Merge ath-next from ath.git
[deliverable/linux.git] / arch / arm / mm / flush.c
1 /*
2 * linux/arch/arm/mm/flush.c
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/tlbflush.h>
20 #include <linux/hugetlb.h>
21
22 #include "mm.h"
23
24 #ifdef CONFIG_CPU_CACHE_VIPT
25
26 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
27 {
28 unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
29 const int zero = 0;
30
31 set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
32
33 asm( "mcrr p15, 0, %1, %0, c14\n"
34 " mcr p15, 0, %2, c7, c10, 4"
35 :
36 : "r" (to), "r" (to + PAGE_SIZE - 1), "r" (zero)
37 : "cc");
38 }
39
40 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
41 {
42 unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
43 unsigned long offset = vaddr & (PAGE_SIZE - 1);
44 unsigned long to;
45
46 set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
47 to = va + offset;
48 flush_icache_range(to, to + len);
49 }
50
51 void flush_cache_mm(struct mm_struct *mm)
52 {
53 if (cache_is_vivt()) {
54 vivt_flush_cache_mm(mm);
55 return;
56 }
57
58 if (cache_is_vipt_aliasing()) {
59 asm( "mcr p15, 0, %0, c7, c14, 0\n"
60 " mcr p15, 0, %0, c7, c10, 4"
61 :
62 : "r" (0)
63 : "cc");
64 }
65 }
66
67 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
68 {
69 if (cache_is_vivt()) {
70 vivt_flush_cache_range(vma, start, end);
71 return;
72 }
73
74 if (cache_is_vipt_aliasing()) {
75 asm( "mcr p15, 0, %0, c7, c14, 0\n"
76 " mcr p15, 0, %0, c7, c10, 4"
77 :
78 : "r" (0)
79 : "cc");
80 }
81
82 if (vma->vm_flags & VM_EXEC)
83 __flush_icache_all();
84 }
85
86 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
87 {
88 if (cache_is_vivt()) {
89 vivt_flush_cache_page(vma, user_addr, pfn);
90 return;
91 }
92
93 if (cache_is_vipt_aliasing()) {
94 flush_pfn_alias(pfn, user_addr);
95 __flush_icache_all();
96 }
97
98 if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
99 __flush_icache_all();
100 }
101
102 #else
103 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
104 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
105 #endif
106
107 #define FLAG_PA_IS_EXEC 1
108 #define FLAG_PA_CORE_IN_MM 2
109
110 static void flush_ptrace_access_other(void *args)
111 {
112 __flush_icache_all();
113 }
114
115 static inline
116 void __flush_ptrace_access(struct page *page, unsigned long uaddr, void *kaddr,
117 unsigned long len, unsigned int flags)
118 {
119 if (cache_is_vivt()) {
120 if (flags & FLAG_PA_CORE_IN_MM) {
121 unsigned long addr = (unsigned long)kaddr;
122 __cpuc_coherent_kern_range(addr, addr + len);
123 }
124 return;
125 }
126
127 if (cache_is_vipt_aliasing()) {
128 flush_pfn_alias(page_to_pfn(page), uaddr);
129 __flush_icache_all();
130 return;
131 }
132
133 /* VIPT non-aliasing D-cache */
134 if (flags & FLAG_PA_IS_EXEC) {
135 unsigned long addr = (unsigned long)kaddr;
136 if (icache_is_vipt_aliasing())
137 flush_icache_alias(page_to_pfn(page), uaddr, len);
138 else
139 __cpuc_coherent_kern_range(addr, addr + len);
140 if (cache_ops_need_broadcast())
141 smp_call_function(flush_ptrace_access_other,
142 NULL, 1);
143 }
144 }
145
146 static
147 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
148 unsigned long uaddr, void *kaddr, unsigned long len)
149 {
150 unsigned int flags = 0;
151 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm)))
152 flags |= FLAG_PA_CORE_IN_MM;
153 if (vma->vm_flags & VM_EXEC)
154 flags |= FLAG_PA_IS_EXEC;
155 __flush_ptrace_access(page, uaddr, kaddr, len, flags);
156 }
157
158 void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
159 void *kaddr, unsigned long len)
160 {
161 unsigned int flags = FLAG_PA_CORE_IN_MM|FLAG_PA_IS_EXEC;
162
163 __flush_ptrace_access(page, uaddr, kaddr, len, flags);
164 }
165
166 /*
167 * Copy user data from/to a page which is mapped into a different
168 * processes address space. Really, we want to allow our "user
169 * space" model to handle this.
