Merge ath-next from ath.git
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/bootmem.h>
13 #include <linux/module.h>
14 #include <linux/mm.h>
15 #include <linux/genalloc.h>
16 #include <linux/gfp.h>
17 #include <linux/errno.h>
18 #include <linux/list.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dma-contiguous.h>
23 #include <linux/highmem.h>
24 #include <linux/memblock.h>
25 #include <linux/slab.h>
26 #include <linux/iommu.h>
27 #include <linux/io.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sizes.h>
30 #include <linux/cma.h>
31
32 #include <asm/memory.h>
33 #include <asm/highmem.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mach/arch.h>
37 #include <asm/dma-iommu.h>
38 #include <asm/mach/map.h>
39 #include <asm/system_info.h>
40 #include <asm/dma-contiguous.h>
41
42 #include "mm.h"
43
44 /*
45 * The DMA API is built upon the notion of "buffer ownership". A buffer
46 * is either exclusively owned by the CPU (and therefore may be accessed
47 * by it) or exclusively owned by the DMA device. These helper functions
48 * represent the transitions between these two ownership states.
49 *
50 * Note, however, that on later ARMs, this notion does not work due to
51 * speculative prefetches. We model our approach on the assumption that
52 * the CPU does do speculative prefetches, which means we clean caches
53 * before transfers and delay cache invalidation until transfer completion.
54 *
55 */
56 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
57 size_t, enum dma_data_direction);
58 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
59 size_t, enum dma_data_direction);
60
61 /**
62 * arm_dma_map_page - map a portion of a page for streaming DMA
63 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
64 * @page: page that buffer resides in
65 * @offset: offset into page for start of buffer
66 * @size: size of buffer to map
67 * @dir: DMA transfer direction
68 *
69 * Ensure that any data held in the cache is appropriately discarded
70 * or written back.
71 *
72 * The device owns this memory once this call has completed. The CPU
73 * can regain ownership by calling dma_unmap_page().
74 */
75 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
76 unsigned long offset, size_t size, enum dma_data_direction dir,
77 struct dma_attrs *attrs)
78 {
79 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
80 __dma_page_cpu_to_dev(page, offset, size, dir);
81 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
82 }
83
84 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
85 unsigned long offset, size_t size, enum dma_data_direction dir,
86 struct dma_attrs *attrs)
87 {
88 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
89 }
90
91 /**
92 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
93 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
94 * @handle: DMA address of buffer
95 * @size: size of buffer (same as passed to dma_map_page)
96 * @dir: DMA transfer direction (same as passed to dma_map_page)
97 *
98 * Unmap a page streaming mode DMA translation. The handle and size
99 * must match what was provided in the previous dma_map_page() call.
100 * All other usages are undefined.
101 *
102 * After this call, reads by the CPU to the buffer are guaranteed to see
103 * whatever the device wrote there.
104 */
105 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
106 size_t size, enum dma_data_direction dir,
107 struct dma_attrs *attrs)
108 {
109 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
110 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
111 handle & ~PAGE_MASK, size, dir);
112 }
113
114 static void arm_dma_sync_single_for_cpu(struct device *dev,
115 dma_addr_t handle, size_t size, enum dma_data_direction dir)
116 {
117 unsigned int offset = handle & (PAGE_SIZE - 1);
118 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
119 __dma_page_dev_to_cpu(page, offset, size, dir);
120 }
121
122 static void arm_dma_sync_single_for_device(struct device *dev,
123 dma_addr_t handle, size_t size, enum dma_data_direction dir)
124 {
125 unsigned int offset = handle & (PAGE_SIZE - 1);
126 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
127 __dma_page_cpu_to_dev(page, offset, size, dir);
128 }
129
130 struct dma_map_ops arm_dma_ops = {
131 .alloc = arm_dma_alloc,
132 .free = arm_dma_free,
133 .mmap = arm_dma_mmap,
134 .get_sgtable = arm_dma_get_sgtable,
135 .map_page = arm_dma_map_page,
136 .unmap_page = arm_dma_unmap_page,
137 .map_sg = arm_dma_map_sg,
138 .unmap_sg = arm_dma_unmap_sg,
139 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
140 .sync_single_for_device = arm_dma_sync_single_for_device,
141 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
142 .sync_sg_for_device = arm_dma_sync_sg_for_device,
143 .set_dma_mask = arm_dma_set_mask,
144 };
145 EXPORT_SYMBOL(arm_dma_ops);
146
147 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
148 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
149 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
150 dma_addr_t handle, struct dma_attrs *attrs);
151
152 struct dma_map_ops arm_coherent_dma_ops = {
153 .alloc = arm_coherent_dma_alloc,
154 .free = arm_coherent_dma_free,
155 .mmap = arm_dma_mmap,
156 .get_sgtable = arm_dma_get_sgtable,
157 .map_page = arm_coherent_dma_map_page,
158 .map_sg = arm_dma_map_sg,
159 .set_dma_mask = arm_dma_set_mask,
160 };
161 EXPORT_SYMBOL(arm_coherent_dma_ops);
162
163 static int __dma_supported(struct device *dev, u64 mask, bool warn)
164 {
165 unsigned long max_dma_pfn;
166
167 /*
168 * If the mask allows for more memory than we can address,
169 * and we actually have that much memory, then we must
170 * indicate that DMA to this device is not supported.
171 */
172 if (sizeof(mask) != sizeof(dma_addr_t) &&
173 mask > (dma_addr_t)~0 &&
174 dma_to_pfn(dev, ~0) < max_pfn - 1) {
175 if (warn) {
176 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
177 mask);
178 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
179 }
180 return 0;
181 }
182
183 max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
184
185 /*
186 * Translate the device's DMA mask to a PFN limit. This
187 * PFN number includes the page which we can DMA to.
188 */
189 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
190 if (warn)
191 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
192 mask,
193 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
194 max_dma_pfn + 1);
195 return 0;
196 }
197
198 return 1;
199 }
200
201 static u64 get_coherent_dma_mask(struct device *dev)
202 {
203 u64 mask = (u64)DMA_BIT_MASK(32);
204
205 if (dev) {
206 mask = dev->coherent_dma_mask;
207
208 /*
209 * Sanity check the DMA mask - it must be non-zero, and
210 * must be able to be satisfied by a DMA allocation.
211 */
212 if (mask == 0) {
213 dev_warn(dev, "coherent DMA mask is unset\n");
214 return 0;
215 }
216
217 if (!__dma_supported(dev, mask, true))
218 return 0;
219 }
220
221 return mask;
222 }
223
224 static void __dma_clear_buffer(struct page *page, size_t size)
225 {
226 /*
227 * Ensure that the allocated pages are zeroed, and that any data
228 * lurking in the kernel direct-mapped region is invalidated.
229 */
230 if (PageHighMem(page)) {
231 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
232 phys_addr_t end = base + size;
233 while (size > 0) {
234 void *ptr = kmap_atomic(page);
235 memset(ptr, 0, PAGE_SIZE);
236 dmac_flush_range(ptr, ptr + PAGE_SIZE);
237 kunmap_atomic(ptr);
238 page++;
239 size -= PAGE_SIZE;
240 }
241 outer_flush_range(base, end);
242 } else {
243 void *ptr = page_address(page);
244 memset(ptr, 0, size);
245 dmac_flush_range(ptr, ptr + size);
246 outer_flush_range(__pa(ptr), __pa(ptr) + size);
247 }
248 }
249
250 /*
251 * Allocate a DMA buffer for 'dev' of size 'size' using the
252 * specified gfp mask. Note that 'size' must be page aligned.
