arm/arm64: KVM: Optimize handling of Access Flag faults
[deliverable/linux.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66 BUG_ON(preemptible());
67 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72 * Must be called from non-preemptible context
73 */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76 BUG_ON(preemptible());
77 return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82 */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85 return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90 return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100 return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105 *(int *)rtn = 0;
106 }
107
108
109 /**
110 * kvm_arch_init_vm - initializes a VM data structure
111 * @kvm: pointer to the KVM struct
112 */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115 int ret = 0;
116
117 if (type)
118 return -EINVAL;
119
120 ret = kvm_alloc_stage2_pgd(kvm);
121 if (ret)
122 goto out_fail_alloc;
123
124 ret = create_hyp_mappings(kvm, kvm + 1);
125 if (ret)
126 goto out_free_stage2_pgd;
127
128 kvm_timer_init(kvm);
129
130 /* Mark the initial VMID generation invalid */
131 kvm->arch.vmid_gen = 0;
132
133 /* The maximum number of VCPUs is limited by the host's GIC model */
134 kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136 return ret;
137 out_free_stage2_pgd:
138 kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140 return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145 return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150 * kvm_arch_destroy_vm - destroy the VM data structure
151 * @kvm: pointer to the KVM struct
152 */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155 int i;
156
157 kvm_free_stage2_pgd(kvm);
158
159 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160 if (kvm->vcpus[i]) {
161 kvm_arch_vcpu_free(kvm->vcpus[i]);
162 kvm->vcpus[i] = NULL;
163 }
164 }
165
166 kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171 int r;
172 switch (ext) {
173 case KVM_CAP_IRQCHIP:
174 case KVM_CAP_IRQFD:
175 case KVM_CAP_DEVICE_CTRL:
176 case KVM_CAP_USER_MEMORY:
177 case KVM_CAP_SYNC_MMU:
178 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179 case KVM_CAP_ONE_REG:
180 case KVM_CAP_ARM_PSCI:
181 case KVM_CAP_ARM_PSCI_0_2:
182 case KVM_CAP_READONLY_MEM:
183 r = 1;
184 break;
185 case KVM_CAP_COALESCED_MMIO:
186 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
187 break;
188 case KVM_CAP_ARM_SET_DEVICE_ADDR:
189 r = 1;
190 break;
191 case KVM_CAP_NR_VCPUS:
192 r = num_online_cpus();
193 break;
194 case KVM_CAP_MAX_VCPUS:
195 r = KVM_MAX_VCPUS;
196 break;
197 default:
198 r = kvm_arch_dev_ioctl_check_extension(ext);
199 break;
200 }
201 return r;
202 }
203
204 long kvm_arch_dev_ioctl(struct file *filp,
205 unsigned int ioctl, unsigned long arg)
206 {
207 return -EINVAL;
208 }
209
210
211 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
212 {
213 int err;
214 struct kvm_vcpu *vcpu;
215
216 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
217 err = -EBUSY;
218 goto out;
219 }
220
221 if (id >= kvm->arch.max_vcpus) {
222 err = -EINVAL;
223 goto out;
224 }
225
226 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
227 if (!vcpu) {
228 err = -ENOMEM;
229 goto out;
230 }
231
232 err = kvm_vcpu_init(vcpu, kvm, id);
233 if (err)
234 goto free_vcpu;
235
236 err = create_hyp_mappings(vcpu, vcpu + 1);
237 if (err)
238 goto vcpu_uninit;
239
240 return vcpu;
241 vcpu_uninit:
242 kvm_vcpu_uninit(vcpu);
243 free_vcpu:
244 kmem_cache_free(kvm_vcpu_cache, vcpu);
245 out:
246 return ERR_PTR(err);
247 }
248
249 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
250 {
251 }
252
253 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
254 {
255 kvm_mmu_free_memory_caches(vcpu);
256 kvm_timer_vcpu_terminate(vcpu);
257 kvm_vgic_vcpu_destroy(vcpu);
258 kmem_cache_free(kvm_vcpu_cache, vcpu);
259 }
260
261 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
262 {
263 kvm_arch_vcpu_free(vcpu);
264 }
265
266 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
267 {
268 return 0;
269 }
270
271 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
272 {
273 /* Force users to call KVM_ARM_VCPU_INIT */
274 vcpu->arch.target = -1;
275 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
276
277 /* Set up the timer */
278 kvm_timer_vcpu_init(vcpu);
279
280 return 0;
281 }
282
283 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
284 {
285 vcpu->cpu = cpu;
286 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
287
288 kvm_arm_set_running_vcpu(vcpu);
289 }
290
291 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
292 {
293 /*
294 * The arch-generic KVM code expects the cpu field of a vcpu to be -1
295 * if the vcpu is no longer assigned to a cpu. This is used for the
296 * optimized make_all_cpus_request path.
