fbdev: Modify vsync timing calculation in wm8505fb
[deliverable/linux.git] / arch / arm / mm / cache-v7.S
1 /*
2 * linux/arch/arm/mm/cache-v7.S
3 *
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 * Copyright (C) 2005 ARM Ltd.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This is the "shell" of the ARMv7 processor support.
12 */
13 #include <linux/linkage.h>
14 #include <linux/init.h>
15 #include <asm/assembler.h>
16 #include <asm/unwind.h>
17
18 #include "proc-macros.S"
19
20 /*
21 * v7_flush_icache_all()
22 *
23 * Flush the whole I-cache.
24 *
25 * Registers:
26 * r0 - set to 0
27 */
28 ENTRY(v7_flush_icache_all)
29 mov r0, #0
30 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable
31 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate
32 mov pc, lr
33 ENDPROC(v7_flush_icache_all)
34
35 /*
36 * v7_flush_dcache_all()
37 *
38 * Flush the whole D-cache.
39 *
40 * Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode)
41 *
42 * - mm - mm_struct describing address space
43 */
44 ENTRY(v7_flush_dcache_all)
45 dmb @ ensure ordering with previous memory accesses
46 mrc p15, 1, r0, c0, c0, 1 @ read clidr
47 ands r3, r0, #0x7000000 @ extract loc from clidr
48 mov r3, r3, lsr #23 @ left align loc bit field
49 beq finished @ if loc is 0, then no need to clean
50 mov r10, #0 @ start clean at cache level 0
51 loop1:
52 add r2, r10, r10, lsr #1 @ work out 3x current cache level
53 mov r1, r0, lsr r2 @ extract cache type bits from clidr
54 and r1, r1, #7 @ mask of the bits for current cache only
55 cmp r1, #2 @ see what cache we have at this level
56 blt skip @ skip if no cache, or just i-cache
57 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
58 isb @ isb to sych the new cssr&csidr
59 mrc p15, 1, r1, c0, c0, 0 @ read the new csidr
60 and r2, r1, #7 @ extract the length of the cache lines
61 add r2, r2, #4 @ add 4 (line length offset)
62 ldr r4, =0x3ff
63 ands r4, r4, r1, lsr #3 @ find maximum number on the way size
64 clz r5, r4 @ find bit position of way size increment
65 ldr r7, =0x7fff
66 ands r7, r7, r1, lsr #13 @ extract max number of the index size
67 loop2:
68 mov r9, r4 @ create working copy of max way size
69 loop3:
70 ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11
71 THUMB( lsl r6, r9, r5 )
72 THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11
73 ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11
74 THUMB( lsl r6, r7, r2 )
75 THUMB( orr r11, r11, r6 ) @ factor index number into r11
76 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way
77 subs r9, r9, #1 @ decrement the way
78 bge loop3
79 subs r7, r7, #1 @ decrement the index
80 bge loop2
81 skip:
82 add r10, r10, #2 @ increment cache number
83 cmp r3, r10
84 bgt loop1
85 finished:
86 mov r10, #0 @ swith back to cache level 0
87 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
88 dsb
89 isb
90 mov pc, lr
91 ENDPROC(v7_flush_dcache_all)
92
93 /*
94 * v7_flush_cache_all()
95 *
96 * Flush the entire cache system.
97 * The data cache flush is now achieved using atomic clean / invalidates
98 * working outwards from L1 cache. This is done using Set/Way based cache
99 * maintainance instructions.
100 * The instruction cache can still be invalidated back to the point of
101 * unification in a single instruction.
102 *
103 */
104 ENTRY(v7_flush_kern_cache_all)
105 ARM( stmfd sp!, {r4-r5, r7, r9-r11, lr} )
106 THUMB( stmfd sp!, {r4-r7, r9-r11, lr} )
107 bl v7_flush_dcache_all
108 mov r0, #0
109 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable
110 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate
111 ARM( ldmfd sp!, {r4-r5, r7, r9-r11, lr} )
112 THUMB( ldmfd sp!, {r4-r7, r9-r11, lr} )
113 mov pc, lr
114 ENDPROC(v7_flush_kern_cache_all)
115
116 /*
117 * v7_flush_cache_all()
118 *
119 * Flush all TLB entries in a particular address space
120 *
121 * - mm - mm_struct describing address space
122 */
123 ENTRY(v7_flush_user_cache_all)
124 /*FALLTHROUGH*/
125
126 /*
127 * v7_flush_cache_range(start, end, flags)
128 *
129 * Flush a range of TLB entries in the specified address space.
130 *
131 * - start - start address (may not be aligned)
132 * - end - end address (exclusive, may not be aligned)
133 * - flags - vm_area_struct flags describing address space
134 *
135 * It is assumed that:
136 * - we have a VIPT cache.
137 */
138 ENTRY(v7_flush_user_cache_range)
139 mov pc, lr
140 ENDPROC(v7_flush_user_cache_all)
141 ENDPROC(v7_flush_user_cache_range)
142
143 /*
144 * v7_coherent_kern_range(start,end)
145 *
146 * Ensure that the I and D caches are coherent within specified
147 * region. This is typically used when code has been written to
148 * a memory region, and will be executed.
149 *
150 * - start - virtual start address of region
151 * - end - virtual end address of region
152 *
153 * It is assumed that:
154 * - the Icache does not read data from the write buffer
155 */
156 ENTRY(v7_coherent_kern_range)
157 /* FALLTHROUGH */
158
159 /*
160 * v7_coherent_user_range(start,end)
161 *
162 * Ensure that the I and D caches are coherent within specified
163 * region. This is typically used when code has been written to
164 * a memory region, and will be executed.