253 */
254 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
255 {
256 unsigned long order = get_order(size);
257 struct page *page, *p, *e;
258
259 page = alloc_pages(gfp, order);
260 if (!page)
261 return NULL;
262
263 /*
264 * Now split the huge page and free the excess pages
265 */
266 split_page(page, order);
267 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
268 __free_page(p);
269
270 __dma_clear_buffer(page, size);
271
272 return page;
273 }
274
275 /*
276 * Free a DMA buffer. 'size' must be page aligned.
277 */
278 static void __dma_free_buffer(struct page *page, size_t size)
279 {
280 struct page *e = page + (size >> PAGE_SHIFT);
281
282 while (page < e) {
283 __free_page(page);
284 page++;
285 }
286 }
287
288 #ifdef CONFIG_MMU
289
290 static void *__alloc_from_contiguous(struct device *dev, size_t size,
291 pgprot_t prot, struct page **ret_page,
292 const void *caller, bool want_vaddr);
293
294 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
295 pgprot_t prot, struct page **ret_page,
296 const void *caller, bool want_vaddr);
297
298 static void *
299 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
300 const void *caller)
301 {
302 /*
303 * DMA allocation can be mapped to user space, so lets
304 * set VM_USERMAP flags too.
305 */
306 return dma_common_contiguous_remap(page, size,
307 VM_ARM_DMA_CONSISTENT | VM_USERMAP,
308 prot, caller);
309 }
310
311 static void __dma_free_remap(void *cpu_addr, size_t size)
312 {
313 dma_common_free_remap(cpu_addr, size,
314 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
315 }
316
317 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
318 static struct gen_pool *atomic_pool;
319
320 static size_t atomic_pool_size = DEFAULT_DMA_COHERENT_POOL_SIZE;
321
322 static int __init early_coherent_pool(char *p)
323 {
324 atomic_pool_size = memparse(p, &p);
325 return 0;
326 }
327 early_param("coherent_pool", early_coherent_pool);
328
329 void __init init_dma_coherent_pool_size(unsigned long size)
330 {
331 /*
332 * Catch any attempt to set the pool size too late.
333 */
334 BUG_ON(atomic_pool);
335
336 /*
337 * Set architecture specific coherent pool size only if
338 * it has not been changed by kernel command line parameter.
339 */
340 if (atomic_pool_size == DEFAULT_DMA_COHERENT_POOL_SIZE)
341 atomic_pool_size = size;
342 }
343
344 /*
345 * Initialise the coherent pool for atomic allocations.
346 */
347 static int __init atomic_pool_init(void)
348 {
349 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
350 gfp_t gfp = GFP_KERNEL | GFP_DMA;
351 struct page *page;
352 void *ptr;
353
354 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
355 if (!atomic_pool)
356 goto out;
357
358 if (dev_get_cma_area(NULL))
359 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
360 &page, atomic_pool_init, true);
361 else
362 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
363 &page, atomic_pool_init, true);
364 if (ptr) {
365 int ret;
366
367 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
368 page_to_phys(page),
369 atomic_pool_size, -1);
370 if (ret)
371 goto destroy_genpool;
372
373 gen_pool_set_algo(atomic_pool,
374 gen_pool_first_fit_order_align,
375 (void *)PAGE_SHIFT);
376 pr_info("DMA: preallocated %zd KiB pool for atomic coherent allocations\n",
377 atomic_pool_size / 1024);
378 return 0;
379 }
380
381 destroy_genpool:
382 gen_pool_destroy(atomic_pool);
383 atomic_pool = NULL;
384 out:
385 pr_err("DMA: failed to allocate %zx KiB pool for atomic coherent allocation\n",
386 atomic_pool_size / 1024);
387 return -ENOMEM;
388 }
389 /*
390 * CMA is activated by core_initcall, so we must be called after it.
391 */
392 postcore_initcall(atomic_pool_init);
393
394 struct dma_contig_early_reserve {
395 phys_addr_t base;
396 unsigned long size;
397 };
398
399 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
400
401 static int dma_mmu_remap_num __initdata;
402
403 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
404 {
405 dma_mmu_remap[dma_mmu_remap_num].base = base;
406 dma_mmu_remap[dma_mmu_remap_num].size = size;
407 dma_mmu_remap_num++;
408 }
409
410 void __init dma_contiguous_remap(void)
411 {
412 int i;
413 for (i = 0; i < dma_mmu_remap_num; i++) {
414 phys_addr_t start = dma_mmu_remap[i].base;
415 phys_addr_t end = start + dma_mmu_remap[i].size;
416 struct map_desc map;
417 unsigned long addr;
418
419 if (end > arm_lowmem_limit)
420 end = arm_lowmem_limit;
421 if (start >= end)
422 continue;
423
424 map.pfn = __phys_to_pfn(start);
425 map.virtual = __phys_to_virt(start);
426 map.length = end - start;
427 map.type = MT_MEMORY_DMA_READY;
428
429 /*
430 * Clear previous low-memory mapping to ensure that the
431 * TLB does not see any conflicting entries, then flush
432 * the TLB of the old entries before creating new mappings.
433 *
434 * This ensures that any speculatively loaded TLB entries
435 * (even though they may be rare) can not cause any problems,
436 * and ensures that this code is architecturally compliant.
