Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/io.h>
26 #include <linux/vmalloc.h>
27 #include <linux/sizes.h>
28
29 #include <asm/memory.h>
30 #include <asm/highmem.h>
31 #include <asm/cacheflush.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mach/arch.h>
34 #include <asm/dma-iommu.h>
35 #include <asm/mach/map.h>
36 #include <asm/system_info.h>
37 #include <asm/dma-contiguous.h>
38
39 #include "mm.h"
40
41 /*
42 * The DMA API is built upon the notion of "buffer ownership". A buffer
43 * is either exclusively owned by the CPU (and therefore may be accessed
44 * by it) or exclusively owned by the DMA device. These helper functions
45 * represent the transitions between these two ownership states.
46 *
47 * Note, however, that on later ARMs, this notion does not work due to
48 * speculative prefetches. We model our approach on the assumption that
49 * the CPU does do speculative prefetches, which means we clean caches
50 * before transfers and delay cache invalidation until transfer completion.
51 *
52 */
53 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
54 size_t, enum dma_data_direction);
55 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
56 size_t, enum dma_data_direction);
57
58 /**
59 * arm_dma_map_page - map a portion of a page for streaming DMA
60 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
61 * @page: page that buffer resides in
62 * @offset: offset into page for start of buffer
63 * @size: size of buffer to map
64 * @dir: DMA transfer direction
65 *
66 * Ensure that any data held in the cache is appropriately discarded
67 * or written back.
68 *
69 * The device owns this memory once this call has completed. The CPU
70 * can regain ownership by calling dma_unmap_page().
71 */
72 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
73 unsigned long offset, size_t size, enum dma_data_direction dir,
74 struct dma_attrs *attrs)
75 {
76 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
77 __dma_page_cpu_to_dev(page, offset, size, dir);
78 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
79 }
80
81 static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
82 unsigned long offset, size_t size, enum dma_data_direction dir,
83 struct dma_attrs *attrs)
84 {
85 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
86 }
87
88 /**
89 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
90 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
91 * @handle: DMA address of buffer
92 * @size: size of buffer (same as passed to dma_map_page)
93 * @dir: DMA transfer direction (same as passed to dma_map_page)
94 *
95 * Unmap a page streaming mode DMA translation. The handle and size
96 * must match what was provided in the previous dma_map_page() call.
97 * All other usages are undefined.
98 *
99 * After this call, reads by the CPU to the buffer are guaranteed to see
100 * whatever the device wrote there.
101 */
102 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
103 size_t size, enum dma_data_direction dir,
104 struct dma_attrs *attrs)
105 {
106 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
107 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
108 handle & ~PAGE_MASK, size, dir);
109 }
110
111 static void arm_dma_sync_single_for_cpu(struct device *dev,
112 dma_addr_t handle, size_t size, enum dma_data_direction dir)
113 {
114 unsigned int offset = handle & (PAGE_SIZE - 1);
115 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
116 __dma_page_dev_to_cpu(page, offset, size, dir);
117 }
118
119 static void arm_dma_sync_single_for_device(struct device *dev,
120 dma_addr_t handle, size_t size, enum dma_data_direction dir)
121 {
122 unsigned int offset = handle & (PAGE_SIZE - 1);
123 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
124 __dma_page_cpu_to_dev(page, offset, size, dir);
125 }
126
127 struct dma_map_ops arm_dma_ops = {
128 .alloc = arm_dma_alloc,
129 .free = arm_dma_free,
130 .mmap = arm_dma_mmap,
131 .get_sgtable = arm_dma_get_sgtable,
132 .map_page = arm_dma_map_page,
133 .unmap_page = arm_dma_unmap_page,
134 .map_sg = arm_dma_map_sg,
135 .unmap_sg = arm_dma_unmap_sg,
136 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
137 .sync_single_for_device = arm_dma_sync_single_for_device,
138 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
139 .sync_sg_for_device = arm_dma_sync_sg_for_device,
140 .set_dma_mask = arm_dma_set_mask,
141 };
142 EXPORT_SYMBOL(arm_dma_ops);
143
144 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
145 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs);
146 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
147 dma_addr_t handle, struct dma_attrs *attrs);
148
149 struct dma_map_ops arm_coherent_dma_ops = {
150 .alloc = arm_coherent_dma_alloc,
151 .free = arm_coherent_dma_free,
152 .mmap = arm_dma_mmap,
153 .get_sgtable = arm_dma_get_sgtable,
154 .map_page = arm_coherent_dma_map_page,
155 .map_sg = arm_dma_map_sg,
156 .set_dma_mask = arm_dma_set_mask,
157 };
158 EXPORT_SYMBOL(arm_coherent_dma_ops);
159
160 static u64 get_coherent_dma_mask(struct device *dev)
161 {
162 u64 mask = (u64)DMA_BIT_MASK(32);
163
164 if (dev) {
165 mask = dev->coherent_dma_mask;
166
167 /*
168 * Sanity check the DMA mask - it must be non-zero, and
169 * must be able to be satisfied by a DMA allocation.
170 */
171 if (mask == 0) {
172 dev_warn(dev, "coherent DMA mask is unset\n");
173 return 0;
174 }
175
176 /*
177 * If the mask allows for more memory than we can address,
178 * and we actually have that much memory, then fail the
179 * allocation.
180 */
181 if (sizeof(mask) != sizeof(dma_addr_t) &&
182 mask > (dma_addr_t)~0 &&
183 dma_to_pfn(dev, ~0) > arm_dma_pfn_limit) {
184 dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
185 mask);
186 dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
187 return 0;
188 }
189
190 /*
191 * Now check that the mask, when translated to a PFN,
192 * fits within the allowable addresses which we can
193 * allocate.
194 */
195 if (dma_to_pfn(dev, mask) < arm_dma_pfn_limit) {
196 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
197 mask,
198 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
199 arm_dma_pfn_limit + 1);
200 return 0;
201 }
202 }
203
204 return mask;
205 }
206
207 static void __dma_clear_buffer(struct page *page, size_t size)
208 {
209 /*
210 * Ensure that the allocated pages are zeroed, and that any data
211 * lurking in the kernel direct-mapped region is invalidated.
212 */
213 if (PageHighMem(page)) {
214 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
215 phys_addr_t end = base + size;
216 while (size > 0) {
217 void *ptr = kmap_atomic(page);
218 memset(ptr, 0, PAGE_SIZE);
219 dmac_flush_range(ptr, ptr + PAGE_SIZE);
220 kunmap_atomic(ptr);
221 page++;
222 size -= PAGE_SIZE;
223 }
224 outer_flush_range(base, end);
225 } else {
226 void *ptr = page_address(page);
227 memset(ptr, 0, size);
228 dmac_flush_range(ptr, ptr + size);
229 outer_flush_range(__pa(ptr), __pa(ptr) + size);
230 }
231 }
232
233 /*
234 * Allocate a DMA buffer for 'dev' of size 'size' using the
235 * specified gfp mask. Note that 'size' must be page aligned.
236 */
237 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
238 {
239 unsigned long order = get_order(size);
240 struct page *page, *p, *e;
241
242 page = alloc_pages(gfp, order);
243 if (!page)
244 return NULL;
245
246 /*
247 * Now split the huge page and free the excess pages
248 */
249 split_page(page, order);
250 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
251 __free_page(p);
252
253 __dma_clear_buffer(page, size);
254
255 return page;
256 }
257
258 /*
259 * Free a DMA buffer. 'size' must be page aligned.