297 */
298 vcpu->cpu = -1;
299
300 kvm_arm_set_running_vcpu(NULL);
301 }
302
303 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
304 struct kvm_guest_debug *dbg)
305 {
306 return -EINVAL;
307 }
308
309
310 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
311 struct kvm_mp_state *mp_state)
312 {
313 return -EINVAL;
314 }
315
316 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
317 struct kvm_mp_state *mp_state)
318 {
319 return -EINVAL;
320 }
321
322 /**
323 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
324 * @v: The VCPU pointer
325 *
326 * If the guest CPU is not waiting for interrupts or an interrupt line is
327 * asserted, the CPU is by definition runnable.
328 */
329 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
330 {
331 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
332 }
333
334 /* Just ensure a guest exit from a particular CPU */
335 static void exit_vm_noop(void *info)
336 {
337 }
338
339 void force_vm_exit(const cpumask_t *mask)
340 {
341 smp_call_function_many(mask, exit_vm_noop, NULL, true);
342 }
343
344 /**
345 * need_new_vmid_gen - check that the VMID is still valid
346 * @kvm: The VM's VMID to checkt
347 *
348 * return true if there is a new generation of VMIDs being used
349 *
350 * The hardware supports only 256 values with the value zero reserved for the
351 * host, so we check if an assigned value belongs to a previous generation,
352 * which which requires us to assign a new value. If we're the first to use a
353 * VMID for the new generation, we must flush necessary caches and TLBs on all
354 * CPUs.
355 */
356 static bool need_new_vmid_gen(struct kvm *kvm)
357 {
358 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
359 }
360
361 /**
362 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
363 * @kvm The guest that we are about to run
364 *
365 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
366 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
367 * caches and TLBs.
368 */
369 static void update_vttbr(struct kvm *kvm)
370 {
371 phys_addr_t pgd_phys;
372 u64 vmid;
373
374 if (!need_new_vmid_gen(kvm))
375 return;
376
377 spin_lock(&kvm_vmid_lock);
378
379 /*
380 * We need to re-check the vmid_gen here to ensure that if another vcpu
381 * already allocated a valid vmid for this vm, then this vcpu should
382 * use the same vmid.
383 */
384 if (!need_new_vmid_gen(kvm)) {
385 spin_unlock(&kvm_vmid_lock);
386 return;
387 }
388
389 /* First user of a new VMID generation? */
390 if (unlikely(kvm_next_vmid == 0)) {
391 atomic64_inc(&kvm_vmid_gen);
392 kvm_next_vmid = 1;
393
394 /*
395 * On SMP we know no other CPUs can use this CPU's or each
396 * other's VMID after force_vm_exit returns since the
397 * kvm_vmid_lock blocks them from reentry to the guest.
398 */
399 force_vm_exit(cpu_all_mask);
400 /*
401 * Now broadcast TLB + ICACHE invalidation over the inner
402 * shareable domain to make sure all data structures are
403 * clean.