437 */
438 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
439 addr += PMD_SIZE)
440 pmd_clear(pmd_off_k(addr));
441
442 flush_tlb_kernel_range(__phys_to_virt(start),
443 __phys_to_virt(end));
444
445 iotable_init(&map, 1);
446 }
447 }
448
449 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
450 void *data)
451 {
452 struct page *page = virt_to_page(addr);
453 pgprot_t prot = *(pgprot_t *)data;
454
455 set_pte_ext(pte, mk_pte(page, prot), 0);
456 return 0;
457 }
458
459 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
460 {
461 unsigned long start = (unsigned long) page_address(page);
462 unsigned end = start + size;
463
464 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
465 flush_tlb_kernel_range(start, end);
466 }
467
468 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
469 pgprot_t prot, struct page **ret_page,
470 const void *caller, bool want_vaddr)
471 {
472 struct page *page;
473 void *ptr = NULL;
474 page = __dma_alloc_buffer(dev, size, gfp);
475 if (!page)
476 return NULL;
477 if (!want_vaddr)
478 goto out;
479
480 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
481 if (!ptr) {
482 __dma_free_buffer(page, size);
483 return NULL;
484 }
485
486 out:
487 *ret_page = page;
488 return ptr;
489 }
490
491 static void *__alloc_from_pool(size_t size, struct page **ret_page)
492 {
493 unsigned long val;
494 void *ptr = NULL;
495
496 if (!atomic_pool) {
497 WARN(1, "coherent pool not initialised!\n");
498 return NULL;
499 }
500
501 val = gen_pool_alloc(atomic_pool, size);
502 if (val) {
503 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
504
505 *ret_page = phys_to_page(phys);
506 ptr = (void *)val;
507 }
508
509 return ptr;
510 }
511
512 static bool __in_atomic_pool(void *start, size_t size)
513 {
514 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
515 }
516
517 static int __free_from_pool(void *start, size_t size)
518 {
519 if (!__in_atomic_pool(start, size))
520 return 0;
521
522 gen_pool_free(atomic_pool, (unsigned long)start, size);
523
524 return 1;
525 }
526
527 static void *__alloc_from_contiguous(struct device *dev, size_t size,
528 pgprot_t prot, struct page **ret_page,
529 const void *caller, bool want_vaddr)
530 {
531 unsigned long order = get_order(size);
532 size_t count = size >> PAGE_SHIFT;
533 struct page *page;
534 void *ptr = NULL;
535
536 page = dma_alloc_from_contiguous(dev, count, order);
537 if (!page)
538 return NULL;
539
540 __dma_clear_buffer(page, size);
541
542 if (!want_vaddr)
543 goto out;
544
545 if (PageHighMem(page)) {
546 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
547 if (!ptr) {
548 dma_release_from_contiguous(dev, page, count);
549 return NULL;
550 }
551 } else {
552 __dma_remap(page, size, prot);
553 ptr = page_address(page);
554 }
555
556 out:
557 *ret_page = page;
558 return ptr;
559 }
560
561 static void __free_from_contiguous(struct device *dev, struct page *page,
562 void *cpu_addr, size_t size, bool want_vaddr)
563 {
564 if (want_vaddr) {
565 if (PageHighMem(page))
566 __dma_free_remap(cpu_addr, size);
567 else
568 __dma_remap(page, size, PAGE_KERNEL);
569 }
570 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
571 }
572
573 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
574 {
575 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
576 pgprot_writecombine(prot) :
577 pgprot_dmacoherent(prot);
578 return prot;
579 }
580
581 #define nommu() 0
582
583 #else /* !CONFIG_MMU */
584
585 #define nommu() 1
586
587 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
588 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c, wv) NULL
589 #define __alloc_from_pool(size, ret_page) NULL
590 #define __alloc_from_contiguous(dev, size, prot, ret, c, wv) NULL
591 #define __free_from_pool(cpu_addr, size) 0
592 #define __free_from_contiguous(dev, page, cpu_addr, size, wv) do { } while (0)
593 #define __dma_free_remap(cpu_addr, size) do { } while (0)
594
595 #endif /* CONFIG_MMU */
596
597 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
598 struct page **ret_page)
599 {
600 struct page *page;
601 page = __dma_alloc_buffer(dev, size, gfp);
602 if (!page)
603 return NULL;
604
605 *ret_page = page;
606 return page_address(page);
607 }
608
609
610
611 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
612 gfp_t gfp, pgprot_t prot, bool is_coherent,
613 struct dma_attrs *attrs, const void *caller)
614 {
615 u64 mask = get_coherent_dma_mask(dev);
616 struct page *page = NULL;
617 void *addr;
618 bool want_vaddr;
619
620 #ifdef CONFIG_DMA_API_DEBUG
621 u64 limit = (mask + 1) & ~mask;
622 if (limit && size >= limit) {
623 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
624 size, mask);
625 return NULL;
626 }
627 #endif
628
629 if (!mask)
630 return NULL;
631
632 if (mask < 0xffffffffULL)
633 gfp |= GFP_DMA;
634
635 /*
636 * Following is a work-around (a.k.a. hack) to prevent pages
637 * with __GFP_COMP being passed to split_page() which cannot
638 * handle them. The real problem is that this flag probably
639 * should be 0 on ARM as it is not supported on this
640 * platform; see CONFIG_HUGETLBFS.
641 */
642 gfp &= ~(__GFP_COMP);
643
644 *handle = DMA_ERROR_CODE;
645 size = PAGE_ALIGN(size);
646 want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
647
648 if (is_coherent || nommu())
649 addr = __alloc_simple_buffer(dev, size, gfp, &page);
650 else if (!(gfp & __GFP_WAIT))
651 addr = __alloc_from_pool(size, &page);
652 else if (!dev_get_cma_area(dev))
653 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller, want_vaddr);
654 else
655 addr = __alloc_from_contiguous(dev, size, prot, &page, caller, want_vaddr);
656
657 if (page)
658 *handle = pfn_to_dma(dev, page_to_pfn(page));
659
660 return want_vaddr ? addr : page;
661 }
662
663 /*
664 * Allocate DMA-coherent memory space and return both the kernel remapped
665 * virtual and bus address for that space.
666 */
667 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
668 gfp_t gfp, struct dma_attrs *attrs)
669 {
670 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
671 void *memory;
672
673 if (dma_alloc_from_coherent(dev, size, handle, &memory))
674 return memory;
675
676 return __dma_alloc(dev, size, handle, gfp, prot, false,
677 attrs, __builtin_return_address(0));
678 }
679
680 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
681 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
682 {
683 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
684 void *memory;
685
686 if (dma_alloc_from_coherent(dev, size, handle, &memory))
687 return memory;
688
689 return __dma_alloc(dev, size, handle, gfp, prot, true,
690 attrs, __builtin_return_address(0));
691 }
692
693 /*
694 * Create userspace mapping for the DMA-coherent memory.
695 */
696 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
697 void *cpu_addr, dma_addr_t dma_addr, size_t size,
698 struct dma_attrs *attrs)
699 {
700 int ret = -ENXIO;
701 #ifdef CONFIG_MMU
702 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
703 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
704 unsigned long pfn = dma_to_pfn(dev, dma_addr);
705 unsigned long off = vma->vm_pgoff;
706
707 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
708
709 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
710 return ret;
711
712 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
713 ret = remap_pfn_range(vma, vma->vm_start,
714 pfn + off,
715 vma->vm_end - vma->vm_start,
716 vma->vm_page_prot);
717 }
718 #endif /* CONFIG_MMU */
719
720 return ret;
721 }
722
723 /*
724 * Free a buffer as defined by the above mapping.
725 */
726 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
727 dma_addr_t handle, struct dma_attrs *attrs,
728 bool is_coherent)
729 {
730 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
731 bool want_vaddr = !dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs);
732
733 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
734 return;
735
736 size = PAGE_ALIGN(size);
737
738 if (is_coherent || nommu()) {
739 __dma_free_buffer(page, size);
740 } else if (__free_from_pool(cpu_addr, size)) {
741 return;
742 } else if (!dev_get_cma_area(dev)) {
743 if (want_vaddr)
744 __dma_free_remap(cpu_addr, size);
745 __dma_free_buffer(page, size);
746 } else {
747 /*
748 * Non-atomic allocations cannot be freed with IRQs disabled
749 */
750 WARN_ON(irqs_disabled());
751 __free_from_contiguous(dev, page, cpu_addr, size, want_vaddr);
752 }
753 }
754
755 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
756 dma_addr_t handle, struct dma_attrs *attrs)
757 {
758 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
759 }
760
761 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
762 dma_addr_t handle, struct dma_attrs *attrs)
763 {
764 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
765 }
766
767 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
768 void *cpu_addr, dma_addr_t handle, size_t size,
769 struct dma_attrs *attrs)
770 {
771 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
772 int ret;
773
774 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
775 if (unlikely(ret))
776 return ret;
777
778 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
779 return 0;
780 }
781
782 static void dma_cache_maint_page(struct page *page, unsigned long offset,
783 size_t size, enum dma_data_direction dir,
784 void (*op)(const void *, size_t, int))
785 {
786 unsigned long pfn;
787 size_t left = size;
788
789 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
790 offset %= PAGE_SIZE;
791
792 /*
793 * A single sg entry may refer to multiple physically contiguous
794 * pages. But we still need to process highmem pages individually.
795 * If highmem is not configured then the bulk of this loop gets
796 * optimized out.
