e4ac5fc86b0a2306b58c2236aaa242ead38ae4fe
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
21 #include <linux/slab.h>
22
23 #include <asm/memory.h>
24 #include <asm/highmem.h>
25 #include <asm/cacheflush.h>
26 #include <asm/tlbflush.h>
27 #include <asm/sizes.h>
28 #include <asm/mach/arch.h>
29
30 #include "mm.h"
31
32 static u64 get_coherent_dma_mask(struct device *dev)
33 {
34 u64 mask = (u64)arm_dma_limit;
35
36 if (dev) {
37 mask = dev->coherent_dma_mask;
38
39 /*
40 * Sanity check the DMA mask - it must be non-zero, and
41 * must be able to be satisfied by a DMA allocation.
42 */
43 if (mask == 0) {
44 dev_warn(dev, "coherent DMA mask is unset\n");
45 return 0;
46 }
47
48 if ((~mask) & (u64)arm_dma_limit) {
49 dev_warn(dev, "coherent DMA mask %#llx is smaller "
50 "than system GFP_DMA mask %#llx\n",
51 mask, (u64)arm_dma_limit);
52 return 0;
53 }
54 }
55
56 return mask;
57 }
58
59 /*
60 * Allocate a DMA buffer for 'dev' of size 'size' using the
61 * specified gfp mask. Note that 'size' must be page aligned.
62 */
63 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
64 {
65 unsigned long order = get_order(size);
66 struct page *page, *p, *e;
67 void *ptr;
68 u64 mask = get_coherent_dma_mask(dev);
69
70 #ifdef CONFIG_DMA_API_DEBUG
71 u64 limit = (mask + 1) & ~mask;
72 if (limit && size >= limit) {
73 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
74 size, mask);
75 return NULL;
76 }
77 #endif
78
79 if (!mask)
80 return NULL;
81
82 if (mask < 0xffffffffULL)
83 gfp |= GFP_DMA;
84
85 page = alloc_pages(gfp, order);
86 if (!page)
87 return NULL;
88
89 /*
90 * Now split the huge page and free the excess pages
91 */
92 split_page(page, order);
93 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
94 __free_page(p);
95
96 /*
97 * Ensure that the allocated pages are zeroed, and that any data
98 * lurking in the kernel direct-mapped region is invalidated.
99 */
100 ptr = page_address(page);
101 memset(ptr, 0, size);
102 dmac_flush_range(ptr, ptr + size);
103 outer_flush_range(__pa(ptr), __pa(ptr) + size);
104
105 return page;
106 }
107
108 /*
109 * Free a DMA buffer. 'size' must be page aligned.
110 */
111 static void __dma_free_buffer(struct page *page, size_t size)
112 {
113 struct page *e = page + (size >> PAGE_SHIFT);
114
115 while (page < e) {
116 __free_page(page);
117 page++;
118 }
119 }
120
121 #ifdef CONFIG_MMU
122
123 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
124 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
125
126 /*
127 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
128 */
129 static pte_t **consistent_pte;
130
131 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
132
133 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
134
135 void __init init_consistent_dma_size(unsigned long size)
136 {
137 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
138
139 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
140 BUG_ON(base < VMALLOC_END);
141
142 /* Grow region to accommodate specified size */
143 if (base < consistent_base)
144 consistent_base = base;
145 }
146
147 #include "vmregion.h"
148
149 static struct arm_vmregion_head consistent_head = {
150 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
151 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
152 .vm_end = CONSISTENT_END,
153 };
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 #error ARM Coherent DMA allocator does not (yet) support huge TLB
157 #endif
158
159 /*
160 * Initialise the consistent memory allocation.