404 */
405 kvm_call_hyp(__kvm_flush_vm_context);
406 }
407
408 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
409 kvm->arch.vmid = kvm_next_vmid;
410 kvm_next_vmid++;
411
412 /* update vttbr to be used with the new vmid */
413 pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
414 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
415 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
416 kvm->arch.vttbr = pgd_phys | vmid;
417
418 spin_unlock(&kvm_vmid_lock);
419 }
420
421 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
422 {
423 struct kvm *kvm = vcpu->kvm;
424 int ret;
425
426 if (likely(vcpu->arch.has_run_once))
427 return 0;
428
429 vcpu->arch.has_run_once = true;
430
431 /*
432 * Map the VGIC hardware resources before running a vcpu the first
433 * time on this VM.
434 */
435 if (unlikely(!vgic_ready(kvm))) {
436 ret = kvm_vgic_map_resources(kvm);
437 if (ret)
438 return ret;
439 }
440
441 /*
442 * Enable the arch timers only if we have an in-kernel VGIC
443 * and it has been properly initialized, since we cannot handle
444 * interrupts from the virtual timer with a userspace gic.
445 */
446 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
447 kvm_timer_enable(kvm);
448
449 return 0;
450 }
451
452 bool kvm_arch_intc_initialized(struct kvm *kvm)
453 {
454 return vgic_initialized(kvm);
455 }
456
457 static void vcpu_pause(struct kvm_vcpu *vcpu)
458 {
459 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
460
461 wait_event_interruptible(*wq, !vcpu->arch.pause);
462 }
463
464 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
465 {
466 return vcpu->arch.target >= 0;
467 }
468
469 /**
470 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
471 * @vcpu: The VCPU pointer
472 * @run: The kvm_run structure pointer used for userspace state exchange
473 *
474 * This function is called through the VCPU_RUN ioctl called from user space. It
475 * will execute VM code in a loop until the time slice for the process is used
476 * or some emulation is needed from user space in which case the function will
477 * return with return value 0 and with the kvm_run structure filled in with the
478 * required data for the requested emulation.
479 */
480 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
481 {
482 int ret;
483 sigset_t sigsaved;
484
485 if (unlikely(!kvm_vcpu_initialized(vcpu)))
486 return -ENOEXEC;
487
488 ret = kvm_vcpu_first_run_init(vcpu);
489 if (ret)
490 return ret;
491
492 if (run->exit_reason == KVM_EXIT_MMIO) {
493 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
494 if (ret)
495 return ret;
496 }
497
498 if (vcpu->sigset_active)
499 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
500
501 ret = 1;
502 run->exit_reason = KVM_EXIT_UNKNOWN;
503 while (ret > 0) {
504 /*
505 * Check conditions before entering the guest
506 */
507 cond_resched();
508
509 update_vttbr(vcpu->kvm);
510
511 if (vcpu->arch.pause)
512 vcpu_pause(vcpu);
513
514 kvm_vgic_flush_hwstate(vcpu);
515 kvm_timer_flush_hwstate(vcpu);
516
517 local_irq_disable();
518
519 /*
520 * Re-check atomic conditions
521 */
522 if (signal_pending(current)) {
523 ret = -EINTR;
524 run->exit_reason = KVM_EXIT_INTR;
525 }
526
527 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
528 local_irq_enable();
529 kvm_timer_sync_hwstate(vcpu);
530 kvm_vgic_sync_hwstate(vcpu);
531 continue;
532 }
533
534 /**************************************************************
535 * Enter the guest
536 */
537 trace_kvm_entry(*vcpu_pc(vcpu));
538 kvm_guest_enter();
539 vcpu->mode = IN_GUEST_MODE;
540
541 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
542
543 vcpu->mode = OUTSIDE_GUEST_MODE;
544 kvm_guest_exit();
545 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
546 /*
547 * We may have taken a host interrupt in HYP mode (ie
548 * while executing the guest). This interrupt is still
549 * pending, as we haven't serviced it yet!