797 */
798 do {
799 size_t len = left;
800 void *vaddr;
801
802 page = pfn_to_page(pfn);
803
804 if (PageHighMem(page)) {
805 if (len + offset > PAGE_SIZE)
806 len = PAGE_SIZE - offset;
807
808 if (cache_is_vipt_nonaliasing()) {
809 vaddr = kmap_atomic(page);
810 op(vaddr + offset, len, dir);
811 kunmap_atomic(vaddr);
812 } else {
813 vaddr = kmap_high_get(page);
814 if (vaddr) {
815 op(vaddr + offset, len, dir);
816 kunmap_high(page);
817 }
818 }
819 } else {
820 vaddr = page_address(page) + offset;
821 op(vaddr, len, dir);
822 }
823 offset = 0;
824 pfn++;
825 left -= len;
826 } while (left);
827 }
828
829 /*
830 * Make an area consistent for devices.
831 * Note: Drivers should NOT use this function directly, as it will break
832 * platforms with CONFIG_DMABOUNCE.
833 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
834 */
835 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
836 size_t size, enum dma_data_direction dir)
837 {
838 phys_addr_t paddr;
839
840 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
841
842 paddr = page_to_phys(page) + off;
843 if (dir == DMA_FROM_DEVICE) {
844 outer_inv_range(paddr, paddr + size);
845 } else {
846 outer_clean_range(paddr, paddr + size);
847 }
848 /* FIXME: non-speculating: flush on bidirectional mappings? */
849 }
850
851 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
852 size_t size, enum dma_data_direction dir)
853 {
854 phys_addr_t paddr = page_to_phys(page) + off;
855
856 /* FIXME: non-speculating: not required */
857 /* in any case, don't bother invalidating if DMA to device */
858 if (dir != DMA_TO_DEVICE) {
859 outer_inv_range(paddr, paddr + size);
860
861 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
862 }
863
864 /*
865 * Mark the D-cache clean for these pages to avoid extra flushing.
866 */
867 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
868 unsigned long pfn;
869 size_t left = size;
870
871 pfn = page_to_pfn(page) + off / PAGE_SIZE;
872 off %= PAGE_SIZE;
873 if (off) {
874 pfn++;
875 left -= PAGE_SIZE - off;
876 }
877 while (left >= PAGE_SIZE) {
878 page = pfn_to_page(pfn++);
879 set_bit(PG_dcache_clean, &page->flags);
880 left -= PAGE_SIZE;
881 }
882 }
883 }
884
885 /**
886 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
887 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
888 * @sg: list of buffers
889 * @nents: number of buffers to map
890 * @dir: DMA transfer direction
891 *
892 * Map a set of buffers described by scatterlist in streaming mode for DMA.
893 * This is the scatter-gather version of the dma_map_single interface.
894 * Here the scatter gather list elements are each tagged with the
895 * appropriate dma address and length. They are obtained via
896 * sg_dma_{address,length}.
897 *
898 * Device ownership issues as mentioned for dma_map_single are the same
899 * here.
900 */
901 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
902 enum dma_data_direction dir, struct dma_attrs *attrs)
903 {
904 struct dma_map_ops *ops = get_dma_ops(dev);
905 struct scatterlist *s;
906 int i, j;
907
908 for_each_sg(sg, s, nents, i) {
909 #ifdef CONFIG_NEED_SG_DMA_LENGTH
910 s->dma_length = s->length;
911 #endif
912 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
913 s->length, dir, attrs);
914 if (dma_mapping_error(dev, s->dma_address))
915 goto bad_mapping;
916 }
917 return nents;
918
919 bad_mapping:
920 for_each_sg(sg, s, i, j)
921 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
922 return 0;
923 }
924
925 /**
926 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
927 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
928 * @sg: list of buffers
929 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
930 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
931 *
932 * Unmap a set of streaming mode DMA translations. Again, CPU access
933 * rules concerning calls here are the same as for dma_unmap_single().
934 */
935 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
936 enum dma_data_direction dir, struct dma_attrs *attrs)
937 {
938 struct dma_map_ops *ops = get_dma_ops(dev);
939 struct scatterlist *s;
940
941 int i;
942
943 for_each_sg(sg, s, nents, i)
944 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
945 }
946
947 /**
948 * arm_dma_sync_sg_for_cpu
949 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
950 * @sg: list of buffers
951 * @nents: number of buffers to map (returned from dma_map_sg)
952 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
953 */
954 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
955 int nents, enum dma_data_direction dir)
956 {
957 struct dma_map_ops *ops = get_dma_ops(dev);
958 struct scatterlist *s;
959 int i;
960
961 for_each_sg(sg, s, nents, i)
962 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
963 dir);
964 }
965
966 /**
967 * arm_dma_sync_sg_for_device
968 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
969 * @sg: list of buffers
970 * @nents: number of buffers to map (returned from dma_map_sg)
971 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
972 */
973 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
974 int nents, enum dma_data_direction dir)
975 {
976 struct dma_map_ops *ops = get_dma_ops(dev);
977 struct scatterlist *s;
978 int i;
979
980 for_each_sg(sg, s, nents, i)
981 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
982 dir);
983 }
984
985 /*
986 * Return whether the given device DMA address mask can be supported
987 * properly. For example, if your device can only drive the low 24-bits
988 * during bus mastering, then you would pass 0x00ffffff as the mask
989 * to this function.
990 */
991 int dma_supported(struct device *dev, u64 mask)
992 {
993 return __dma_supported(dev, mask, false);
994 }
995 EXPORT_SYMBOL(dma_supported);
996
997 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
998 {
999 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1000 return -EIO;
1001
1002 *dev->dma_mask = dma_mask;
1003
1004 return 0;
1005 }
1006
1007 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1008
1009 static int __init dma_debug_do_init(void)
1010 {
1011 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1012 return 0;
1013 }
1014 fs_initcall(dma_debug_do_init);
1015
1016 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1017
1018 /* IOMMU */
1019
1020 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1021
1022 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1023 size_t size)
1024 {
1025 unsigned int order = get_order(size);
1026 unsigned int align = 0;
1027 unsigned int count, start;
1028 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1029 unsigned long flags;
1030 dma_addr_t iova;
1031 int i;
1032
1033 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1034 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1035
1036 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1037 align = (1 << order) - 1;
1038
1039 spin_lock_irqsave(&mapping->lock, flags);
1040 for (i = 0; i < mapping->nr_bitmaps; i++) {
1041 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1042 mapping->bits, 0, count, align);
1043
1044 if (start > mapping->bits)
1045 continue;
1046
1047 bitmap_set(mapping->bitmaps[i], start, count);
1048 break;
1049 }
1050
1051 /*
1052 * No unused range found. Try to extend the existing mapping
1053 * and perform a second attempt to reserve an IO virtual
1054 * address range of size bytes.