161 */
162 static int __init consistent_init(void)
163 {
164 int ret = 0;
165 pgd_t *pgd;
166 pud_t *pud;
167 pmd_t *pmd;
168 pte_t *pte;
169 int i = 0;
170 unsigned long base = consistent_base;
171 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
172
173 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
174 if (!consistent_pte) {
175 pr_err("%s: no memory\n", __func__);
176 return -ENOMEM;
177 }
178
179 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
180 consistent_head.vm_start = base;
181
182 do {
183 pgd = pgd_offset(&init_mm, base);
184
185 pud = pud_alloc(&init_mm, pgd, base);
186 if (!pud) {
187 pr_err("%s: no pud tables\n", __func__);
188 ret = -ENOMEM;
189 break;
190 }
191
192 pmd = pmd_alloc(&init_mm, pud, base);
193 if (!pmd) {
194 pr_err("%s: no pmd tables\n", __func__);
195 ret = -ENOMEM;
196 break;
197 }
198 WARN_ON(!pmd_none(*pmd));
199
200 pte = pte_alloc_kernel(pmd, base);
201 if (!pte) {
202 pr_err("%s: no pte tables\n", __func__);
203 ret = -ENOMEM;
204 break;
205 }
206
207 consistent_pte[i++] = pte;
208 base += PMD_SIZE;
209 } while (base < CONSISTENT_END);
210
211 return ret;
212 }
213
214 core_initcall(consistent_init);
215
216 static void *
217 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
218 const void *caller)
219 {
220 struct arm_vmregion *c;
221 size_t align;
222 int bit;
223
224 if (!consistent_pte) {
225 pr_err("%s: not initialised\n", __func__);
226 dump_stack();
227 return NULL;
228 }
229
230 /*
231 * Align the virtual region allocation - maximum alignment is
232 * a section size, minimum is a page size. This helps reduce
233 * fragmentation of the DMA space, and also prevents allocations
234 * smaller than a section from crossing a section boundary.
235 */
236 bit = fls(size - 1);
237 if (bit > SECTION_SHIFT)
238 bit = SECTION_SHIFT;
239 align = 1 << bit;
240
241 /*
242 * Allocate a virtual address in the consistent mapping region.
243 */
244 c = arm_vmregion_alloc(&consistent_head, align, size,
245 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
246 if (c) {
247 pte_t *pte;
248 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
249 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
250
251 pte = consistent_pte[idx] + off;
252 c->vm_pages = page;
253
254 do {
255 BUG_ON(!pte_none(*pte));
256
257 set_pte_ext(pte, mk_pte(page, prot), 0);
258 page++;
259 pte++;
260 off++;
261 if (off >= PTRS_PER_PTE) {
262 off = 0;
263 pte = consistent_pte[++idx];
264 }
265 } while (size -= PAGE_SIZE);
266
267 dsb();
268
269 return (void *)c->vm_start;
270 }
271 return NULL;
272 }
273
274 static void __dma_free_remap(void *cpu_addr, size_t size)
275 {
276 struct arm_vmregion *c;
277 unsigned long addr;
278 pte_t *ptep;
279 int idx;
280 u32 off;
281
282 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
283 if (!c) {
284 pr_err("%s: trying to free invalid coherent area: %p\n",
285 __func__, cpu_addr);
286 dump_stack();
287 return;
288 }
289
290 if ((c->vm_end - c->vm_start) != size) {
291 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
292 __func__, c->vm_end - c->vm_start, size);
293 dump_stack();
294 size = c->vm_end - c->vm_start;
295 }
296
297 idx = CONSISTENT_PTE_INDEX(c->vm_start);
298 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
299 ptep = consistent_pte[idx] + off;
300 addr = c->vm_start;
301 do {
302 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
303
304 ptep++;
305 addr += PAGE_SIZE;
306 off++;
307 if (off >= PTRS_PER_PTE) {
308 off = 0;
309 ptep = consistent_pte[++idx];
310 }
311
312 if (pte_none(pte) || !pte_present(pte))
313 pr_crit("%s: bad page in kernel page table\n",
314 __func__);
315 } while (size -= PAGE_SIZE);
316
317 flush_tlb_kernel_range(c->vm_start, c->vm_end);
318
319 arm_vmregion_free(&consistent_head, c);
320 }
321
322 #else /* !CONFIG_MMU */
323
324 #define __dma_alloc_remap(page, size, gfp, prot, c) page_address(page)
325 #define __dma_free_remap(addr, size) do { } while (0)
326
327 #endif /* CONFIG_MMU */
328
329 static void *
330 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
331 pgprot_t prot, const void *caller)
332 {
333 struct page *page;
334 void *addr;
335
336 /*
337 * Following is a work-around (a.k.a. hack) to prevent pages
338 * with __GFP_COMP being passed to split_page() which cannot
339 * handle them. The real problem is that this flag probably
340 * should be 0 on ARM as it is not supported on this
341 * platform; see CONFIG_HUGETLBFS.