550 *
551 * We're now back in SVC mode, with interrupts
552 * disabled. Enabling the interrupts now will have
553 * the effect of taking the interrupt again, in SVC
554 * mode this time.
555 */
556 local_irq_enable();
557
558 /*
559 * Back from guest
560 *************************************************************/
561
562 kvm_timer_sync_hwstate(vcpu);
563 kvm_vgic_sync_hwstate(vcpu);
564
565 ret = handle_exit(vcpu, run, ret);
566 }
567
568 if (vcpu->sigset_active)
569 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
570 return ret;
571 }
572
573 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
574 {
575 int bit_index;
576 bool set;
577 unsigned long *ptr;
578
579 if (number == KVM_ARM_IRQ_CPU_IRQ)
580 bit_index = __ffs(HCR_VI);
581 else /* KVM_ARM_IRQ_CPU_FIQ */
582 bit_index = __ffs(HCR_VF);
583
584 ptr = (unsigned long *)&vcpu->arch.irq_lines;
585 if (level)
586 set = test_and_set_bit(bit_index, ptr);
587 else
588 set = test_and_clear_bit(bit_index, ptr);
589
590 /*
591 * If we didn't change anything, no need to wake up or kick other CPUs
592 */
593 if (set == level)
594 return 0;
595
596 /*
597 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
598 * trigger a world-switch round on the running physical CPU to set the
599 * virtual IRQ/FIQ fields in the HCR appropriately.
600 */
601 kvm_vcpu_kick(vcpu);
602
603 return 0;
604 }
605
606 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
607 bool line_status)
608 {
609 u32 irq = irq_level->irq;
610 unsigned int irq_type, vcpu_idx, irq_num;
611 int nrcpus = atomic_read(&kvm->online_vcpus);
612 struct kvm_vcpu *vcpu = NULL;
613 bool level = irq_level->level;
614
615 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
616 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
617 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
618
619 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
620
621 switch (irq_type) {
622 case KVM_ARM_IRQ_TYPE_CPU:
623 if (irqchip_in_kernel(kvm))
624 return -ENXIO;
625
626 if (vcpu_idx >= nrcpus)
627 return -EINVAL;
628
629 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
630 if (!vcpu)
631 return -EINVAL;
632
633 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
634 return -EINVAL;
635
636 return vcpu_interrupt_line(vcpu, irq_num, level);
637 case KVM_ARM_IRQ_TYPE_PPI:
638 if (!irqchip_in_kernel(kvm))
639 return -ENXIO;
640
641 if (vcpu_idx >= nrcpus)
642 return -EINVAL;
643
644 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
645 if (!vcpu)
646 return -EINVAL;
647
648 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
649 return -EINVAL;
650
651 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
652 case KVM_ARM_IRQ_TYPE_SPI:
653 if (!irqchip_in_kernel(kvm))
654 return -ENXIO;
655
656 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
657 irq_num > KVM_ARM_IRQ_GIC_MAX)
658 return -EINVAL;
659
660 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
661 }
662
663 return -EINVAL;
664 }
665
666 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
667 const struct kvm_vcpu_init *init)
668 {
669 unsigned int i;
670 int phys_target = kvm_target_cpu();
671
672 if (init->target != phys_target)
673 return -EINVAL;
674
675 /*
676 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
677 * use the same target.
678 */
679 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
680 return -EINVAL;
681
682 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
683 for (i = 0; i < sizeof(init->features) * 8; i++) {
684 bool set = (init->features[i / 32] & (1 << (i % 32)));
685
686 if (set && i >= KVM_VCPU_MAX_FEATURES)
687 return -ENOENT;
688
689 /*
690 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
691 * use the same feature set.