1055 */
1056 if (i == mapping->nr_bitmaps) {
1057 if (extend_iommu_mapping(mapping)) {
1058 spin_unlock_irqrestore(&mapping->lock, flags);
1059 return DMA_ERROR_CODE;
1060 }
1061
1062 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1063 mapping->bits, 0, count, align);
1064
1065 if (start > mapping->bits) {
1066 spin_unlock_irqrestore(&mapping->lock, flags);
1067 return DMA_ERROR_CODE;
1068 }
1069
1070 bitmap_set(mapping->bitmaps[i], start, count);
1071 }
1072 spin_unlock_irqrestore(&mapping->lock, flags);
1073
1074 iova = mapping->base + (mapping_size * i);
1075 iova += start << PAGE_SHIFT;
1076
1077 return iova;
1078 }
1079
1080 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1081 dma_addr_t addr, size_t size)
1082 {
1083 unsigned int start, count;
1084 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1085 unsigned long flags;
1086 dma_addr_t bitmap_base;
1087 u32 bitmap_index;
1088
1089 if (!size)
1090 return;
1091
1092 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1093 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1094
1095 bitmap_base = mapping->base + mapping_size * bitmap_index;
1096
1097 start = (addr - bitmap_base) >> PAGE_SHIFT;
1098
1099 if (addr + size > bitmap_base + mapping_size) {
1100 /*
1101 * The address range to be freed reaches into the iova
1102 * range of the next bitmap. This should not happen as
1103 * we don't allow this in __alloc_iova (at the
1104 * moment).
1105 */
1106 BUG();
1107 } else
1108 count = size >> PAGE_SHIFT;
1109
1110 spin_lock_irqsave(&mapping->lock, flags);
1111 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1112 spin_unlock_irqrestore(&mapping->lock, flags);
1113 }
1114
1115 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1116 gfp_t gfp, struct dma_attrs *attrs)
1117 {
1118 struct page **pages;
1119 int count = size >> PAGE_SHIFT;
1120 int array_size = count * sizeof(struct page *);
1121 int i = 0;
1122
1123 if (array_size <= PAGE_SIZE)
1124 pages = kzalloc(array_size, GFP_KERNEL);
1125 else
1126 pages = vzalloc(array_size);
1127 if (!pages)
1128 return NULL;
1129
1130 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1131 {
1132 unsigned long order = get_order(size);
1133 struct page *page;
1134
1135 page = dma_alloc_from_contiguous(dev, count, order);
1136 if (!page)
1137 goto error;
1138
1139 __dma_clear_buffer(page, size);
1140
1141 for (i = 0; i < count; i++)
1142 pages[i] = page + i;
1143
1144 return pages;
1145 }
1146
1147 /*
1148 * IOMMU can map any pages, so himem can also be used here
1149 */
1150 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1151
1152 while (count) {
1153 int j, order;
1154
1155 for (order = __fls(count); order > 0; --order) {
1156 /*
1157 * We do not want OOM killer to be invoked as long
1158 * as we can fall back to single pages, so we force
1159 * __GFP_NORETRY for orders higher than zero.
1160 */
1161 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1162 if (pages[i])
1163 break;
1164 }
1165
1166 if (!pages[i]) {
1167 /*
1168 * Fall back to single page allocation.
1169 * Might invoke OOM killer as last resort.
1170 */
1171 pages[i] = alloc_pages(gfp, 0);
1172 if (!pages[i])
1173 goto error;
1174 }
1175
1176 if (order) {
1177 split_page(pages[i], order);
1178 j = 1 << order;
1179 while (--j)
1180 pages[i + j] = pages[i] + j;
1181 }
1182
1183 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1184 i += 1 << order;
1185 count -= 1 << order;
1186 }
1187
1188 return pages;
1189 error:
1190 while (i--)
1191 if (pages[i])
1192 __free_pages(pages[i], 0);
1193 if (array_size <= PAGE_SIZE)
1194 kfree(pages);
1195 else
1196 vfree(pages);
1197 return NULL;
1198 }
1199
1200 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1201 size_t size, struct dma_attrs *attrs)
1202 {
1203 int count = size >> PAGE_SHIFT;
1204 int array_size = count * sizeof(struct page *);
1205 int i;
1206
1207 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1208 dma_release_from_contiguous(dev, pages[0], count);
1209 } else {
1210 for (i = 0; i < count; i++)
1211 if (pages[i])
1212 __free_pages(pages[i], 0);
1213 }
1214
1215 if (array_size <= PAGE_SIZE)
1216 kfree(pages);
1217 else
1218 vfree(pages);
1219 return 0;
1220 }
1221
1222 /*
1223 * Create a CPU mapping for a specified pages
1224 */
1225 static void *
1226 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1227 const void *caller)
1228 {
1229 return dma_common_pages_remap(pages, size,
1230 VM_ARM_DMA_CONSISTENT | VM_USERMAP, prot, caller);
1231 }
1232
1233 /*
1234 * Create a mapping in device IO address space for specified pages
1235 */
1236 static dma_addr_t
1237 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1238 {
1239 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1240 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1241 dma_addr_t dma_addr, iova;
1242 int i, ret = DMA_ERROR_CODE;
1243
1244 dma_addr = __alloc_iova(mapping, size);
1245 if (dma_addr == DMA_ERROR_CODE)
1246 return dma_addr;
1247
1248 iova = dma_addr;
1249 for (i = 0; i < count; ) {
1250 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1251 phys_addr_t phys = page_to_phys(pages[i]);
1252 unsigned int len, j;
1253
1254 for (j = i + 1; j < count; j++, next_pfn++)
1255 if (page_to_pfn(pages[j]) != next_pfn)
1256 break;
1257
1258 len = (j - i) << PAGE_SHIFT;
1259 ret = iommu_map(mapping->domain, iova, phys, len,
1260 IOMMU_READ|IOMMU_WRITE);
1261 if (ret < 0)
1262 goto fail;
1263 iova += len;
1264 i = j;
1265 }
1266 return dma_addr;
1267 fail:
1268 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1269 __free_iova(mapping, dma_addr, size);
1270 return DMA_ERROR_CODE;
1271 }
1272
1273 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1274 {
1275 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1276
1277 /*
1278 * add optional in-page offset from iova to size and align
1279 * result to page size
1280 */
1281 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1282 iova &= PAGE_MASK;
1283
1284 iommu_unmap(mapping->domain, iova, size);
1285 __free_iova(mapping, iova, size);
1286 return 0;
1287 }
1288
1289 static struct page **__atomic_get_pages(void *addr)
1290 {
1291 struct page *page;
1292 phys_addr_t phys;
1293
1294 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1295 page = phys_to_page(phys);
1296
1297 return (struct page **)page;
1298 }
1299
1300 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1301 {
1302 struct vm_struct *area;
1303
1304 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1305 return __atomic_get_pages(cpu_addr);
1306
1307 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1308 return cpu_addr;
1309
1310 area = find_vm_area(cpu_addr);
1311 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1312 return area->pages;
1313 return NULL;
1314 }
1315
1316 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1317 dma_addr_t *handle)
1318 {
1319 struct page *page;
1320 void *addr;
1321
1322 addr = __alloc_from_pool(size, &page);
1323 if (!addr)
1324 return NULL;
1325
1326 *handle = __iommu_create_mapping(dev, &page, size);
1327 if (*handle == DMA_ERROR_CODE)
1328 goto err_mapping;
1329
1330 return addr;
1331
1332 err_mapping:
1333 __free_from_pool(addr, size);
1334 return NULL;
1335 }
1336
1337 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1338 dma_addr_t handle, size_t size)
1339 {
1340 __iommu_remove_mapping(dev, handle, size);
1341 __free_from_pool(cpu_addr, size);
1342 }
1343
1344 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1345 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1346 {
1347 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1348 struct page **pages;
1349 void *addr = NULL;
1350
1351 *handle = DMA_ERROR_CODE;
1352 size = PAGE_ALIGN(size);
1353
1354 if (!(gfp & __GFP_WAIT))
1355 return __iommu_alloc_atomic(dev, size, handle);
1356
1357 /*
1358 * Following is a work-around (a.k.a. hack) to prevent pages
1359 * with __GFP_COMP being passed to split_page() which cannot
1360 * handle them. The real problem is that this flag probably
1361 * should be 0 on ARM as it is not supported on this
1362 * platform; see CONFIG_HUGETLBFS.
