Merge tag 'md/3.19-fixes' of git://neil.brown.name/md
[deliverable/linux.git] / arch / arm / kvm / psci.c
1 /*
2 * Copyright (C) 2012 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/preempt.h>
19 #include <linux/kvm_host.h>
20 #include <linux/wait.h>
21
22 #include <asm/cputype.h>
23 #include <asm/kvm_emulate.h>
24 #include <asm/kvm_psci.h>
25
26 /*
27 * This is an implementation of the Power State Coordination Interface
28 * as described in ARM document number ARM DEN 0022A.
29 */
30
31 #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1)
32
33 static unsigned long psci_affinity_mask(unsigned long affinity_level)
34 {
35 if (affinity_level <= 3)
36 return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level);
37
38 return 0;
39 }
40
41 static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu)
42 {
43 /*
44 * NOTE: For simplicity, we make VCPU suspend emulation to be
45 * same-as WFI (Wait-for-interrupt) emulation.
46 *
47 * This means for KVM the wakeup events are interrupts and
48 * this is consistent with intended use of StateID as described
49 * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A).
50 *
51 * Further, we also treat power-down request to be same as
52 * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2
53 * specification (ARM DEN 0022A). This means all suspend states
54 * for KVM will preserve the register state.
55 */
56 kvm_vcpu_block(vcpu);
57
58 return PSCI_RET_SUCCESS;
59 }
60
61 static void kvm_psci_vcpu_off(struct kvm_vcpu *vcpu)
62 {
63 vcpu->arch.pause = true;
64 }
65
66 static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu)
67 {
68 struct kvm *kvm = source_vcpu->kvm;
69 struct kvm_vcpu *vcpu = NULL, *tmp;
70 wait_queue_head_t *wq;
71 unsigned long cpu_id;
72 unsigned long context_id;
73 unsigned long mpidr;
74 phys_addr_t target_pc;
75 int i;
76
77 cpu_id = *vcpu_reg(source_vcpu, 1);
78 if (vcpu_mode_is_32bit(source_vcpu))
79 cpu_id &= ~((u32) 0);
80
81 kvm_for_each_vcpu(i, tmp, kvm) {
82 mpidr = kvm_vcpu_get_mpidr(tmp);
83 if ((mpidr & MPIDR_HWID_BITMASK) == (cpu_id & MPIDR_HWID_BITMASK)) {
84 vcpu = tmp;
85 break;
86 }
87 }
88
89 /*
90 * Make sure the caller requested a valid CPU and that the CPU is
91 * turned off.
92 */
93 if (!vcpu)
94 return PSCI_RET_INVALID_PARAMS;
95 if (!vcpu->arch.pause) {
96 if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1)
97 return PSCI_RET_ALREADY_ON;
98 else
99 return PSCI_RET_INVALID_PARAMS;
100 }
101
102 target_pc = *vcpu_reg(source_vcpu, 2);
103 context_id = *vcpu_reg(source_vcpu, 3);
104
105 kvm_reset_vcpu(vcpu);
106
107 /* Gracefully handle Thumb2 entry point */
108 if (vcpu_mode_is_32bit(vcpu) && (target_pc & 1)) {
109 target_pc &= ~((phys_addr_t) 1);
110 vcpu_set_thumb(vcpu);
111 }
112
113 /* Propagate caller endianness */
114 if (kvm_vcpu_is_be(source_vcpu))
115 kvm_vcpu_set_be(vcpu);
116
117 *vcpu_pc(vcpu) = target_pc;
118 /*
119 * NOTE: We always update r0 (or x0) because for PSCI v0.1
120 * the general puspose registers are undefined upon CPU_ON.
121 */
122 *vcpu_reg(vcpu, 0) = context_id;
123 vcpu->arch.pause = false;
124 smp_mb(); /* Make sure the above is visible */
125
126 wq = kvm_arch_vcpu_wq(vcpu);
127 wake_up_interruptible(wq);
128
129 return PSCI_RET_SUCCESS;
130 }
131
132 static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu)
133 {
134 int i;
135 unsigned long mpidr;
136 unsigned long target_affinity;
137 unsigned long target_affinity_mask;
138 unsigned long lowest_affinity_level;
139 struct kvm *kvm = vcpu->kvm;
140 struct kvm_vcpu *tmp;
141
142 target_affinity = *vcpu_reg(vcpu, 1);
143 lowest_affinity_level = *vcpu_reg(vcpu, 2);
144
145 /* Determine target affinity mask */
146 target_affinity_mask = psci_affinity_mask(lowest_affinity_level);
147 if (!target_affinity_mask)
148 return PSCI_RET_INVALID_PARAMS;
149
150 /* Ignore other bits of target affinity */
151 target_affinity &= target_affinity_mask;
152
153 /*
154 * If one or more VCPU matching target affinity are running
155 * then ON else OFF
156 */
157 kvm_for_each_vcpu(i, tmp, kvm) {
158 mpidr = kvm_vcpu_get_mpidr(tmp);
159 if (((mpidr & target_affinity_mask) == target_affinity) &&
160 !tmp->arch.pause) {
161 return PSCI_0_2_AFFINITY_LEVEL_ON;
162 }
163 }
164
165 return PSCI_0_2_AFFINITY_LEVEL_OFF;
166 }
167
168 static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type)
169 {
170 int i;
171 struct kvm_vcpu *tmp;
172
173 /*
174 * The KVM ABI specifies that a system event exit may call KVM_RUN
175 * again and may perform shutdown/reboot at a later time that when the
176 * actual request is made. Since we are implementing PSCI and a
177 * caller of PSCI reboot and shutdown expects that the system shuts
178 * down or reboots immediately, let's make sure that VCPUs are not run
179 * after this call is handled and before the VCPUs have been
180 * re-initialized.