260 */
261 static void __dma_free_buffer(struct page *page, size_t size)
262 {
263 struct page *e = page + (size >> PAGE_SHIFT);
264
265 while (page < e) {
266 __free_page(page);
267 page++;
268 }
269 }
270
271 #ifdef CONFIG_MMU
272 #ifdef CONFIG_HUGETLB_PAGE
273 #warning ARM Coherent DMA allocator does not (yet) support huge TLB
274 #endif
275
276 static void *__alloc_from_contiguous(struct device *dev, size_t size,
277 pgprot_t prot, struct page **ret_page,
278 const void *caller);
279
280 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
281 pgprot_t prot, struct page **ret_page,
282 const void *caller);
283
284 static void *
285 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
286 const void *caller)
287 {
288 struct vm_struct *area;
289 unsigned long addr;
290
291 /*
292 * DMA allocation can be mapped to user space, so lets
293 * set VM_USERMAP flags too.
294 */
295 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
296 caller);
297 if (!area)
298 return NULL;
299 addr = (unsigned long)area->addr;
300 area->phys_addr = __pfn_to_phys(page_to_pfn(page));
301
302 if (ioremap_page_range(addr, addr + size, area->phys_addr, prot)) {
303 vunmap((void *)addr);
304 return NULL;
305 }
306 return (void *)addr;
307 }
308
309 static void __dma_free_remap(void *cpu_addr, size_t size)
310 {
311 unsigned int flags = VM_ARM_DMA_CONSISTENT | VM_USERMAP;
312 struct vm_struct *area = find_vm_area(cpu_addr);
313 if (!area || (area->flags & flags) != flags) {
314 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
315 return;
316 }
317 unmap_kernel_range((unsigned long)cpu_addr, size);
318 vunmap(cpu_addr);
319 }
320
321 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
322
323 struct dma_pool {
324 size_t size;
325 spinlock_t lock;
326 unsigned long *bitmap;
327 unsigned long nr_pages;
328 void *vaddr;
329 struct page **pages;
330 };
331
332 static struct dma_pool atomic_pool = {
333 .size = DEFAULT_DMA_COHERENT_POOL_SIZE,
334 };
335
336 static int __init early_coherent_pool(char *p)
337 {
338 atomic_pool.size = memparse(p, &p);
339 return 0;
340 }
341 early_param("coherent_pool", early_coherent_pool);
342
343 void __init init_dma_coherent_pool_size(unsigned long size)
344 {
345 /*
346 * Catch any attempt to set the pool size too late.
347 */
348 BUG_ON(atomic_pool.vaddr);
349
350 /*
351 * Set architecture specific coherent pool size only if
352 * it has not been changed by kernel command line parameter.
353 */
354 if (atomic_pool.size == DEFAULT_DMA_COHERENT_POOL_SIZE)
355 atomic_pool.size = size;
356 }
357
358 /*
359 * Initialise the coherent pool for atomic allocations.
360 */
361 static int __init atomic_pool_init(void)
362 {
363 struct dma_pool *pool = &atomic_pool;
364 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
365 gfp_t gfp = GFP_KERNEL | GFP_DMA;
366 unsigned long nr_pages = pool->size >> PAGE_SHIFT;
367 unsigned long *bitmap;
368 struct page *page;
369 struct page **pages;
370 void *ptr;
371 int bitmap_size = BITS_TO_LONGS(nr_pages) * sizeof(long);
372
373 bitmap = kzalloc(bitmap_size, GFP_KERNEL);
374 if (!bitmap)
375 goto no_bitmap;
376
377 pages = kzalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
378 if (!pages)
379 goto no_pages;
380
381 if (IS_ENABLED(CONFIG_DMA_CMA))
382 ptr = __alloc_from_contiguous(NULL, pool->size, prot, &page,
383 atomic_pool_init);
384 else
385 ptr = __alloc_remap_buffer(NULL, pool->size, gfp, prot, &page,
386 atomic_pool_init);
387 if (ptr) {
388 int i;
389
390 for (i = 0; i < nr_pages; i++)
391 pages[i] = page + i;
392
393 spin_lock_init(&pool->lock);
394 pool->vaddr = ptr;
395 pool->pages = pages;
396 pool->bitmap = bitmap;
397 pool->nr_pages = nr_pages;
398 pr_info("DMA: preallocated %u KiB pool for atomic coherent allocations\n",
399 (unsigned)pool->size / 1024);
400 return 0;
401 }
402
403 kfree(pages);
404 no_pages:
405 kfree(bitmap);
406 no_bitmap:
407 pr_err("DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
408 (unsigned)pool->size / 1024);
409 return -ENOMEM;
410 }
411 /*
412 * CMA is activated by core_initcall, so we must be called after it.
413 */
414 postcore_initcall(atomic_pool_init);
415
416 struct dma_contig_early_reserve {
417 phys_addr_t base;
418 unsigned long size;
419 };
420
421 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
422
423 static int dma_mmu_remap_num __initdata;
424
425 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
426 {
427 dma_mmu_remap[dma_mmu_remap_num].base = base;
428 dma_mmu_remap[dma_mmu_remap_num].size = size;
429 dma_mmu_remap_num++;
430 }
431
432 void __init dma_contiguous_remap(void)
433 {
434 int i;
435 for (i = 0; i < dma_mmu_remap_num; i++) {
436 phys_addr_t start = dma_mmu_remap[i].base;
437 phys_addr_t end = start + dma_mmu_remap[i].size;
438 struct map_desc map;
439 unsigned long addr;
440
441 if (end > arm_lowmem_limit)
442 end = arm_lowmem_limit;
443 if (start >= end)
444 continue;
445
446 map.pfn = __phys_to_pfn(start);
447 map.virtual = __phys_to_virt(start);
448 map.length = end - start;
449 map.type = MT_MEMORY_DMA_READY;
450
451 /*
452 * Clear previous low-memory mapping
453 */
454 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
455 addr += PMD_SIZE)
456 pmd_clear(pmd_off_k(addr));
457
458 iotable_init(&map, 1);
459 }
460 }
461
462 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
463 void *data)
464 {
465 struct page *page = virt_to_page(addr);
466 pgprot_t prot = *(pgprot_t *)data;
467
468 set_pte_ext(pte, mk_pte(page, prot), 0);
469 return 0;
470 }
471
472 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
473 {
474 unsigned long start = (unsigned long) page_address(page);
475 unsigned end = start + size;
476
477 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
478 flush_tlb_kernel_range(start, end);
479 }
480
481 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
482 pgprot_t prot, struct page **ret_page,
483 const void *caller)
484 {
485 struct page *page;
486 void *ptr;
487 page = __dma_alloc_buffer(dev, size, gfp);
488 if (!page)
489 return NULL;
490
491 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
492 if (!ptr) {
493 __dma_free_buffer(page, size);
494 return NULL;
495 }
496
497 *ret_page = page;
498 return ptr;
499 }
500
501 static void *__alloc_from_pool(size_t size, struct page **ret_page)
502 {
503 struct dma_pool *pool = &atomic_pool;
504 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
505 unsigned int pageno;
506 unsigned long flags;
507 void *ptr = NULL;
508 unsigned long align_mask;
509
510 if (!pool->vaddr) {
511 WARN(1, "coherent pool not initialised!\n");
512 return NULL;
513 }
514
515 /*
516 * Align the region allocation - allocations from pool are rather
517 * small, so align them to their order in pages, minimum is a page
518 * size. This helps reduce fragmentation of the DMA space.
