2 * linux/arch/arm/mm/cache-v7.S
4 * Copyright (C) 2001 Deep Blue Solutions Ltd.
5 * Copyright (C) 2005 ARM Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This is the "shell" of the ARMv7 processor support.
13 #include <linux/linkage.h>
14 #include <linux/init.h>
15 #include <asm/assembler.h>
16 #include <asm/unwind.h>
18 #include "proc-macros.S"
21 * v7_flush_icache_all()
23 * Flush the whole I-cache.
28 ENTRY(v7_flush_icache_all)
30 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable
31 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate
33 ENDPROC(v7_flush_icache_all)
36 * v7_flush_dcache_all()
38 * Flush the whole D-cache.
40 * Corrupted registers: r0-r7, r9-r11 (r6 only in Thumb mode)
42 * - mm - mm_struct describing address space
44 ENTRY(v7_flush_dcache_all)
45 dmb @ ensure ordering with previous memory accesses
46 mrc p15, 1, r0, c0, c0, 1 @ read clidr
47 ands r3, r0, #0x7000000 @ extract loc from clidr
48 mov r3, r3, lsr #23 @ left align loc bit field
49 beq finished @ if loc is 0, then no need to clean
50 mov r10, #0 @ start clean at cache level 0
52 add r2, r10, r10, lsr #1 @ work out 3x current cache level
53 mov r1, r0, lsr r2 @ extract cache type bits from clidr
54 and r1, r1, #7 @ mask of the bits for current cache only
55 cmp r1, #2 @ see what cache we have at this level
56 blt skip @ skip if no cache, or just i-cache
57 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
58 isb @ isb to sych the new cssr&csidr
59 mrc p15, 1, r1, c0, c0, 0 @ read the new csidr
60 and r2, r1, #7 @ extract the length of the cache lines
61 add r2, r2, #4 @ add 4 (line length offset)
63 ands r4, r4, r1, lsr #3 @ find maximum number on the way size
64 clz r5, r4 @ find bit position of way size increment
66 ands r7, r7, r1, lsr #13 @ extract max number of the index size
68 mov r9, r4 @ create working copy of max way size
70 ARM( orr r11, r10, r9, lsl r5 ) @ factor way and cache number into r11
71 THUMB( lsl r6, r9, r5 )
72 THUMB( orr r11, r10, r6 ) @ factor way and cache number into r11
73 ARM( orr r11, r11, r7, lsl r2 ) @ factor index number into r11
74 THUMB( lsl r6, r7, r2 )
75 THUMB( orr r11, r11, r6 ) @ factor index number into r11
76 mcr p15, 0, r11, c7, c14, 2 @ clean & invalidate by set/way
77 subs r9, r9, #1 @ decrement the way
79 subs r7, r7, #1 @ decrement the index
82 add r10, r10, #2 @ increment cache number
86 mov r10, #0 @ swith back to cache level 0
87 mcr p15, 2, r10, c0, c0, 0 @ select current cache level in cssr
91 ENDPROC(v7_flush_dcache_all)
94 * v7_flush_cache_all()
96 * Flush the entire cache system.
97 * The data cache flush is now achieved using atomic clean / invalidates
98 * working outwards from L1 cache. This is done using Set/Way based cache
99 * maintainance instructions.
100 * The instruction cache can still be invalidated back to the point of
101 * unification in a single instruction.
104 ENTRY(v7_flush_kern_cache_all)
105 ARM( stmfd sp!, {r4-r5, r7, r9-r11, lr} )
106 THUMB( stmfd sp!, {r4-r7, r9-r11, lr} )
107 bl v7_flush_dcache_all
109 ALT_SMP(mcr p15, 0, r0, c7, c1, 0) @ invalidate I-cache inner shareable
110 ALT_UP(mcr p15, 0, r0, c7, c5, 0) @ I+BTB cache invalidate
111 ARM( ldmfd sp!, {r4-r5, r7, r9-r11, lr} )
112 THUMB( ldmfd sp!, {r4-r7, r9-r11, lr} )
114 ENDPROC(v7_flush_kern_cache_all)
117 * v7_flush_cache_all()
119 * Flush all TLB entries in a particular address space
121 * - mm - mm_struct describing address space
123 ENTRY(v7_flush_user_cache_all)
127 * v7_flush_cache_range(start, end, flags)
129 * Flush a range of TLB entries in the specified address space.
131 * - start - start address (may not be aligned)
132 * - end - end address (exclusive, may not be aligned)
133 * - flags - vm_area_struct flags describing address space
135 * It is assumed that:
136 * - we have a VIPT cache.