181 */
182 kvm_for_each_vcpu(i, tmp, vcpu->kvm) {
183 tmp->arch.pause = true;
184 kvm_vcpu_kick(tmp);
185 }
186
187 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
188 vcpu->run->system_event.type = type;
189 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
190 }
191
192 static void kvm_psci_system_off(struct kvm_vcpu *vcpu)
193 {
194 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN);
195 }
196
197 static void kvm_psci_system_reset(struct kvm_vcpu *vcpu)
198 {
199 kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET);
200 }
201
202 int kvm_psci_version(struct kvm_vcpu *vcpu)
203 {
204 if (test_bit(KVM_ARM_VCPU_PSCI_0_2, vcpu->arch.features))
205 return KVM_ARM_PSCI_0_2;
206
207 return KVM_ARM_PSCI_0_1;
208 }
209
210 static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu)
211 {
212 int ret = 1;
213 unsigned long psci_fn = *vcpu_reg(vcpu, 0) & ~((u32) 0);
214 unsigned long val;
215
216 switch (psci_fn) {
217 case PSCI_0_2_FN_PSCI_VERSION:
218 /*
219 * Bits[31:16] = Major Version = 0
220 * Bits[15:0] = Minor Version = 2
221 */
222 val = 2;
223 break;
224 case PSCI_0_2_FN_CPU_SUSPEND:
225 case PSCI_0_2_FN64_CPU_SUSPEND:
226 val = kvm_psci_vcpu_suspend(vcpu);
227 break;
228 case PSCI_0_2_FN_CPU_OFF:
229 kvm_psci_vcpu_off(vcpu);
230 val = PSCI_RET_SUCCESS;
231 break;
232 case PSCI_0_2_FN_CPU_ON:
233 case PSCI_0_2_FN64_CPU_ON:
234 val = kvm_psci_vcpu_on(vcpu);
235 break;
236 case PSCI_0_2_FN_AFFINITY_INFO:
237 case PSCI_0_2_FN64_AFFINITY_INFO:
238 val = kvm_psci_vcpu_affinity_info(vcpu);
239 break;
240 case PSCI_0_2_FN_MIGRATE:
241 case PSCI_0_2_FN64_MIGRATE:
242 val = PSCI_RET_NOT_SUPPORTED;
243 break;
244 case PSCI_0_2_FN_MIGRATE_INFO_TYPE:
245 /*
246 * Trusted OS is MP hence does not require migration
247 * or
248 * Trusted OS is not present
249 */
250 val = PSCI_0_2_TOS_MP;
251 break;
252 case PSCI_0_2_FN_MIGRATE_INFO_UP_CPU:
253 case PSCI_0_2_FN64_MIGRATE_INFO_UP_CPU:
254 val = PSCI_RET_NOT_SUPPORTED;
255 break;
256 case PSCI_0_2_FN_SYSTEM_OFF:
257 kvm_psci_system_off(vcpu);
258 /*
259 * We should'nt be going back to guest VCPU after
260 * receiving SYSTEM_OFF request.
261 *
262 * If user space accidently/deliberately resumes
263 * guest VCPU after SYSTEM_OFF request then guest
264 * VCPU should see internal failure from PSCI return
265 * value. To achieve this, we preload r0 (or x0) with
266 * PSCI return value INTERNAL_FAILURE.
267 */
268 val = PSCI_RET_INTERNAL_FAILURE;
269 ret = 0;
270 break;
271 case PSCI_0_2_FN_SYSTEM_RESET:
272 kvm_psci_system_reset(vcpu);
273 /*
274 * Same reason as SYSTEM_OFF for preloading r0 (or x0)
275 * with PSCI return value INTERNAL_FAILURE.
276 */
277 val = PSCI_RET_INTERNAL_FAILURE;
278 ret = 0;
279 break;
280 default:
281 return -EINVAL;
282 }
283
284 *vcpu_reg(vcpu, 0) = val;
285 return ret;
286 }
287
288 static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu)
289 {
290 unsigned long psci_fn = *vcpu_reg(vcpu, 0) & ~((u32) 0);
291 unsigned long val;
292
293 switch (psci_fn) {
294 case KVM_PSCI_FN_CPU_OFF:
295 kvm_psci_vcpu_off(vcpu);
296 val = PSCI_RET_SUCCESS;
297 break;
298 case KVM_PSCI_FN_CPU_ON:
299 val = kvm_psci_vcpu_on(vcpu);
300 break;
301 case KVM_PSCI_FN_CPU_SUSPEND:
302 case KVM_PSCI_FN_MIGRATE:
303 val = PSCI_RET_NOT_SUPPORTED;
304 break;
305 default:
306 return -EINVAL;
307 }
308
309 *vcpu_reg(vcpu, 0) = val;
310 return 1;
311 }
312
313 /**
314 * kvm_psci_call - handle PSCI call if r0 value is in range
315 * @vcpu: Pointer to the VCPU struct
316 *
317 * Handle PSCI calls from guests through traps from HVC instructions.
318 * The calling convention is similar to SMC calls to the secure world
319 * where the function number is placed in r0.
320 *
321 * This function returns: > 0 (success), 0 (success but exit to user
322 * space), and < 0 (errors)
323 *
324 * Errors:
325 * -EINVAL: Unrecognized PSCI function
326 */
327 int kvm_psci_call(struct kvm_vcpu *vcpu)
328 {
329 switch (kvm_psci_version(vcpu)) {
330 case KVM_ARM_PSCI_0_2:
331 return kvm_psci_0_2_call(vcpu);
332 case KVM_ARM_PSCI_0_1:
333 return kvm_psci_0_1_call(vcpu);
334 default:
335 return -EINVAL;
336 };
337 }
This page took 0.040065 seconds and 5 git commands to generate.