519 */
520 align_mask = (1 << get_order(size)) - 1;
521
522 spin_lock_irqsave(&pool->lock, flags);
523 pageno = bitmap_find_next_zero_area(pool->bitmap, pool->nr_pages,
524 0, count, align_mask);
525 if (pageno < pool->nr_pages) {
526 bitmap_set(pool->bitmap, pageno, count);
527 ptr = pool->vaddr + PAGE_SIZE * pageno;
528 *ret_page = pool->pages[pageno];
529 } else {
530 pr_err_once("ERROR: %u KiB atomic DMA coherent pool is too small!\n"
531 "Please increase it with coherent_pool= kernel parameter!\n",
532 (unsigned)pool->size / 1024);
533 }
534 spin_unlock_irqrestore(&pool->lock, flags);
535
536 return ptr;
537 }
538
539 static bool __in_atomic_pool(void *start, size_t size)
540 {
541 struct dma_pool *pool = &atomic_pool;
542 void *end = start + size;
543 void *pool_start = pool->vaddr;
544 void *pool_end = pool->vaddr + pool->size;
545
546 if (start < pool_start || start >= pool_end)
547 return false;
548
549 if (end <= pool_end)
550 return true;
551
552 WARN(1, "Wrong coherent size(%p-%p) from atomic pool(%p-%p)\n",
553 start, end - 1, pool_start, pool_end - 1);
554
555 return false;
556 }
557
558 static int __free_from_pool(void *start, size_t size)
559 {
560 struct dma_pool *pool = &atomic_pool;
561 unsigned long pageno, count;
562 unsigned long flags;
563
564 if (!__in_atomic_pool(start, size))
565 return 0;
566
567 pageno = (start - pool->vaddr) >> PAGE_SHIFT;
568 count = size >> PAGE_SHIFT;
569
570 spin_lock_irqsave(&pool->lock, flags);
571 bitmap_clear(pool->bitmap, pageno, count);
572 spin_unlock_irqrestore(&pool->lock, flags);
573
574 return 1;
575 }
576
577 static void *__alloc_from_contiguous(struct device *dev, size_t size,
578 pgprot_t prot, struct page **ret_page,
579 const void *caller)
580 {
581 unsigned long order = get_order(size);
582 size_t count = size >> PAGE_SHIFT;
583 struct page *page;
584 void *ptr;
585
586 page = dma_alloc_from_contiguous(dev, count, order);
587 if (!page)
588 return NULL;
589
590 __dma_clear_buffer(page, size);
591
592 if (PageHighMem(page)) {
593 ptr = __dma_alloc_remap(page, size, GFP_KERNEL, prot, caller);
594 if (!ptr) {
595 dma_release_from_contiguous(dev, page, count);
596 return NULL;
597 }
598 } else {
599 __dma_remap(page, size, prot);
600 ptr = page_address(page);
601 }
602 *ret_page = page;
603 return ptr;
604 }
605
606 static void __free_from_contiguous(struct device *dev, struct page *page,
607 void *cpu_addr, size_t size)
608 {
609 if (PageHighMem(page))
610 __dma_free_remap(cpu_addr, size);
611 else
612 __dma_remap(page, size, pgprot_kernel);
613 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
614 }
615
616 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
617 {
618 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
619 pgprot_writecombine(prot) :
620 pgprot_dmacoherent(prot);
621 return prot;
622 }
623
624 #define nommu() 0
625
626 #else /* !CONFIG_MMU */
627
628 #define nommu() 1
629
630 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
631 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
632 #define __alloc_from_pool(size, ret_page) NULL
633 #define __alloc_from_contiguous(dev, size, prot, ret, c) NULL
634 #define __free_from_pool(cpu_addr, size) 0
635 #define __free_from_contiguous(dev, page, cpu_addr, size) do { } while (0)
636 #define __dma_free_remap(cpu_addr, size) do { } while (0)
637
638 #endif /* CONFIG_MMU */
639
640 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
641 struct page **ret_page)
642 {
643 struct page *page;
644 page = __dma_alloc_buffer(dev, size, gfp);
645 if (!page)
646 return NULL;
647
648 *ret_page = page;
649 return page_address(page);
650 }
651
652
653
654 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
655 gfp_t gfp, pgprot_t prot, bool is_coherent, const void *caller)
656 {
657 u64 mask = get_coherent_dma_mask(dev);
658 struct page *page = NULL;
659 void *addr;
660
661 #ifdef CONFIG_DMA_API_DEBUG
662 u64 limit = (mask + 1) & ~mask;
663 if (limit && size >= limit) {
664 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
665 size, mask);
666 return NULL;
667 }
668 #endif
669
670 if (!mask)
671 return NULL;
672
673 if (mask < 0xffffffffULL)
674 gfp |= GFP_DMA;
675
676 /*
677 * Following is a work-around (a.k.a. hack) to prevent pages
678 * with __GFP_COMP being passed to split_page() which cannot
679 * handle them. The real problem is that this flag probably
680 * should be 0 on ARM as it is not supported on this
681 * platform; see CONFIG_HUGETLBFS.
682 */
683 gfp &= ~(__GFP_COMP);
684
685 *handle = DMA_ERROR_CODE;
686 size = PAGE_ALIGN(size);
687
688 if (is_coherent || nommu())
689 addr = __alloc_simple_buffer(dev, size, gfp, &page);
690 else if (!(gfp & __GFP_WAIT))
691 addr = __alloc_from_pool(size, &page);
692 else if (!IS_ENABLED(CONFIG_DMA_CMA))
693 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
694 else
695 addr = __alloc_from_contiguous(dev, size, prot, &page, caller);
696
697 if (addr)
698 *handle = pfn_to_dma(dev, page_to_pfn(page));
699
700 return addr;
701 }
702
703 /*
704 * Allocate DMA-coherent memory space and return both the kernel remapped
705 * virtual and bus address for that space.
706 */
707 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
708 gfp_t gfp, struct dma_attrs *attrs)
709 {
710 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
711 void *memory;
712
713 if (dma_alloc_from_coherent(dev, size, handle, &memory))
714 return memory;
715
716 return __dma_alloc(dev, size, handle, gfp, prot, false,
717 __builtin_return_address(0));
718 }
719
720 static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
721 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
722 {
723 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
724 void *memory;
725
726 if (dma_alloc_from_coherent(dev, size, handle, &memory))
727 return memory;
728
729 return __dma_alloc(dev, size, handle, gfp, prot, true,
730 __builtin_return_address(0));
731 }
732
733 /*
734 * Create userspace mapping for the DMA-coherent memory.