342 */
343 gfp &= ~(__GFP_COMP);
344
345 *handle = DMA_ERROR_CODE;
346 size = PAGE_ALIGN(size);
347
348 page = __dma_alloc_buffer(dev, size, gfp);
349 if (!page)
350 return NULL;
351
352 if (!arch_is_coherent())
353 addr = __dma_alloc_remap(page, size, gfp, prot, caller);
354 else
355 addr = page_address(page);
356
357 if (addr)
358 *handle = pfn_to_dma(dev, page_to_pfn(page));
359 else
360 __dma_free_buffer(page, size);
361
362 return addr;
363 }
364
365 /*
366 * Allocate DMA-coherent memory space and return both the kernel remapped
367 * virtual and bus address for that space.
368 */
369 void *
370 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
371 {
372 void *memory;
373
374 if (dma_alloc_from_coherent(dev, size, handle, &memory))
375 return memory;
376
377 return __dma_alloc(dev, size, handle, gfp,
378 pgprot_dmacoherent(pgprot_kernel),
379 __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(dma_alloc_coherent);
382
383 /*
384 * Allocate a writecombining region, in much the same way as
385 * dma_alloc_coherent above.
386 */
387 void *
388 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
389 {
390 return __dma_alloc(dev, size, handle, gfp,
391 pgprot_writecombine(pgprot_kernel),
392 __builtin_return_address(0));
393 }
394 EXPORT_SYMBOL(dma_alloc_writecombine);
395
396 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
397 void *cpu_addr, dma_addr_t dma_addr, size_t size)
398 {
399 int ret = -ENXIO;
400 #ifdef CONFIG_MMU
401 unsigned long user_size, kern_size;
402 struct arm_vmregion *c;
403
404 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
405 return ret;
406
407 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
408
409 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
410 if (c) {
411 unsigned long off = vma->vm_pgoff;
412
413 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
414
415 if (off < kern_size &&
416 user_size <= (kern_size - off)) {
417 ret = remap_pfn_range(vma, vma->vm_start,
418 page_to_pfn(c->vm_pages) + off,
419 user_size << PAGE_SHIFT,
420 vma->vm_page_prot);
421 }
422 }
423 #endif /* CONFIG_MMU */
424
425 return ret;
426 }
427
428 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
429 void *cpu_addr, dma_addr_t dma_addr, size_t size)
430 {
431 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
432 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
433 }
434 EXPORT_SYMBOL(dma_mmap_coherent);
435
436 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
437 void *cpu_addr, dma_addr_t dma_addr, size_t size)
438 {
439 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
440 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
441 }
442 EXPORT_SYMBOL(dma_mmap_writecombine);
443
444 /*
445 * free a page as defined by the above mapping.
446 * Must not be called with IRQs disabled.
447 */
448 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
449 {
450 WARN_ON(irqs_disabled());
451
452 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
453 return;
454
455 size = PAGE_ALIGN(size);
456
457 if (!arch_is_coherent())
458 __dma_free_remap(cpu_addr, size);
459
460 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
461 }
462 EXPORT_SYMBOL(dma_free_coherent);
463
464 /*
465 * Make an area consistent for devices.