692 */
693 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
694 test_bit(i, vcpu->arch.features) != set)
695 return -EINVAL;
696
697 if (set)
698 set_bit(i, vcpu->arch.features);
699 }
700
701 vcpu->arch.target = phys_target;
702
703 /* Now we know what it is, we can reset it. */
704 return kvm_reset_vcpu(vcpu);
705 }
706
707
708 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
709 struct kvm_vcpu_init *init)
710 {
711 int ret;
712
713 ret = kvm_vcpu_set_target(vcpu, init);
714 if (ret)
715 return ret;
716
717 /*
718 * Ensure a rebooted VM will fault in RAM pages and detect if the
719 * guest MMU is turned off and flush the caches as needed.
720 */
721 if (vcpu->arch.has_run_once)
722 stage2_unmap_vm(vcpu->kvm);
723
724 vcpu_reset_hcr(vcpu);
725
726 /*
727 * Handle the "start in power-off" case by marking the VCPU as paused.
728 */
729 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
730 vcpu->arch.pause = true;
731 else
732 vcpu->arch.pause = false;
733
734 return 0;
735 }
736
737 long kvm_arch_vcpu_ioctl(struct file *filp,
738 unsigned int ioctl, unsigned long arg)
739 {
740 struct kvm_vcpu *vcpu = filp->private_data;
741 void __user *argp = (void __user *)arg;
742
743 switch (ioctl) {
744 case KVM_ARM_VCPU_INIT: {
745 struct kvm_vcpu_init init;
746
747 if (copy_from_user(&init, argp, sizeof(init)))
748 return -EFAULT;
749
750 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
751 }
752 case KVM_SET_ONE_REG:
753 case KVM_GET_ONE_REG: {
754 struct kvm_one_reg reg;
755
756 if (unlikely(!kvm_vcpu_initialized(vcpu)))
757 return -ENOEXEC;
758
759 if (copy_from_user(&reg, argp, sizeof(reg)))
760 return -EFAULT;
761 if (ioctl == KVM_SET_ONE_REG)
762 return kvm_arm_set_reg(vcpu, &reg);
763 else
764 return kvm_arm_get_reg(vcpu, &reg);
765 }
766 case KVM_GET_REG_LIST: {
767 struct kvm_reg_list __user *user_list = argp;
768 struct kvm_reg_list reg_list;
769 unsigned n;
770
771 if (unlikely(!kvm_vcpu_initialized(vcpu)))
772 return -ENOEXEC;
773
774 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
775 return -EFAULT;
776 n = reg_list.n;
777 reg_list.n = kvm_arm_num_regs(vcpu);
778 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
779 return -EFAULT;
780 if (n < reg_list.n)
781 return -E2BIG;
782 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
783 }
784 default:
785 return -EINVAL;
786 }
787 }
788
789 /**
790 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
791 * @kvm: kvm instance
792 * @log: slot id and address to which we copy the log
793 *
794 * Steps 1-4 below provide general overview of dirty page logging. See
795 * kvm_get_dirty_log_protect() function description for additional details.
796 *
797 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
798 * always flush the TLB (step 4) even if previous step failed and the dirty
799 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
800 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
801 * writes will be marked dirty for next log read.
802 *
803 * 1. Take a snapshot of the bit and clear it if needed.
804 * 2. Write protect the corresponding page.
805 * 3. Copy the snapshot to the userspace.
806 * 4. Flush TLB's if needed.