735 */
736 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
737 void *cpu_addr, dma_addr_t dma_addr, size_t size,
738 struct dma_attrs *attrs)
739 {
740 int ret = -ENXIO;
741 #ifdef CONFIG_MMU
742 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
743 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
744 unsigned long pfn = dma_to_pfn(dev, dma_addr);
745 unsigned long off = vma->vm_pgoff;
746
747 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
748
749 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
750 return ret;
751
752 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
753 ret = remap_pfn_range(vma, vma->vm_start,
754 pfn + off,
755 vma->vm_end - vma->vm_start,
756 vma->vm_page_prot);
757 }
758 #endif /* CONFIG_MMU */
759
760 return ret;
761 }
762
763 /*
764 * Free a buffer as defined by the above mapping.
765 */
766 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
767 dma_addr_t handle, struct dma_attrs *attrs,
768 bool is_coherent)
769 {
770 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
771
772 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
773 return;
774
775 size = PAGE_ALIGN(size);
776
777 if (is_coherent || nommu()) {
778 __dma_free_buffer(page, size);
779 } else if (__free_from_pool(cpu_addr, size)) {
780 return;
781 } else if (!IS_ENABLED(CONFIG_DMA_CMA)) {
782 __dma_free_remap(cpu_addr, size);
783 __dma_free_buffer(page, size);
784 } else {
785 /*
786 * Non-atomic allocations cannot be freed with IRQs disabled
787 */
788 WARN_ON(irqs_disabled());
789 __free_from_contiguous(dev, page, cpu_addr, size);
790 }
791 }
792
793 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
794 dma_addr_t handle, struct dma_attrs *attrs)
795 {
796 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
797 }
798
799 static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
800 dma_addr_t handle, struct dma_attrs *attrs)
801 {
802 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
803 }
804
805 int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
806 void *cpu_addr, dma_addr_t handle, size_t size,
807 struct dma_attrs *attrs)
808 {
809 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
810 int ret;
811
812 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
813 if (unlikely(ret))
814 return ret;
815
816 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
817 return 0;
818 }
819
820 static void dma_cache_maint_page(struct page *page, unsigned long offset,
821 size_t size, enum dma_data_direction dir,
822 void (*op)(const void *, size_t, int))
823 {
824 unsigned long pfn;
825 size_t left = size;
826
827 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
828 offset %= PAGE_SIZE;
829
830 /*
831 * A single sg entry may refer to multiple physically contiguous
832 * pages. But we still need to process highmem pages individually.
833 * If highmem is not configured then the bulk of this loop gets
834 * optimized out.
835 */
836 do {
837 size_t len = left;
838 void *vaddr;
839
840 page = pfn_to_page(pfn);
841
842 if (PageHighMem(page)) {
843 if (len + offset > PAGE_SIZE)
844 len = PAGE_SIZE - offset;
845
846 if (cache_is_vipt_nonaliasing()) {
847 vaddr = kmap_atomic(page);
848 op(vaddr + offset, len, dir);
849 kunmap_atomic(vaddr);
850 } else {
851 vaddr = kmap_high_get(page);
852 if (vaddr) {
853 op(vaddr + offset, len, dir);
854 kunmap_high(page);
855 }
856 }
857 } else {
858 vaddr = page_address(page) + offset;
859 op(vaddr, len, dir);
860 }
861 offset = 0;
862 pfn++;
863 left -= len;
864 } while (left);
865 }
866
867 /*
868 * Make an area consistent for devices.
869 * Note: Drivers should NOT use this function directly, as it will break
870 * platforms with CONFIG_DMABOUNCE.
871 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
872 */
873 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
874 size_t size, enum dma_data_direction dir)
875 {
876 unsigned long paddr;
877
878 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
879
880 paddr = page_to_phys(page) + off;
881 if (dir == DMA_FROM_DEVICE) {
882 outer_inv_range(paddr, paddr + size);
883 } else {
884 outer_clean_range(paddr, paddr + size);
885 }
886 /* FIXME: non-speculating: flush on bidirectional mappings? */
887 }
888
889 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
890 size_t size, enum dma_data_direction dir)
891 {
892 unsigned long paddr = page_to_phys(page) + off;
893
894 /* FIXME: non-speculating: not required */
895 /* don't bother invalidating if DMA to device */
896 if (dir != DMA_TO_DEVICE)
897 outer_inv_range(paddr, paddr + size);
898
899 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
900
901 /*
902 * Mark the D-cache clean for these pages to avoid extra flushing.
903 */
904 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
905 unsigned long pfn;
906 size_t left = size;
907
908 pfn = page_to_pfn(page) + off / PAGE_SIZE;
909 off %= PAGE_SIZE;
910 if (off) {
911 pfn++;
912 left -= PAGE_SIZE - off;
913 }
914 while (left >= PAGE_SIZE) {
915 page = pfn_to_page(pfn++);
916 set_bit(PG_dcache_clean, &page->flags);
917 left -= PAGE_SIZE;
918 }
919 }
920 }
921
922 /**
923 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
924 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
925 * @sg: list of buffers
926 * @nents: number of buffers to map
927 * @dir: DMA transfer direction
928 *
929 * Map a set of buffers described by scatterlist in streaming mode for DMA.
930 * This is the scatter-gather version of the dma_map_single interface.
931 * Here the scatter gather list elements are each tagged with the
932 * appropriate dma address and length. They are obtained via
933 * sg_dma_{address,length}.
934 *
935 * Device ownership issues as mentioned for dma_map_single are the same
936 * here.
937 */
938 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
939 enum dma_data_direction dir, struct dma_attrs *attrs)
940 {
941 struct dma_map_ops *ops = get_dma_ops(dev);
942 struct scatterlist *s;
943 int i, j;
944
945 for_each_sg(sg, s, nents, i) {
946 #ifdef CONFIG_NEED_SG_DMA_LENGTH
947 s->dma_length = s->length;
948 #endif
949 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
950 s->length, dir, attrs);
951 if (dma_mapping_error(dev, s->dma_address))
952 goto bad_mapping;
953 }
954 return nents;
955
956 bad_mapping:
957 for_each_sg(sg, s, i, j)
958 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
959 return 0;
960 }
961
962 /**
963 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
964 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
965 * @sg: list of buffers
966 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
967 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
968 *
969 * Unmap a set of streaming mode DMA translations. Again, CPU access
970 * rules concerning calls here are the same as for dma_unmap_single().
971 */
972 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
973 enum dma_data_direction dir, struct dma_attrs *attrs)
974 {
975 struct dma_map_ops *ops = get_dma_ops(dev);
976 struct scatterlist *s;
977
978 int i;
979
980 for_each_sg(sg, s, nents, i)
981 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
982 }
983
984 /**
985 * arm_dma_sync_sg_for_cpu
986 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
987 * @sg: list of buffers
988 * @nents: number of buffers to map (returned from dma_map_sg)
989 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
990 */
991 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
992 int nents, enum dma_data_direction dir)
993 {
994 struct dma_map_ops *ops = get_dma_ops(dev);
995 struct scatterlist *s;
996 int i;
997
998 for_each_sg(sg, s, nents, i)
999 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1000 dir);
1001 }
1002
1003 /**
1004 * arm_dma_sync_sg_for_device
1005 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1006 * @sg: list of buffers
1007 * @nents: number of buffers to map (returned from dma_map_sg)
1008 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1009 */
1010 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1011 int nents, enum dma_data_direction dir)
1012 {
1013 struct dma_map_ops *ops = get_dma_ops(dev);
1014 struct scatterlist *s;
1015 int i;
1016
1017 for_each_sg(sg, s, nents, i)
1018 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1019 dir);
1020 }
1021
1022 /*
1023 * Return whether the given device DMA address mask can be supported
1024 * properly. For example, if your device can only drive the low 24-bits
1025 * during bus mastering, then you would pass 0x00ffffff as the mask
1026 * to this function.
