 module_init(arm_init);
This page took 0.068659 seconds and 5 git commands to generate.