807 */
808 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
809 {
810 bool is_dirty = false;
811 int r;
812
813 mutex_lock(&kvm->slots_lock);
814
815 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
816
817 if (is_dirty)
818 kvm_flush_remote_tlbs(kvm);
819
820 mutex_unlock(&kvm->slots_lock);
821 return r;
822 }
823
824 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
825 struct kvm_arm_device_addr *dev_addr)
826 {
827 unsigned long dev_id, type;
828
829 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
830 KVM_ARM_DEVICE_ID_SHIFT;
831 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
832 KVM_ARM_DEVICE_TYPE_SHIFT;
833
834 switch (dev_id) {
835 case KVM_ARM_DEVICE_VGIC_V2:
836 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
837 default:
838 return -ENODEV;
839 }
840 }
841
842 long kvm_arch_vm_ioctl(struct file *filp,
843 unsigned int ioctl, unsigned long arg)
844 {
845 struct kvm *kvm = filp->private_data;
846 void __user *argp = (void __user *)arg;
847
848 switch (ioctl) {
849 case KVM_CREATE_IRQCHIP: {
850 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
851 }
852 case KVM_ARM_SET_DEVICE_ADDR: {
853 struct kvm_arm_device_addr dev_addr;
854
855 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
856 return -EFAULT;
857 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
858 }
859 case KVM_ARM_PREFERRED_TARGET: {
860 int err;
861 struct kvm_vcpu_init init;
862
863 err = kvm_vcpu_preferred_target(&init);
864 if (err)
865 return err;
866
867 if (copy_to_user(argp, &init, sizeof(init)))
868 return -EFAULT;
869
870 return 0;
871 }
872 default:
873 return -EINVAL;
874 }
875 }
876
877 static void cpu_init_hyp_mode(void *dummy)
878 {
879 phys_addr_t boot_pgd_ptr;
880 phys_addr_t pgd_ptr;
881 unsigned long hyp_stack_ptr;
882 unsigned long stack_page;
883 unsigned long vector_ptr;
884
885 /* Switch from the HYP stub to our own HYP init vector */
886 __hyp_set_vectors(kvm_get_idmap_vector());
887
888 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
889 pgd_ptr = kvm_mmu_get_httbr();
890 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
891 hyp_stack_ptr = stack_page + PAGE_SIZE;
892 vector_ptr = (unsigned long)__kvm_hyp_vector;
893
894 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
895 }
896
897 static int hyp_init_cpu_notify(struct notifier_block *self,
898 unsigned long action, void *cpu)
899 {
900 switch (action) {
901 case CPU_STARTING:
902 case CPU_STARTING_FROZEN:
903 if (__hyp_get_vectors() == hyp_default_vectors)
904 cpu_init_hyp_mode(NULL);
905 break;
906 }
907
908 return NOTIFY_OK;
909 }
910
911 static struct notifier_block hyp_init_cpu_nb = {
912 .notifier_call = hyp_init_cpu_notify,
913 };
914
915 #ifdef CONFIG_CPU_PM
916 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
917 unsigned long cmd,
918 void *v)
919 {
920 if (cmd == CPU_PM_EXIT &&
921 __hyp_get_vectors() == hyp_default_vectors) {
922 cpu_init_hyp_mode(NULL);
923 return NOTIFY_OK;
924 }
925
926 return NOTIFY_DONE;
927 }
928
929 static struct notifier_block hyp_init_cpu_pm_nb = {
930 .notifier_call = hyp_init_cpu_pm_notifier,
931 };
932
933 static void __init hyp_cpu_pm_init(void)
934 {
935 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
936 }
937 #else
938 static inline void hyp_cpu_pm_init(void)
939 {
940 }
941 #endif
942
943 /**
944 * Inits Hyp-mode on all online CPUs
945 */
946 static int init_hyp_mode(void)
947 {
948 int cpu;
949 int err = 0;
950
951 /*
952 * Allocate Hyp PGD and setup Hyp identity mapping
953 */
954 err = kvm_mmu_init();
955 if (err)
956 goto out_err;
957
958 /*
959 * It is probably enough to obtain the default on one
960 * CPU. It's unlikely to be different on the others.