1027 */
1028 int dma_supported(struct device *dev, u64 mask)
1029 {
1030 unsigned long limit;
1031
1032 /*
1033 * If the mask allows for more memory than we can address,
1034 * and we actually have that much memory, then we must
1035 * indicate that DMA to this device is not supported.
1036 */
1037 if (sizeof(mask) != sizeof(dma_addr_t) &&
1038 mask > (dma_addr_t)~0 &&
1039 dma_to_pfn(dev, ~0) > arm_dma_pfn_limit)
1040 return 0;
1041
1042 /*
1043 * Translate the device's DMA mask to a PFN limit. This
1044 * PFN number includes the page which we can DMA to.
1045 */
1046 limit = dma_to_pfn(dev, mask);
1047
1048 if (limit < arm_dma_pfn_limit)
1049 return 0;
1050
1051 return 1;
1052 }
1053 EXPORT_SYMBOL(dma_supported);
1054
1055 int arm_dma_set_mask(struct device *dev, u64 dma_mask)
1056 {
1057 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
1058 return -EIO;
1059
1060 *dev->dma_mask = dma_mask;
1061
1062 return 0;
1063 }
1064
1065 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1066
1067 static int __init dma_debug_do_init(void)
1068 {
1069 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1070 return 0;
1071 }
1072 fs_initcall(dma_debug_do_init);
1073
1074 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1075
1076 /* IOMMU */
1077
1078 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1079 size_t size)
1080 {
1081 unsigned int order = get_order(size);
1082 unsigned int align = 0;
1083 unsigned int count, start;
1084 unsigned long flags;
1085
1086 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1087 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1088
1089 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1090 (1 << mapping->order) - 1) >> mapping->order;
1091
1092 if (order > mapping->order)
1093 align = (1 << (order - mapping->order)) - 1;
1094
1095 spin_lock_irqsave(&mapping->lock, flags);
1096 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1097 count, align);
1098 if (start > mapping->bits) {
1099 spin_unlock_irqrestore(&mapping->lock, flags);
1100 return DMA_ERROR_CODE;
1101 }
1102
1103 bitmap_set(mapping->bitmap, start, count);
1104 spin_unlock_irqrestore(&mapping->lock, flags);
1105
1106 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1107 }
1108
1109 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1110 dma_addr_t addr, size_t size)
1111 {
1112 unsigned int start = (addr - mapping->base) >>
1113 (mapping->order + PAGE_SHIFT);
1114 unsigned int count = ((size >> PAGE_SHIFT) +
1115 (1 << mapping->order) - 1) >> mapping->order;
1116 unsigned long flags;
1117
1118 spin_lock_irqsave(&mapping->lock, flags);
1119 bitmap_clear(mapping->bitmap, start, count);
1120 spin_unlock_irqrestore(&mapping->lock, flags);
1121 }
1122
1123 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1124 gfp_t gfp, struct dma_attrs *attrs)
1125 {
1126 struct page **pages;
1127 int count = size >> PAGE_SHIFT;
1128 int array_size = count * sizeof(struct page *);
1129 int i = 0;
1130
1131 if (array_size <= PAGE_SIZE)
1132 pages = kzalloc(array_size, gfp);
1133 else
1134 pages = vzalloc(array_size);
1135 if (!pages)
1136 return NULL;
1137
1138 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs))
1139 {
1140 unsigned long order = get_order(size);
1141 struct page *page;
1142
1143 page = dma_alloc_from_contiguous(dev, count, order);
1144 if (!page)
1145 goto error;
1146
1147 __dma_clear_buffer(page, size);
1148
1149 for (i = 0; i < count; i++)
1150 pages[i] = page + i;
1151
1152 return pages;
1153 }
1154
1155 /*
1156 * IOMMU can map any pages, so himem can also be used here
1157 */
1158 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1159
1160 while (count) {
1161 int j, order = __fls(count);
1162
1163 pages[i] = alloc_pages(gfp, order);
1164 while (!pages[i] && order)
1165 pages[i] = alloc_pages(gfp, --order);
1166 if (!pages[i])
1167 goto error;
1168
1169 if (order) {
1170 split_page(pages[i], order);
1171 j = 1 << order;
1172 while (--j)
1173 pages[i + j] = pages[i] + j;
1174 }
1175
1176 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1177 i += 1 << order;
1178 count -= 1 << order;
1179 }
1180
1181 return pages;
1182 error:
1183 while (i--)
1184 if (pages[i])
1185 __free_pages(pages[i], 0);
1186 if (array_size <= PAGE_SIZE)
1187 kfree(pages);
1188 else
1189 vfree(pages);
1190 return NULL;
1191 }
1192
1193 static int __iommu_free_buffer(struct device *dev, struct page **pages,
1194 size_t size, struct dma_attrs *attrs)
1195 {
1196 int count = size >> PAGE_SHIFT;
1197 int array_size = count * sizeof(struct page *);
1198 int i;
1199
1200 if (dma_get_attr(DMA_ATTR_FORCE_CONTIGUOUS, attrs)) {
1201 dma_release_from_contiguous(dev, pages[0], count);
1202 } else {
1203 for (i = 0; i < count; i++)
1204 if (pages[i])
1205 __free_pages(pages[i], 0);
1206 }
1207
1208 if (array_size <= PAGE_SIZE)
1209 kfree(pages);
1210 else
1211 vfree(pages);
1212 return 0;
1213 }
1214
1215 /*
1216 * Create a CPU mapping for a specified pages
1217 */
1218 static void *
1219 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot,
1220 const void *caller)
1221 {
1222 unsigned int i, nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1223 struct vm_struct *area;
1224 unsigned long p;
1225
1226 area = get_vm_area_caller(size, VM_ARM_DMA_CONSISTENT | VM_USERMAP,
1227 caller);
1228 if (!area)
1229 return NULL;
1230
1231 area->pages = pages;
1232 area->nr_pages = nr_pages;
1233 p = (unsigned long)area->addr;
1234
1235 for (i = 0; i < nr_pages; i++) {
1236 phys_addr_t phys = __pfn_to_phys(page_to_pfn(pages[i]));
1237 if (ioremap_page_range(p, p + PAGE_SIZE, phys, prot))
1238 goto err;
1239 p += PAGE_SIZE;
1240 }
1241 return area->addr;
1242 err:
1243 unmap_kernel_range((unsigned long)area->addr, size);
1244 vunmap(area->addr);
1245 return NULL;
1246 }
1247
1248 /*
1249 * Create a mapping in device IO address space for specified pages
1250 */
1251 static dma_addr_t
1252 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1253 {
1254 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1255 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1256 dma_addr_t dma_addr, iova;
1257 int i, ret = DMA_ERROR_CODE;
1258
1259 dma_addr = __alloc_iova(mapping, size);
1260 if (dma_addr == DMA_ERROR_CODE)
1261 return dma_addr;
1262
1263 iova = dma_addr;
1264 for (i = 0; i < count; ) {
1265 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1266 phys_addr_t phys = page_to_phys(pages[i]);
1267 unsigned int len, j;
1268
1269 for (j = i + 1; j < count; j++, next_pfn++)
1270 if (page_to_pfn(pages[j]) != next_pfn)
1271 break;
1272
1273 len = (j - i) << PAGE_SHIFT;
1274 ret = iommu_map(mapping->domain, iova, phys, len,
1275 IOMMU_READ|IOMMU_WRITE);
1276 if (ret < 0)
1277 goto fail;
1278 iova += len;
1279 i = j;
1280 }
1281 return dma_addr;
1282 fail:
1283 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1284 __free_iova(mapping, dma_addr, size);
1285 return DMA_ERROR_CODE;
1286 }
1287
1288 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1289 {
1290 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1291
1292 /*
1293 * add optional in-page offset from iova to size and align