1363 */
1364 gfp &= ~(__GFP_COMP);
1365
1366 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1367 if (!pages)
1368 return NULL;
1369
1370 *handle = __iommu_create_mapping(dev, pages, size);
1371 if (*handle == DMA_ERROR_CODE)
1372 goto err_buffer;
1373
1374 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1375 return pages;
1376
1377 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1378 __builtin_return_address(0));
1379 if (!addr)
1380 goto err_mapping;
1381
1382 return addr;
1383
1384 err_mapping:
1385 __iommu_remove_mapping(dev, *handle, size);
1386 err_buffer:
1387 __iommu_free_buffer(dev, pages, size, attrs);
1388 return NULL;
1389 }
1390
1391 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1392 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1393 struct dma_attrs *attrs)
1394 {
1395 unsigned long uaddr = vma->vm_start;
1396 unsigned long usize = vma->vm_end - vma->vm_start;
1397 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1398
1399 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1400
1401 if (!pages)
1402 return -ENXIO;
1403
1404 do {
1405 int ret = vm_insert_page(vma, uaddr, *pages++);
1406 if (ret) {
1407 pr_err("Remapping memory failed: %d\n", ret);
1408 return ret;
1409 }
1410 uaddr += PAGE_SIZE;
1411 usize -= PAGE_SIZE;
1412 } while (usize > 0);
1413
1414 return 0;
1415 }
1416
1417 /*
1418 * free a page as defined by the above mapping.
1419 * Must not be called with IRQs disabled.
1420 */
1421 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1422 dma_addr_t handle, struct dma_attrs *attrs)
1423 {
1424 struct page **pages;
1425 size = PAGE_ALIGN(size);
1426
1427 if (__in_atomic_pool(cpu_addr, size)) {
1428 __iommu_free_atomic(dev, cpu_addr, handle, size);
1429 return;
1430 }
1431
1432 pages = __iommu_get_pages(cpu_addr, attrs);
1433 if (!pages) {
1434 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1435 return;
1436 }
1437
1438 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1439 dma_common_free_remap(cpu_addr, size,
1440 VM_ARM_DMA_CONSISTENT | VM_USERMAP);
1441 }
1442
1443 __iommu_remove_mapping(dev, handle, size);
1444 __iommu_free_buffer(dev, pages, size, attrs);
1445 }
1446
1447 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1448 void *cpu_addr, dma_addr_t dma_addr,
1449 size_t size, struct dma_attrs *attrs)
1450 {
1451 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1452 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1453
1454 if (!pages)
1455 return -ENXIO;
1456
1457 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1458 GFP_KERNEL);
1459 }
1460
1461 static int __dma_direction_to_prot(enum dma_data_direction dir)
1462 {
1463 int prot;
1464
1465 switch (dir) {
1466 case DMA_BIDIRECTIONAL:
1467 prot = IOMMU_READ | IOMMU_WRITE;
1468 break;
1469 case DMA_TO_DEVICE:
1470 prot = IOMMU_READ;
1471 break;
1472 case DMA_FROM_DEVICE:
1473 prot = IOMMU_WRITE;
1474 break;
1475 default:
1476 prot = 0;
1477 }
1478
1479 return prot;
1480 }
1481
1482 /*
1483 * Map a part of the scatter-gather list into contiguous io address space
1484 */
1485 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1486 size_t size, dma_addr_t *handle,
1487 enum dma_data_direction dir, struct dma_attrs *attrs,
1488 bool is_coherent)
1489 {
1490 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1491 dma_addr_t iova, iova_base;
1492 int ret = 0;
1493 unsigned int count;
1494 struct scatterlist *s;
1495 int prot;
1496
1497 size = PAGE_ALIGN(size);
1498 *handle = DMA_ERROR_CODE;
1499
1500 iova_base = iova = __alloc_iova(mapping, size);
1501 if (iova == DMA_ERROR_CODE)
1502 return -ENOMEM;
1503
1504 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1505 phys_addr_t phys = page_to_phys(sg_page(s));
1506 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1507
1508 if (!is_coherent &&
1509 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1510 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1511
1512 prot = __dma_direction_to_prot(dir);
1513
1514 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1515 if (ret < 0)
1516 goto fail;
1517 count += len >> PAGE_SHIFT;
1518 iova += len;
1519 }
1520 *handle = iova_base;
1521
1522 return 0;
1523 fail:
1524 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1525 __free_iova(mapping, iova_base, size);
1526 return ret;
1527 }
1528
1529 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1530 enum dma_data_direction dir, struct dma_attrs *attrs,
1531 bool is_coherent)
1532 {
1533 struct scatterlist *s = sg, *dma = sg, *start = sg;
1534 int i, count = 0;
1535 unsigned int offset = s->offset;
1536 unsigned int size = s->offset + s->length;
1537 unsigned int max = dma_get_max_seg_size(dev);
1538
1539 for (i = 1; i < nents; i++) {
1540 s = sg_next(s);
1541
1542 s->dma_address = DMA_ERROR_CODE;
1543 s->dma_length = 0;
1544
1545 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1546 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1547 dir, attrs, is_coherent) < 0)
1548 goto bad_mapping;
1549
1550 dma->dma_address += offset;
1551 dma->dma_length = size - offset;
1552
1553 size = offset = s->offset;
1554 start = s;
1555 dma = sg_next(dma);
1556 count += 1;
1557 }
1558 size += s->length;
1559 }
1560 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1561 is_coherent) < 0)
1562 goto bad_mapping;
1563
1564 dma->dma_address += offset;
1565 dma->dma_length = size - offset;
1566
1567 return count+1;
1568
1569 bad_mapping:
1570 for_each_sg(sg, s, count, i)
1571 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1572 return 0;
1573 }
1574
1575 /**
1576 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1577 * @dev: valid struct device pointer
1578 * @sg: list of buffers
1579 * @nents: number of buffers to map
1580 * @dir: DMA transfer direction
1581 *
1582 * Map a set of i/o coherent buffers described by scatterlist in streaming
1583 * mode for DMA. The scatter gather list elements are merged together (if
1584 * possible) and tagged with the appropriate dma address and length. They are
1585 * obtained via sg_dma_{address,length}.
1586 */
1587 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1588 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1589 {
1590 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1591 }
1592
1593 /**
1594 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1595 * @dev: valid struct device pointer
1596 * @sg: list of buffers
1597 * @nents: number of buffers to map
1598 * @dir: DMA transfer direction
1599 *
1600 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1601 * The scatter gather list elements are merged together (if possible) and
1602 * tagged with the appropriate dma address and length. They are obtained via
1603 * sg_dma_{address,length}.
1604 */
1605 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1606 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1607 {
1608 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1609 }
1610
1611 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1612 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1613 bool is_coherent)
1614 {
1615 struct scatterlist *s;
1616 int i;
1617
1618 for_each_sg(sg, s, nents, i) {
1619 if (sg_dma_len(s))
1620 __iommu_remove_mapping(dev, sg_dma_address(s),
1621 sg_dma_len(s));
1622 if (!is_coherent &&
1623 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1624 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1625 s->length, dir);
1626 }
1627 }
1628
1629 /**
1630 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1631 * @dev: valid struct device pointer
1632 * @sg: list of buffers
1633 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1634 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1635 *
1636 * Unmap a set of streaming mode DMA translations. Again, CPU access
1637 * rules concerning calls here are the same as for dma_unmap_single().