466 * Note: Drivers should NOT use this function directly, as it will break
467 * platforms with CONFIG_DMABOUNCE.
468 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
469 */
470 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
471 enum dma_data_direction dir)
472 {
473 unsigned long paddr;
474
475 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
476
477 dmac_map_area(kaddr, size, dir);
478
479 paddr = __pa(kaddr);
480 if (dir == DMA_FROM_DEVICE) {
481 outer_inv_range(paddr, paddr + size);
482 } else {
483 outer_clean_range(paddr, paddr + size);
484 }
485 /* FIXME: non-speculating: flush on bidirectional mappings? */
486 }
487 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
488
489 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
490 enum dma_data_direction dir)
491 {
492 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
493
494 /* FIXME: non-speculating: not required */
495 /* don't bother invalidating if DMA to device */
496 if (dir != DMA_TO_DEVICE) {
497 unsigned long paddr = __pa(kaddr);
498 outer_inv_range(paddr, paddr + size);
499 }
500
501 dmac_unmap_area(kaddr, size, dir);
502 }
503 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
504
505 static void dma_cache_maint_page(struct page *page, unsigned long offset,
506 size_t size, enum dma_data_direction dir,
507 void (*op)(const void *, size_t, int))
508 {
509 /*
510 * A single sg entry may refer to multiple physically contiguous
511 * pages. But we still need to process highmem pages individually.
512 * If highmem is not configured then the bulk of this loop gets
513 * optimized out.
514 */
515 size_t left = size;
516 do {
517 size_t len = left;
518 void *vaddr;
519
520 if (PageHighMem(page)) {
521 if (len + offset > PAGE_SIZE) {
522 if (offset >= PAGE_SIZE) {
523 page += offset / PAGE_SIZE;
524 offset %= PAGE_SIZE;
525 }
526 len = PAGE_SIZE - offset;
527 }
528 vaddr = kmap_high_get(page);
529 if (vaddr) {
530 vaddr += offset;
531 op(vaddr, len, dir);
532 kunmap_high(page);
533 } else if (cache_is_vipt()) {
534 /* unmapped pages might still be cached */
535 vaddr = kmap_atomic(page);
536 op(vaddr + offset, len, dir);
537 kunmap_atomic(vaddr);
538 }
539 } else {
540 vaddr = page_address(page) + offset;
541 op(vaddr, len, dir);
542 }
543 offset = 0;
544 page++;
545 left -= len;
546 } while (left);
547 }
548
549 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
550 size_t size, enum dma_data_direction dir)
551 {
552 unsigned long paddr;
553
554 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
555
556 paddr = page_to_phys(page) + off;
557 if (dir == DMA_FROM_DEVICE) {
558 outer_inv_range(paddr, paddr + size);
559 } else {
560 outer_clean_range(paddr, paddr + size);
561 }
562 /* FIXME: non-speculating: flush on bidirectional mappings? */
563 }
564 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
565
566 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
567 size_t size, enum dma_data_direction dir)
568 {
569 unsigned long paddr = page_to_phys(page) + off;
570
571 /* FIXME: non-speculating: not required */
572 /* don't bother invalidating if DMA to device */
573 if (dir != DMA_TO_DEVICE)
574 outer_inv_range(paddr, paddr + size);
575
576 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
577
578 /*
579 * Mark the D-cache clean for this page to avoid extra flushing.
580 */
581 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
582 set_bit(PG_dcache_clean, &page->flags);
583 }
584 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
585
586 /**
587 * dma_map_sg - map a set of SG buffers for streaming mode DMA
588 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
589 * @sg: list of buffers
590 * @nents: number of buffers to map
591 * @dir: DMA transfer direction
592 *
593 * Map a set of buffers described by scatterlist in streaming mode for DMA.