1294 * result to page size
1295 */
1296 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1297 iova &= PAGE_MASK;
1298
1299 iommu_unmap(mapping->domain, iova, size);
1300 __free_iova(mapping, iova, size);
1301 return 0;
1302 }
1303
1304 static struct page **__atomic_get_pages(void *addr)
1305 {
1306 struct dma_pool *pool = &atomic_pool;
1307 struct page **pages = pool->pages;
1308 int offs = (addr - pool->vaddr) >> PAGE_SHIFT;
1309
1310 return pages + offs;
1311 }
1312
1313 static struct page **__iommu_get_pages(void *cpu_addr, struct dma_attrs *attrs)
1314 {
1315 struct vm_struct *area;
1316
1317 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1318 return __atomic_get_pages(cpu_addr);
1319
1320 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1321 return cpu_addr;
1322
1323 area = find_vm_area(cpu_addr);
1324 if (area && (area->flags & VM_ARM_DMA_CONSISTENT))
1325 return area->pages;
1326 return NULL;
1327 }
1328
1329 static void *__iommu_alloc_atomic(struct device *dev, size_t size,
1330 dma_addr_t *handle)
1331 {
1332 struct page *page;
1333 void *addr;
1334
1335 addr = __alloc_from_pool(size, &page);
1336 if (!addr)
1337 return NULL;
1338
1339 *handle = __iommu_create_mapping(dev, &page, size);
1340 if (*handle == DMA_ERROR_CODE)
1341 goto err_mapping;
1342
1343 return addr;
1344
1345 err_mapping:
1346 __free_from_pool(addr, size);
1347 return NULL;
1348 }
1349
1350 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1351 dma_addr_t handle, size_t size)
1352 {
1353 __iommu_remove_mapping(dev, handle, size);
1354 __free_from_pool(cpu_addr, size);
1355 }
1356
1357 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1358 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1359 {
1360 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1361 struct page **pages;
1362 void *addr = NULL;
1363
1364 *handle = DMA_ERROR_CODE;
1365 size = PAGE_ALIGN(size);
1366
1367 if (gfp & GFP_ATOMIC)
1368 return __iommu_alloc_atomic(dev, size, handle);
1369
1370 /*
1371 * Following is a work-around (a.k.a. hack) to prevent pages
1372 * with __GFP_COMP being passed to split_page() which cannot
1373 * handle them. The real problem is that this flag probably
1374 * should be 0 on ARM as it is not supported on this
1375 * platform; see CONFIG_HUGETLBFS.
1376 */
1377 gfp &= ~(__GFP_COMP);
1378
1379 pages = __iommu_alloc_buffer(dev, size, gfp, attrs);
1380 if (!pages)
1381 return NULL;
1382
1383 *handle = __iommu_create_mapping(dev, pages, size);
1384 if (*handle == DMA_ERROR_CODE)
1385 goto err_buffer;
1386
1387 if (dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs))
1388 return pages;
1389
1390 addr = __iommu_alloc_remap(pages, size, gfp, prot,
1391 __builtin_return_address(0));
1392 if (!addr)
1393 goto err_mapping;
1394
1395 return addr;
1396
1397 err_mapping:
1398 __iommu_remove_mapping(dev, *handle, size);
1399 err_buffer:
1400 __iommu_free_buffer(dev, pages, size, attrs);
1401 return NULL;
1402 }
1403
1404 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1405 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1406 struct dma_attrs *attrs)
1407 {
1408 unsigned long uaddr = vma->vm_start;
1409 unsigned long usize = vma->vm_end - vma->vm_start;
1410 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1411
1412 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1413
1414 if (!pages)
1415 return -ENXIO;
1416
1417 do {
1418 int ret = vm_insert_page(vma, uaddr, *pages++);
1419 if (ret) {
1420 pr_err("Remapping memory failed: %d\n", ret);
1421 return ret;
1422 }
1423 uaddr += PAGE_SIZE;
1424 usize -= PAGE_SIZE;
1425 } while (usize > 0);
1426
1427 return 0;
1428 }
1429
1430 /*
1431 * free a page as defined by the above mapping.
1432 * Must not be called with IRQs disabled.
1433 */
1434 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1435 dma_addr_t handle, struct dma_attrs *attrs)
1436 {
1437 struct page **pages;
1438 size = PAGE_ALIGN(size);
1439
1440 if (__in_atomic_pool(cpu_addr, size)) {
1441 __iommu_free_atomic(dev, cpu_addr, handle, size);
1442 return;
1443 }
1444
1445 pages = __iommu_get_pages(cpu_addr, attrs);
1446 if (!pages) {
1447 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1448 return;
1449 }
1450
1451 if (!dma_get_attr(DMA_ATTR_NO_KERNEL_MAPPING, attrs)) {
1452 unmap_kernel_range((unsigned long)cpu_addr, size);
1453 vunmap(cpu_addr);
1454 }
1455
1456 __iommu_remove_mapping(dev, handle, size);
1457 __iommu_free_buffer(dev, pages, size, attrs);
1458 }
1459
1460 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1461 void *cpu_addr, dma_addr_t dma_addr,
1462 size_t size, struct dma_attrs *attrs)
1463 {
1464 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1465 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1466
1467 if (!pages)
1468 return -ENXIO;
1469
1470 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1471 GFP_KERNEL);
1472 }
1473
1474 static int __dma_direction_to_prot(enum dma_data_direction dir)
1475 {
1476 int prot;
1477
1478 switch (dir) {
1479 case DMA_BIDIRECTIONAL:
1480 prot = IOMMU_READ | IOMMU_WRITE;
1481 break;
1482 case DMA_TO_DEVICE:
1483 prot = IOMMU_READ;
1484 break;
1485 case DMA_FROM_DEVICE:
1486 prot = IOMMU_WRITE;
1487 break;
1488 default:
1489 prot = 0;
1490 }
1491
1492 return prot;
1493 }
1494
1495 /*
1496 * Map a part of the scatter-gather list into contiguous io address space
1497 */
1498 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1499 size_t size, dma_addr_t *handle,
1500 enum dma_data_direction dir, struct dma_attrs *attrs,
1501 bool is_coherent)
1502 {
1503 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1504 dma_addr_t iova, iova_base;
1505 int ret = 0;
1506 unsigned int count;
1507 struct scatterlist *s;
1508 int prot;
1509
1510 size = PAGE_ALIGN(size);
1511 *handle = DMA_ERROR_CODE;
1512
1513 iova_base = iova = __alloc_iova(mapping, size);
1514 if (iova == DMA_ERROR_CODE)
1515 return -ENOMEM;
1516
1517 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1518 phys_addr_t phys = page_to_phys(sg_page(s));
1519 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1520
1521 if (!is_coherent &&
1522 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1523 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1524
1525 prot = __dma_direction_to_prot(dir);
1526
1527 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1528 if (ret < 0)
1529 goto fail;
1530 count += len >> PAGE_SHIFT;
1531 iova += len;
1532 }
1533 *handle = iova_base;
1534
1535 return 0;
1536 fail:
1537 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1538 __free_iova(mapping, iova_base, size);
1539 return ret;
1540 }
1541
1542 static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1543 enum dma_data_direction dir, struct dma_attrs *attrs,
1544 bool is_coherent)
1545 {
1546 struct scatterlist *s = sg, *dma = sg, *start = sg;
1547 int i, count = 0;
1548 unsigned int offset = s->offset;
1549 unsigned int size = s->offset + s->length;
1550 unsigned int max = dma_get_max_seg_size(dev);
1551
1552 for (i = 1; i < nents; i++) {
1553 s = sg_next(s);
1554