1638 */
1639 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1640 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1641 {
1642 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1643 }
1644
1645 /**
1646 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1647 * @dev: valid struct device pointer
1648 * @sg: list of buffers
1649 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1650 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1651 *
1652 * Unmap a set of streaming mode DMA translations. Again, CPU access
1653 * rules concerning calls here are the same as for dma_unmap_single().
1654 */
1655 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1656 enum dma_data_direction dir, struct dma_attrs *attrs)
1657 {
1658 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1659 }
1660
1661 /**
1662 * arm_iommu_sync_sg_for_cpu
1663 * @dev: valid struct device pointer
1664 * @sg: list of buffers
1665 * @nents: number of buffers to map (returned from dma_map_sg)
1666 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1667 */
1668 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1669 int nents, enum dma_data_direction dir)
1670 {
1671 struct scatterlist *s;
1672 int i;
1673
1674 for_each_sg(sg, s, nents, i)
1675 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1676
1677 }
1678
1679 /**
1680 * arm_iommu_sync_sg_for_device
1681 * @dev: valid struct device pointer
1682 * @sg: list of buffers
1683 * @nents: number of buffers to map (returned from dma_map_sg)
1684 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1685 */
1686 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1687 int nents, enum dma_data_direction dir)
1688 {
1689 struct scatterlist *s;
1690 int i;
1691
1692 for_each_sg(sg, s, nents, i)
1693 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1694 }
1695
1696
1697 /**
1698 * arm_coherent_iommu_map_page
1699 * @dev: valid struct device pointer
1700 * @page: page that buffer resides in
1701 * @offset: offset into page for start of buffer
1702 * @size: size of buffer to map
1703 * @dir: DMA transfer direction
1704 *
1705 * Coherent IOMMU aware version of arm_dma_map_page()
1706 */
1707 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1708 unsigned long offset, size_t size, enum dma_data_direction dir,
1709 struct dma_attrs *attrs)
1710 {
1711 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1712 dma_addr_t dma_addr;
1713 int ret, prot, len = PAGE_ALIGN(size + offset);
1714
1715 dma_addr = __alloc_iova(mapping, len);
1716 if (dma_addr == DMA_ERROR_CODE)
1717 return dma_addr;
1718
1719 prot = __dma_direction_to_prot(dir);
1720
1721 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1722 if (ret < 0)
1723 goto fail;
1724
1725 return dma_addr + offset;
1726 fail:
1727 __free_iova(mapping, dma_addr, len);
1728 return DMA_ERROR_CODE;
1729 }
1730
1731 /**
1732 * arm_iommu_map_page
1733 * @dev: valid struct device pointer
1734 * @page: page that buffer resides in
1735 * @offset: offset into page for start of buffer
1736 * @size: size of buffer to map
1737 * @dir: DMA transfer direction
1738 *
1739 * IOMMU aware version of arm_dma_map_page()
1740 */
1741 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1742 unsigned long offset, size_t size, enum dma_data_direction dir,
1743 struct dma_attrs *attrs)
1744 {
1745 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1746 __dma_page_cpu_to_dev(page, offset, size, dir);
1747
1748 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1749 }
1750
1751 /**
1752 * arm_coherent_iommu_unmap_page
1753 * @dev: valid struct device pointer
1754 * @handle: DMA address of buffer
1755 * @size: size of buffer (same as passed to dma_map_page)
1756 * @dir: DMA transfer direction (same as passed to dma_map_page)
1757 *
1758 * Coherent IOMMU aware version of arm_dma_unmap_page()
1759 */
1760 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1761 size_t size, enum dma_data_direction dir,
1762 struct dma_attrs *attrs)
1763 {
1764 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1765 dma_addr_t iova = handle & PAGE_MASK;
1766 int offset = handle & ~PAGE_MASK;
1767 int len = PAGE_ALIGN(size + offset);
1768
1769 if (!iova)
1770 return;
1771
1772 iommu_unmap(mapping->domain, iova, len);
1773 __free_iova(mapping, iova, len);
1774 }
1775
1776 /**
1777 * arm_iommu_unmap_page
1778 * @dev: valid struct device pointer
1779 * @handle: DMA address of buffer
1780 * @size: size of buffer (same as passed to dma_map_page)
1781 * @dir: DMA transfer direction (same as passed to dma_map_page)
1782 *
1783 * IOMMU aware version of arm_dma_unmap_page()
1784 */
1785 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1786 size_t size, enum dma_data_direction dir,
1787 struct dma_attrs *attrs)
1788 {
1789 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1790 dma_addr_t iova = handle & PAGE_MASK;
1791 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1792 int offset = handle & ~PAGE_MASK;
1793 int len = PAGE_ALIGN(size + offset);
1794
1795 if (!iova)
1796 return;
1797
1798 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1799 __dma_page_dev_to_cpu(page, offset, size, dir);
1800
1801 iommu_unmap(mapping->domain, iova, len);
1802 __free_iova(mapping, iova, len);
1803 }
1804
1805 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1806 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1807 {
1808 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1809 dma_addr_t iova = handle & PAGE_MASK;
1810 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1811 unsigned int offset = handle & ~PAGE_MASK;
1812
1813 if (!iova)
1814 return;
1815
1816 __dma_page_dev_to_cpu(page, offset, size, dir);
1817 }
1818
1819 static void arm_iommu_sync_single_for_device(struct device *dev,
1820 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1821 {
1822 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1823 dma_addr_t iova = handle & PAGE_MASK;
1824 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1825 unsigned int offset = handle & ~PAGE_MASK;
1826
1827 if (!iova)
1828 return;
1829
1830 __dma_page_cpu_to_dev(page, offset, size, dir);
1831 }
1832
1833 struct dma_map_ops iommu_ops = {
1834 .alloc = arm_iommu_alloc_attrs,
1835 .free = arm_iommu_free_attrs,
1836 .mmap = arm_iommu_mmap_attrs,
1837 .get_sgtable = arm_iommu_get_sgtable,
1838
1839 .map_page = arm_iommu_map_page,
1840 .unmap_page = arm_iommu_unmap_page,
1841 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1842 .sync_single_for_device = arm_iommu_sync_single_for_device,
1843
1844 .map_sg = arm_iommu_map_sg,
1845 .unmap_sg = arm_iommu_unmap_sg,
1846 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1847 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1848
1849 .set_dma_mask = arm_dma_set_mask,
1850 };
1851
1852 struct dma_map_ops iommu_coherent_ops = {
1853 .alloc = arm_iommu_alloc_attrs,
1854 .free = arm_iommu_free_attrs,
1855 .mmap = arm_iommu_mmap_attrs,
1856 .get_sgtable = arm_iommu_get_sgtable,
1857
1858 .map_page = arm_coherent_iommu_map_page,
1859 .unmap_page = arm_coherent_iommu_unmap_page,
1860
1861 .map_sg = arm_coherent_iommu_map_sg,
1862 .unmap_sg = arm_coherent_iommu_unmap_sg,
1863
1864 .set_dma_mask = arm_dma_set_mask,
1865 };
1866
1867 /**
1868 * arm_iommu_create_mapping
1869 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1870 * @base: start address of the valid IO address space
1871 * @size: maximum size of the valid IO address space
1872 *
1873 * Creates a mapping structure which holds information about used/unused
1874 * IO address ranges, which is required to perform memory allocation and
1875 * mapping with IOMMU aware functions.