961 */
962 hyp_default_vectors = __hyp_get_vectors();
963
964 /*
965 * Allocate stack pages for Hypervisor-mode
966 */
967 for_each_possible_cpu(cpu) {
968 unsigned long stack_page;
969
970 stack_page = __get_free_page(GFP_KERNEL);
971 if (!stack_page) {
972 err = -ENOMEM;
973 goto out_free_stack_pages;
974 }
975
976 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
977 }
978
979 /*
980 * Map the Hyp-code called directly from the host
981 */
982 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
983 if (err) {
984 kvm_err("Cannot map world-switch code\n");
985 goto out_free_mappings;
986 }
987
988 /*
989 * Map the Hyp stack pages
990 */
991 for_each_possible_cpu(cpu) {
992 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
993 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
994
995 if (err) {
996 kvm_err("Cannot map hyp stack\n");
997 goto out_free_mappings;
998 }
999 }
1000
1001 /*
1002 * Map the host CPU structures
1003 */
1004 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1005 if (!kvm_host_cpu_state) {
1006 err = -ENOMEM;
1007 kvm_err("Cannot allocate host CPU state\n");
1008 goto out_free_mappings;
1009 }
1010
1011 for_each_possible_cpu(cpu) {
1012 kvm_cpu_context_t *cpu_ctxt;
1013
1014 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1015 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1016
1017 if (err) {
1018 kvm_err("Cannot map host CPU state: %d\n", err);
1019 goto out_free_context;
1020 }
1021 }
1022
1023 /*
1024 * Execute the init code on each CPU.
1025 */
1026 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1027
1028 /*
1029 * Init HYP view of VGIC
1030 */
1031 err = kvm_vgic_hyp_init();
1032 if (err)
1033 goto out_free_context;
1034
1035 /*
1036 * Init HYP architected timer support
1037 */
1038 err = kvm_timer_hyp_init();
1039 if (err)
1040 goto out_free_mappings;
1041
1042 #ifndef CONFIG_HOTPLUG_CPU
1043 free_boot_hyp_pgd();
1044 #endif
1045
1046 kvm_perf_init();
1047
1048 kvm_info("Hyp mode initialized successfully\n");
1049
1050 return 0;
1051 out_free_context:
1052 free_percpu(kvm_host_cpu_state);
1053 out_free_mappings:
1054 free_hyp_pgds();
1055 out_free_stack_pages:
1056 for_each_possible_cpu(cpu)
1057 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1058 out_err:
1059 kvm_err("error initializing Hyp mode: %d\n", err);
1060 return err;
1061 }
1062
1063 static void check_kvm_target_cpu(void *ret)
1064 {
1065 *(int *)ret = kvm_target_cpu();
1066 }
1067
1068 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1069 {
1070 struct kvm_vcpu *vcpu;
1071 int i;
1072
1073 mpidr &= MPIDR_HWID_BITMASK;
1074 kvm_for_each_vcpu(i, vcpu, kvm) {
1075 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1076 return vcpu;
1077 }
1078 return NULL;
1079 }
1080
1081 /**
1082 * Initialize Hyp-mode and memory mappings on all CPUs.
1083 */
1084 int kvm_arch_init(void *opaque)
1085 {
1086 int err;
1087 int ret, cpu;
1088
1089 if (!is_hyp_mode_available()) {
1090 kvm_err("HYP mode not available\n");
1091 return -ENODEV;
1092 }
1093
1094 for_each_online_cpu(cpu) {
1095 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1096 if (ret < 0) {
1097 kvm_err("Error, CPU %d not supported!\n", cpu);
1098 return -ENODEV;
1099 }
1100 }
1101
1102 cpu_notifier_register_begin();
1103
1104 err = init_hyp_mode();
1105 if (err)
1106 goto out_err;
1107
1108 err = __register_cpu_notifier(&hyp_init_cpu_nb);
1109 if (err) {
1110 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1111 goto out_err;
1112 }
1113
1114 cpu_notifier_register_done();
1115
1116 hyp_cpu_pm_init();
1117
1118 kvm_coproc_table_init();
1119 return 0;
1120 out_err:
1121 cpu_notifier_register_done();
1122 return err;
1123 }
1124
1125 /* NOP: Compiling as a module not supported */
1126 void kvm_arch_exit(void)
1127 {
1128 kvm_perf_teardown();
1129 }
1130
1131 static int arm_init(void)
1132 {
1133 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1134 return rc;
1135 }
1136
1137 module_init(arm_init);
This page took 0.052142 seconds and 6 git commands to generate.