1555 s->dma_address = DMA_ERROR_CODE;
1556 s->dma_length = 0;
1557
1558 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1559 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1560 dir, attrs, is_coherent) < 0)
1561 goto bad_mapping;
1562
1563 dma->dma_address += offset;
1564 dma->dma_length = size - offset;
1565
1566 size = offset = s->offset;
1567 start = s;
1568 dma = sg_next(dma);
1569 count += 1;
1570 }
1571 size += s->length;
1572 }
1573 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1574 is_coherent) < 0)
1575 goto bad_mapping;
1576
1577 dma->dma_address += offset;
1578 dma->dma_length = size - offset;
1579
1580 return count+1;
1581
1582 bad_mapping:
1583 for_each_sg(sg, s, count, i)
1584 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1585 return 0;
1586 }
1587
1588 /**
1589 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1590 * @dev: valid struct device pointer
1591 * @sg: list of buffers
1592 * @nents: number of buffers to map
1593 * @dir: DMA transfer direction
1594 *
1595 * Map a set of i/o coherent buffers described by scatterlist in streaming
1596 * mode for DMA. The scatter gather list elements are merged together (if
1597 * possible) and tagged with the appropriate dma address and length. They are
1598 * obtained via sg_dma_{address,length}.
1599 */
1600 int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1601 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1602 {
1603 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1604 }
1605
1606 /**
1607 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1608 * @dev: valid struct device pointer
1609 * @sg: list of buffers
1610 * @nents: number of buffers to map
1611 * @dir: DMA transfer direction
1612 *
1613 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1614 * The scatter gather list elements are merged together (if possible) and
1615 * tagged with the appropriate dma address and length. They are obtained via
1616 * sg_dma_{address,length}.
1617 */
1618 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1619 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1620 {
1621 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1622 }
1623
1624 static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1625 int nents, enum dma_data_direction dir, struct dma_attrs *attrs,
1626 bool is_coherent)
1627 {
1628 struct scatterlist *s;
1629 int i;
1630
1631 for_each_sg(sg, s, nents, i) {
1632 if (sg_dma_len(s))
1633 __iommu_remove_mapping(dev, sg_dma_address(s),
1634 sg_dma_len(s));
1635 if (!is_coherent &&
1636 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1637 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1638 s->length, dir);
1639 }
1640 }
1641
1642 /**
1643 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1644 * @dev: valid struct device pointer
1645 * @sg: list of buffers
1646 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1647 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1648 *
1649 * Unmap a set of streaming mode DMA translations. Again, CPU access
1650 * rules concerning calls here are the same as for dma_unmap_single().
1651 */
1652 void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1653 int nents, enum dma_data_direction dir, struct dma_attrs *attrs)
1654 {
1655 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1656 }
1657
1658 /**
1659 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1660 * @dev: valid struct device pointer
1661 * @sg: list of buffers
1662 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1663 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1664 *
1665 * Unmap a set of streaming mode DMA translations. Again, CPU access
1666 * rules concerning calls here are the same as for dma_unmap_single().
1667 */
1668 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1669 enum dma_data_direction dir, struct dma_attrs *attrs)
1670 {
1671 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1672 }
1673
1674 /**
1675 * arm_iommu_sync_sg_for_cpu
1676 * @dev: valid struct device pointer
1677 * @sg: list of buffers
1678 * @nents: number of buffers to map (returned from dma_map_sg)
1679 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1680 */
1681 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1682 int nents, enum dma_data_direction dir)
1683 {
1684 struct scatterlist *s;
1685 int i;
1686
1687 for_each_sg(sg, s, nents, i)
1688 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1689
1690 }
1691
1692 /**
1693 * arm_iommu_sync_sg_for_device
1694 * @dev: valid struct device pointer
1695 * @sg: list of buffers
1696 * @nents: number of buffers to map (returned from dma_map_sg)
1697 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1698 */
1699 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1700 int nents, enum dma_data_direction dir)
1701 {
1702 struct scatterlist *s;
1703 int i;
1704
1705 for_each_sg(sg, s, nents, i)
1706 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1707 }
1708
1709
1710 /**
1711 * arm_coherent_iommu_map_page
1712 * @dev: valid struct device pointer
1713 * @page: page that buffer resides in
1714 * @offset: offset into page for start of buffer
1715 * @size: size of buffer to map
1716 * @dir: DMA transfer direction
1717 *
1718 * Coherent IOMMU aware version of arm_dma_map_page()
1719 */
1720 static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1721 unsigned long offset, size_t size, enum dma_data_direction dir,
1722 struct dma_attrs *attrs)
1723 {
1724 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1725 dma_addr_t dma_addr;
1726 int ret, prot, len = PAGE_ALIGN(size + offset);
1727
1728 dma_addr = __alloc_iova(mapping, len);
1729 if (dma_addr == DMA_ERROR_CODE)
1730 return dma_addr;
1731
1732 prot = __dma_direction_to_prot(dir);
1733
1734 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1735 if (ret < 0)
1736 goto fail;
1737
1738 return dma_addr + offset;
1739 fail:
1740 __free_iova(mapping, dma_addr, len);
1741 return DMA_ERROR_CODE;
1742 }
1743
1744 /**
1745 * arm_iommu_map_page
1746 * @dev: valid struct device pointer
1747 * @page: page that buffer resides in
1748 * @offset: offset into page for start of buffer
1749 * @size: size of buffer to map
1750 * @dir: DMA transfer direction
1751 *
1752 * IOMMU aware version of arm_dma_map_page()
1753 */
1754 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1755 unsigned long offset, size_t size, enum dma_data_direction dir,
1756 struct dma_attrs *attrs)
1757 {
1758 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1759 __dma_page_cpu_to_dev(page, offset, size, dir);
1760
1761 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1762 }
1763
1764 /**
1765 * arm_coherent_iommu_unmap_page
1766 * @dev: valid struct device pointer
1767 * @handle: DMA address of buffer
1768 * @size: size of buffer (same as passed to dma_map_page)
1769 * @dir: DMA transfer direction (same as passed to dma_map_page)
1770 *
1771 * Coherent IOMMU aware version of arm_dma_unmap_page()
1772 */
1773 static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1774 size_t size, enum dma_data_direction dir,
1775 struct dma_attrs *attrs)