1876 *
1877 * The client device need to be attached to the mapping with
1878 * arm_iommu_attach_device function.
1879 */
1880 struct dma_iommu_mapping *
1881 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size)
1882 {
1883 unsigned int bits = size >> PAGE_SHIFT;
1884 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1885 struct dma_iommu_mapping *mapping;
1886 int extensions = 1;
1887 int err = -ENOMEM;
1888
1889 if (!bitmap_size)
1890 return ERR_PTR(-EINVAL);
1891
1892 if (bitmap_size > PAGE_SIZE) {
1893 extensions = bitmap_size / PAGE_SIZE;
1894 bitmap_size = PAGE_SIZE;
1895 }
1896
1897 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1898 if (!mapping)
1899 goto err;
1900
1901 mapping->bitmap_size = bitmap_size;
1902 mapping->bitmaps = kzalloc(extensions * sizeof(unsigned long *),
1903 GFP_KERNEL);
1904 if (!mapping->bitmaps)
1905 goto err2;
1906
1907 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1908 if (!mapping->bitmaps[0])
1909 goto err3;
1910
1911 mapping->nr_bitmaps = 1;
1912 mapping->extensions = extensions;
1913 mapping->base = base;
1914 mapping->bits = BITS_PER_BYTE * bitmap_size;
1915
1916 spin_lock_init(&mapping->lock);
1917
1918 mapping->domain = iommu_domain_alloc(bus);
1919 if (!mapping->domain)
1920 goto err4;
1921
1922 kref_init(&mapping->kref);
1923 return mapping;
1924 err4:
1925 kfree(mapping->bitmaps[0]);
1926 err3:
1927 kfree(mapping->bitmaps);
1928 err2:
1929 kfree(mapping);
1930 err:
1931 return ERR_PTR(err);
1932 }
1933 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1934
1935 static void release_iommu_mapping(struct kref *kref)
1936 {
1937 int i;
1938 struct dma_iommu_mapping *mapping =
1939 container_of(kref, struct dma_iommu_mapping, kref);
1940
1941 iommu_domain_free(mapping->domain);
1942 for (i = 0; i < mapping->nr_bitmaps; i++)
1943 kfree(mapping->bitmaps[i]);
1944 kfree(mapping->bitmaps);
1945 kfree(mapping);
1946 }
1947
1948 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1949 {
1950 int next_bitmap;
1951
1952 if (mapping->nr_bitmaps > mapping->extensions)
1953 return -EINVAL;
1954
1955 next_bitmap = mapping->nr_bitmaps;
1956 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1957 GFP_ATOMIC);
1958 if (!mapping->bitmaps[next_bitmap])
1959 return -ENOMEM;
1960
1961 mapping->nr_bitmaps++;
1962
1963 return 0;
1964 }
1965
1966 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1967 {
1968 if (mapping)
1969 kref_put(&mapping->kref, release_iommu_mapping);
1970 }
1971 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1972
1973 static int __arm_iommu_attach_device(struct device *dev,
1974 struct dma_iommu_mapping *mapping)
1975 {
1976 int err;
1977
1978 err = iommu_attach_device(mapping->domain, dev);
1979 if (err)
1980 return err;
1981
1982 kref_get(&mapping->kref);
1983 to_dma_iommu_mapping(dev) = mapping;
1984
1985 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1986 return 0;
1987 }
1988
1989 /**
1990 * arm_iommu_attach_device
1991 * @dev: valid struct device pointer
1992 * @mapping: io address space mapping structure (returned from
1993 * arm_iommu_create_mapping)
1994 *
1995 * Attaches specified io address space mapping to the provided device.
1996 * This replaces the dma operations (dma_map_ops pointer) with the
1997 * IOMMU aware version.
1998 *
1999 * More than one client might be attached to the same io address space
2000 * mapping.
2001 */
2002 int arm_iommu_attach_device(struct device *dev,
2003 struct dma_iommu_mapping *mapping)
2004 {
2005 int err;
2006
2007 err = __arm_iommu_attach_device(dev, mapping);
2008 if (err)
2009 return err;
2010
2011 set_dma_ops(dev, &iommu_ops);
2012 return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2015
2016 static void __arm_iommu_detach_device(struct device *dev)
2017 {
2018 struct dma_iommu_mapping *mapping;
2019
2020 mapping = to_dma_iommu_mapping(dev);
2021 if (!mapping) {
2022 dev_warn(dev, "Not attached\n");
2023 return;
2024 }
2025
2026 iommu_detach_device(mapping->domain, dev);
2027 kref_put(&mapping->kref, release_iommu_mapping);
2028 to_dma_iommu_mapping(dev) = NULL;
2029
2030 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2031 }
2032
2033 /**
2034 * arm_iommu_detach_device
2035 * @dev: valid struct device pointer
2036 *
2037 * Detaches the provided device from a previously attached map.
2038 * This voids the dma operations (dma_map_ops pointer)
2039 */
2040 void arm_iommu_detach_device(struct device *dev)
2041 {
2042 __arm_iommu_detach_device(dev);
2043 set_dma_ops(dev, NULL);
2044 }
2045 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2046
2047 static struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2048 {
2049 return coherent ? &iommu_coherent_ops : &iommu_ops;
2050 }
2051
2052 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2053 struct iommu_ops *iommu)
2054 {
2055 struct dma_iommu_mapping *mapping;
2056
2057 if (!iommu)
2058 return false;
2059
2060 /*
2061 * currently arm_iommu_create_mapping() takes a max of size_t
2062 * for size param. So check this limit for now.
2063 */
2064 if (size > SIZE_MAX)
2065 return false;
2066
2067 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2068 if (IS_ERR(mapping)) {
2069 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2070 size, dev_name(dev));
2071 return false;
2072 }
2073
2074 if (__arm_iommu_attach_device(dev, mapping)) {
2075 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2076 dev_name(dev));
2077 arm_iommu_release_mapping(mapping);
2078 return false;
2079 }
2080
2081 return true;
2082 }
2083
2084 static void arm_teardown_iommu_dma_ops(struct device *dev)
2085 {
2086 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2087
2088 if (!mapping)
2089 return;
2090
2091 __arm_iommu_detach_device(dev);
2092 arm_iommu_release_mapping(mapping);
2093 }
2094
2095 #else
2096
2097 static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2098 struct iommu_ops *iommu)
2099 {
2100 return false;
2101 }
2102
2103 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2104
2105 #define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2106
2107 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
2108
2109 static struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
2110 {
2111 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
2112 }
2113
2114 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2115 struct iommu_ops *iommu, bool coherent)
2116 {
2117 struct dma_map_ops *dma_ops;
2118
2119 dev->archdata.dma_coherent = coherent;
2120 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2121 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2122 else
2123 dma_ops = arm_get_dma_map_ops(coherent);
2124
2125 set_dma_ops(dev, dma_ops);
2126 }
2127
2128 void arch_teardown_dma_ops(struct device *dev)
2129 {
2130 arm_teardown_iommu_dma_ops(dev);
2131 }
This page took 0.075494 seconds and 5 git commands to generate.