138 ENTRY(v7_flush_user_cache_range)
140 ENDPROC(v7_flush_user_cache_all)
141 ENDPROC(v7_flush_user_cache_range)
144 * v7_coherent_kern_range(start,end)
146 * Ensure that the I and D caches are coherent within specified
147 * region. This is typically used when code has been written to
148 * a memory region, and will be executed.
150 * - start - virtual start address of region
151 * - end - virtual end address of region
153 * It is assumed that:
154 * - the Icache does not read data from the write buffer
156 ENTRY(v7_coherent_kern_range)
160 * v7_coherent_user_range(start,end)
162 * Ensure that the I and D caches are coherent within specified
163 * region. This is typically used when code has been written to
164 * a memory region, and will be executed.
166 * - start - virtual start address of region
167 * - end - virtual end address of region
169 * It is assumed that:
170 * - the Icache does not read data from the write buffer
172 ENTRY(v7_coherent_user_range)
174 dcache_line_size r2, r3
178 USER( mcr p15, 0, r12, c7, c11, 1 ) @ clean D line to the point of unification
183 icache_line_size r2, r3
187 USER( mcr p15, 0, r12, c7, c5, 1 ) @ invalidate I line
193 ALT_SMP(mcr p15, 0, r0, c7, c1, 6) @ invalidate BTB Inner Shareable
194 ALT_UP(mcr p15, 0, r0, c7, c5, 6) @ invalidate BTB
200 * Fault handling for the cache operation above. If the virtual address in r0
201 * isn't mapped, just try the next page.
204 mov r12, r12, lsr #12
205 mov r12, r12, lsl #12
209 ENDPROC(v7_coherent_kern_range)
210 ENDPROC(v7_coherent_user_range)
213 * v7_flush_kern_dcache_area(void *addr, size_t size)
215 * Ensure that the data held in the page kaddr is written back
216 * to the page in question.
218 * - addr - kernel address
219 * - size - region size
221 ENTRY(v7_flush_kern_dcache_area)
222 dcache_line_size r2, r3
225 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D line / unified line
231 ENDPROC(v7_flush_kern_dcache_area)
234 * v7_dma_inv_range(start,end)
236 * Invalidate the data cache within the specified region; we will
237 * be performing a DMA operation in this region and we want to
238 * purge old data in the cache.
240 * - start - virtual start address of region
241 * - end - virtual end address of region
244 dcache_line_size r2, r3
248 mcrne p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
252 mcrne p15, 0, r1, c7, c14, 1 @ clean & invalidate D / U line
254 mcr p15, 0, r0, c7, c6, 1 @ invalidate D / U line
260 ENDPROC(v7_dma_inv_range)
263 * v7_dma_clean_range(start,end)
264 * - start - virtual start address of region
265 * - end - virtual end address of region
268 dcache_line_size r2, r3
272 mcr p15, 0, r0, c7, c10, 1 @ clean D / U line
278 ENDPROC(v7_dma_clean_range)
281 * v7_dma_flush_range(start,end)
282 * - start - virtual start address of region
283 * - end - virtual end address of region
285 ENTRY(v7_dma_flush_range)
286 dcache_line_size r2, r3
290 mcr p15, 0, r0, c7, c14, 1 @ clean & invalidate D / U line
296 ENDPROC(v7_dma_flush_range)
299 * dma_map_area(start, size, dir)
300 * - start - kernel virtual start address
301 * - size - size of region
302 * - dir - DMA direction
304 ENTRY(v7_dma_map_area)
306 teq r2, #DMA_FROM_DEVICE
309 ENDPROC(v7_dma_map_area)
312 * dma_unmap_area(start, size, dir)
313 * - start - kernel virtual start address
314 * - size - size of region
315 * - dir - DMA direction
317 ENTRY(v7_dma_unmap_area)
319 teq r2, #DMA_TO_DEVICE
322 ENDPROC(v7_dma_unmap_area)
326 .type v7_cache_fns, #object
328 .long v7_flush_icache_all
329 .long v7_flush_kern_cache_all
330 .long v7_flush_user_cache_all
331 .long v7_flush_user_cache_range
332 .long v7_coherent_kern_range
333 .long v7_coherent_user_range
334 .long v7_flush_kern_dcache_area
335 .long v7_dma_map_area
336 .long v7_dma_unmap_area
337 .long v7_dma_flush_range
338 .size v7_cache_fns, . - v7_cache_fns