1776 {
1777 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1778 dma_addr_t iova = handle & PAGE_MASK;
1779 int offset = handle & ~PAGE_MASK;
1780 int len = PAGE_ALIGN(size + offset);
1781
1782 if (!iova)
1783 return;
1784
1785 iommu_unmap(mapping->domain, iova, len);
1786 __free_iova(mapping, iova, len);
1787 }
1788
1789 /**
1790 * arm_iommu_unmap_page
1791 * @dev: valid struct device pointer
1792 * @handle: DMA address of buffer
1793 * @size: size of buffer (same as passed to dma_map_page)
1794 * @dir: DMA transfer direction (same as passed to dma_map_page)
1795 *
1796 * IOMMU aware version of arm_dma_unmap_page()
1797 */
1798 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1799 size_t size, enum dma_data_direction dir,
1800 struct dma_attrs *attrs)
1801 {
1802 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1803 dma_addr_t iova = handle & PAGE_MASK;
1804 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1805 int offset = handle & ~PAGE_MASK;
1806 int len = PAGE_ALIGN(size + offset);
1807
1808 if (!iova)
1809 return;
1810
1811 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
1812 __dma_page_dev_to_cpu(page, offset, size, dir);
1813
1814 iommu_unmap(mapping->domain, iova, len);
1815 __free_iova(mapping, iova, len);
1816 }
1817
1818 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1819 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1820 {
1821 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1822 dma_addr_t iova = handle & PAGE_MASK;
1823 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1824 unsigned int offset = handle & ~PAGE_MASK;
1825
1826 if (!iova)
1827 return;
1828
1829 __dma_page_dev_to_cpu(page, offset, size, dir);
1830 }
1831
1832 static void arm_iommu_sync_single_for_device(struct device *dev,
1833 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1834 {
1835 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1836 dma_addr_t iova = handle & PAGE_MASK;
1837 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1838 unsigned int offset = handle & ~PAGE_MASK;
1839
1840 if (!iova)
1841 return;
1842
1843 __dma_page_cpu_to_dev(page, offset, size, dir);
1844 }
1845
1846 struct dma_map_ops iommu_ops = {
1847 .alloc = arm_iommu_alloc_attrs,
1848 .free = arm_iommu_free_attrs,
1849 .mmap = arm_iommu_mmap_attrs,
1850 .get_sgtable = arm_iommu_get_sgtable,
1851
1852 .map_page = arm_iommu_map_page,
1853 .unmap_page = arm_iommu_unmap_page,
1854 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1855 .sync_single_for_device = arm_iommu_sync_single_for_device,
1856
1857 .map_sg = arm_iommu_map_sg,
1858 .unmap_sg = arm_iommu_unmap_sg,
1859 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1860 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1861
1862 .set_dma_mask = arm_dma_set_mask,
1863 };
1864
1865 struct dma_map_ops iommu_coherent_ops = {
1866 .alloc = arm_iommu_alloc_attrs,
1867 .free = arm_iommu_free_attrs,
1868 .mmap = arm_iommu_mmap_attrs,
1869 .get_sgtable = arm_iommu_get_sgtable,
1870
1871 .map_page = arm_coherent_iommu_map_page,
1872 .unmap_page = arm_coherent_iommu_unmap_page,
1873
1874 .map_sg = arm_coherent_iommu_map_sg,
1875 .unmap_sg = arm_coherent_iommu_unmap_sg,
1876
1877 .set_dma_mask = arm_dma_set_mask,
1878 };
1879
1880 /**
1881 * arm_iommu_create_mapping
1882 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1883 * @base: start address of the valid IO address space
1884 * @size: size of the valid IO address space
1885 * @order: accuracy of the IO addresses allocations
1886 *
1887 * Creates a mapping structure which holds information about used/unused
1888 * IO address ranges, which is required to perform memory allocation and
1889 * mapping with IOMMU aware functions.
1890 *
1891 * The client device need to be attached to the mapping with
1892 * arm_iommu_attach_device function.
1893 */
1894 struct dma_iommu_mapping *
1895 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1896 int order)
1897 {
1898 unsigned int count = size >> (PAGE_SHIFT + order);
1899 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1900 struct dma_iommu_mapping *mapping;
1901 int err = -ENOMEM;
1902
1903 if (!count)
1904 return ERR_PTR(-EINVAL);
1905
1906 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1907 if (!mapping)
1908 goto err;
1909
1910 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1911 if (!mapping->bitmap)
1912 goto err2;
1913
1914 mapping->base = base;
1915 mapping->bits = BITS_PER_BYTE * bitmap_size;
1916 mapping->order = order;
1917 spin_lock_init(&mapping->lock);
1918
1919 mapping->domain = iommu_domain_alloc(bus);
1920 if (!mapping->domain)
1921 goto err3;
1922
1923 kref_init(&mapping->kref);
1924 return mapping;
1925 err3:
1926 kfree(mapping->bitmap);
1927 err2:
1928 kfree(mapping);
1929 err:
1930 return ERR_PTR(err);
1931 }
1932 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1933
1934 static void release_iommu_mapping(struct kref *kref)
1935 {
1936 struct dma_iommu_mapping *mapping =
1937 container_of(kref, struct dma_iommu_mapping, kref);
1938
1939 iommu_domain_free(mapping->domain);
1940 kfree(mapping->bitmap);
1941 kfree(mapping);
1942 }
1943
1944 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1945 {
1946 if (mapping)
1947 kref_put(&mapping->kref, release_iommu_mapping);
1948 }
1949 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1950
1951 /**
1952 * arm_iommu_attach_device
1953 * @dev: valid struct device pointer
1954 * @mapping: io address space mapping structure (returned from
1955 * arm_iommu_create_mapping)
1956 *
1957 * Attaches specified io address space mapping to the provided device,
1958 * this replaces the dma operations (dma_map_ops pointer) with the
1959 * IOMMU aware version. More than one client might be attached to
1960 * the same io address space mapping.
1961 */
1962 int arm_iommu_attach_device(struct device *dev,
1963 struct dma_iommu_mapping *mapping)
1964 {
1965 int err;
1966
1967 err = iommu_attach_device(mapping->domain, dev);
1968 if (err)
1969 return err;
1970
1971 kref_get(&mapping->kref);
1972 dev->archdata.mapping = mapping;
1973 set_dma_ops(dev, &iommu_ops);
1974
1975 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1976 return 0;
1977 }
1978 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1979
1980 /**
1981 * arm_iommu_detach_device
1982 * @dev: valid struct device pointer
1983 *
1984 * Detaches the provided device from a previously attached map.
1985 * This voids the dma operations (dma_map_ops pointer)
1986 */
1987 void arm_iommu_detach_device(struct device *dev)
1988 {
1989 struct dma_iommu_mapping *mapping;
1990
1991 mapping = to_dma_iommu_mapping(dev);
1992 if (!mapping) {
1993 dev_warn(dev, "Not attached\n");
1994 return;
1995 }
1996
1997 iommu_detach_device(mapping->domain, dev);
1998 kref_put(&mapping->kref, release_iommu_mapping);
1999 dev->archdata.mapping = NULL;
2000 set_dma_ops(dev, NULL);
2001
2002 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2003 }
2004 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2005
2006 #endif
This page took 0.069516 seconds and 6 git commands to generate.