165 *
166 * - start - virtual start address of region
167 * - end - virtual end address of region
168 *
169 * It is assumed that:
170 * - the Icache does not read data from the write buffer
171 */
172 ENTRY(v7_coherent_user_range)
173 UNWIND(.fnstart )
174 dcache_line_size r2, r3
175 sub r3, r2, #1
176 bic r0, r0, r3
177 1:
178 USER( mcr p15, 0, r0, c7, c11, 1 ) @ clean D line to the point of unification
179 dsb
180 USER( mcr p15, 0, r0, c7, c5, 1 ) @ invalidate I line
181 add r0, r0, r2
182 2:
183 cmp r0, r1
184 blo 1b
185 mov r0, #0
186 ALT_SMP(mcr p15, 0, r0, c7, c1, 6) @ invalidate BTB Inner Shareable
187 ALT_UP(mcr p15, 0, r0, c7, c5, 6) @ invalidate BTB
188 dsb
189 isb
190 mov pc, lr
191
192 /*
193 * Fault handling for the cache operation above. If the virtual address in r0
194 * isn't mapped, just try the next page.
195 */
196 9001:
197 mov r0, r0, lsr #12
198 mov r0, r0, lsl #12
199 add r0, r0, #4096
200 b 2b
201 UNWIND(.fnend )
202 ENDPROC(v7_coherent_kern_range)
203 ENDPROC(v7_coherent_user_range)
204
205 /*
206 * v7_flush_kern_dcache_area(void *addr, size_t size)
207 *
208 * Ensure that the data held in the page kaddr is written back
209 * to the page in question.
210 *
211 * - addr - kernel address
212 * - size - region size
213 */
214 ENTRY(v7_flush_kern_dcache_area)
215 dcache_line_size r2, r3
216 add r1, r0, r1
217 1:
218 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line
219 add r0, r0, r2
220 cmp r0, r1
221 blo 1b
222 dsb
223 mov pc, lr
224 ENDPROC(v7_flush_kern_dcache_area)
225
226 /*
227 * v7_dma_inv_range(start,end)
228 *
229 * Invalidate the data cache within the specified region; we will
230 * be performing a DMA operation in this region and we want to
231 * purge old data in the cache.
232 *
233 * - start - virtual start address of region
234 * - end - virtual end address of region
235 */
236 v7_dma_inv_range:
237 dcache_line_size r2, r3
238 sub r3, r2, #1
239 tst r0, r3
240 bic r0, r0, r3
241 mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
242
243 tst r1, r3
244 bic r1, r1, r3
245 mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line
246 1:
247 mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line
248 add r0, r0, r2
249 cmp r0, r1
250 blo 1b
251 dsb
252 mov pc, lr
253 ENDPROC(v7_dma_inv_range)
254
255 /*
256 * v7_dma_clean_range(start,end)
257 * - start - virtual start address of region
258 * - end - virtual end address of region
259 */
260 v7_dma_clean_range:
261 dcache_line_size r2, r3
262 sub r3, r2, #1
263 bic r0, r0, r3
264 1:
265 mcr p15, 0, r0, c7, c10, 1 @ clean D / U line
266 add r0, r0, r2
267 cmp r0, r1
268 blo 1b
269 dsb
270 mov pc, lr
271 ENDPROC(v7_dma_clean_range)
272
273 /*
274 * v7_dma_flush_range(start,end)
275 * - start - virtual start address of region
276 * - end - virtual end address of region
277 */
278 ENTRY(v7_dma_flush_range)
279 dcache_line_size r2, r3
280 sub r3, r2, #1
281 bic r0, r0, r3
282 1:
283 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
284 add r0, r0, r2
285 cmp r0, r1
286 blo 1b
287 dsb
288 mov pc, lr
289 ENDPROC(v7_dma_flush_range)
290
291 /*
292 * dma_map_area(start, size, dir)
293 * - start - kernel virtual start address
294 * - size - size of region
295 * - dir - DMA direction
296 */
297 ENTRY(v7_dma_map_area)
298 add r1, r1, r0
299 teq r2, #DMA_FROM_DEVICE
300 beq v7_dma_inv_range
301 b v7_dma_clean_range
302 ENDPROC(v7_dma_map_area)
303
304 /*
305 * dma_unmap_area(start, size, dir)
306 * - start - kernel virtual start address
307 * - size - size of region
308 * - dir - DMA direction
309 */
310 ENTRY(v7_dma_unmap_area)
311 add r1, r1, r0
312 teq r2, #DMA_TO_DEVICE
313 bne v7_dma_inv_range
314 mov pc, lr
315 ENDPROC(v7_dma_unmap_area)
316
317 __INITDATA
318
319 .type v7_cache_fns, #object
320 ENTRY(v7_cache_fns)
321 .long v7_flush_icache_all
322 .long v7_flush_kern_cache_all
323 .long v7_flush_user_cache_all
324 .long v7_flush_user_cache_range
325 .long v7_coherent_kern_range
326 .long v7_coherent_user_range
327 .long v7_flush_kern_dcache_area
328 .long v7_dma_map_area
329 .long v7_dma_unmap_area
330 .long v7_dma_flush_range
331 .size v7_cache_fns, . - v7_cache_fns
This page took 0.036745 seconds and 5 git commands to generate.