594 * This is the scatter-gather version of the dma_map_single interface.
595 * Here the scatter gather list elements are each tagged with the
596 * appropriate dma address and length. They are obtained via
597 * sg_dma_{address,length}.
598 *
599 * Device ownership issues as mentioned for dma_map_single are the same
600 * here.
601 */
602 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
603 enum dma_data_direction dir)
604 {
605 struct scatterlist *s;
606 int i, j;
607
608 BUG_ON(!valid_dma_direction(dir));
609
610 for_each_sg(sg, s, nents, i) {
611 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
612 s->length, dir);
613 if (dma_mapping_error(dev, s->dma_address))
614 goto bad_mapping;
615 }
616 debug_dma_map_sg(dev, sg, nents, nents, dir);
617 return nents;
618
619 bad_mapping:
620 for_each_sg(sg, s, i, j)
621 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
622 return 0;
623 }
624 EXPORT_SYMBOL(dma_map_sg);
625
626 /**
627 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
628 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
629 * @sg: list of buffers
630 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
631 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
632 *
633 * Unmap a set of streaming mode DMA translations. Again, CPU access
634 * rules concerning calls here are the same as for dma_unmap_single().
635 */
636 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
637 enum dma_data_direction dir)
638 {
639 struct scatterlist *s;
640 int i;
641
642 debug_dma_unmap_sg(dev, sg, nents, dir);
643
644 for_each_sg(sg, s, nents, i)
645 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
646 }
647 EXPORT_SYMBOL(dma_unmap_sg);
648
649 /**
650 * dma_sync_sg_for_cpu
651 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
652 * @sg: list of buffers
653 * @nents: number of buffers to map (returned from dma_map_sg)
654 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
655 */
656 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
657 int nents, enum dma_data_direction dir)
658 {
659 struct scatterlist *s;
660 int i;
661
662 for_each_sg(sg, s, nents, i) {
663 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
664 sg_dma_len(s), dir))
665 continue;
666
667 __dma_page_dev_to_cpu(sg_page(s), s->offset,
668 s->length, dir);
669 }
670
671 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
672 }
673 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
674
675 /**
676 * dma_sync_sg_for_device
677 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
678 * @sg: list of buffers
679 * @nents: number of buffers to map (returned from dma_map_sg)
680 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
681 */
682 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
683 int nents, enum dma_data_direction dir)
684 {
685 struct scatterlist *s;
686 int i;
687
688 for_each_sg(sg, s, nents, i) {
689 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
690 sg_dma_len(s), dir))
691 continue;
692
693 __dma_page_cpu_to_dev(sg_page(s), s->offset,
694 s->length, dir);
695 }
696
697 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
698 }
699 EXPORT_SYMBOL(dma_sync_sg_for_device);
700
701 /*
702 * Return whether the given device DMA address mask can be supported
703 * properly. For example, if your device can only drive the low 24-bits
704 * during bus mastering, then you would pass 0x00ffffff as the mask
705 * to this function.
706 */
707 int dma_supported(struct device *dev, u64 mask)
708 {
709 if (mask < (u64)arm_dma_limit)
710 return 0;
711 return 1;
712 }
713 EXPORT_SYMBOL(dma_supported);
714
715 int dma_set_mask(struct device *dev, u64 dma_mask)
716 {
717 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
718 return -EIO;
719
720 #ifndef CONFIG_DMABOUNCE
721 *dev->dma_mask = dma_mask;
722 #endif
723
724 return 0;
725 }
726 EXPORT_SYMBOL(dma_set_mask);
727
728 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
729
730 static int __init dma_debug_do_init(void)
731 {
732 #ifdef CONFIG_MMU
733 arm_vmregion_create_proc("dma-mappings", &consistent_head);
734 #endif
735 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
736 return 0;
737 }
738 fs_initcall(dma_debug_do_init);
This page took 0.044243 seconds and 4 git commands to generate.