170 *
171 * Note that this code needs to run on the current CPU.
172 */
173 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
174 unsigned long uaddr, void *dst, const void *src,
175 unsigned long len)
176 {
177 #ifdef CONFIG_SMP
178 preempt_disable();
179 #endif
180 memcpy(dst, src, len);
181 flush_ptrace_access(vma, page, uaddr, dst, len);
182 #ifdef CONFIG_SMP
183 preempt_enable();
184 #endif
185 }
186
187 void __flush_dcache_page(struct address_space *mapping, struct page *page)
188 {
189 /*
190 * Writeback any data associated with the kernel mapping of this
191 * page. This ensures that data in the physical page is mutually
192 * coherent with the kernels mapping.
193 */
194 if (!PageHighMem(page)) {
195 size_t page_size = PAGE_SIZE << compound_order(page);
196 __cpuc_flush_dcache_area(page_address(page), page_size);
197 } else {
198 unsigned long i;
199 if (cache_is_vipt_nonaliasing()) {
200 for (i = 0; i < (1 << compound_order(page)); i++) {
201 void *addr = kmap_atomic(page + i);
202 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
203 kunmap_atomic(addr);
204 }
205 } else {
206 for (i = 0; i < (1 << compound_order(page)); i++) {
207 void *addr = kmap_high_get(page + i);
208 if (addr) {
209 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
210 kunmap_high(page + i);
211 }
212 }
213 }
214 }
215
216 /*
217 * If this is a page cache page, and we have an aliasing VIPT cache,
218 * we only need to do one flush - which would be at the relevant
219 * userspace colour, which is congruent with page->index.
220 */
221 if (mapping && cache_is_vipt_aliasing())
222 flush_pfn_alias(page_to_pfn(page),
223 page->index << PAGE_CACHE_SHIFT);
224 }
225
226 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
227 {
228 struct mm_struct *mm = current->active_mm;
229 struct vm_area_struct *mpnt;
230 pgoff_t pgoff;
231
232 /*
233 * There are possible user space mappings of this page:
234 * - VIVT cache: we need to also write back and invalidate all user
235 * data in the current VM view associated with this page.
236 * - aliasing VIPT: we only need to find one mapping of this page.
237 */
238 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
239
240 flush_dcache_mmap_lock(mapping);
241 vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
242 unsigned long offset;
243
244 /*
245 * If this VMA is not in our MM, we can ignore it.
246 */
247 if (mpnt->vm_mm != mm)
248 continue;
249 if (!(mpnt->vm_flags & VM_MAYSHARE))
250 continue;
251 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
252 flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
253 }
254 flush_dcache_mmap_unlock(mapping);
255 }
256
257 #if __LINUX_ARM_ARCH__ >= 6
258 void __sync_icache_dcache(pte_t pteval)
259 {
260 unsigned long pfn;
261 struct page *page;
262 struct address_space *mapping;
263
264 if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
265 /* only flush non-aliasing VIPT caches for exec mappings */
266 return;
267 pfn = pte_pfn(pteval);
268 if (!pfn_valid(pfn))
269 return;
270
271 page = pfn_to_page(pfn);
272 if (cache_is_vipt_aliasing())
273 mapping = page_mapping(page);
274 else
275 mapping = NULL;
276
277 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
278 __flush_dcache_page(mapping, page);
279
280 if (pte_exec(pteval))
281 __flush_icache_all();
282 }
283 #endif
284
285 /*
286 * Ensure cache coherency between kernel mapping and userspace mapping
287 * of this page.
288 *
289 * We have three cases to consider:
290 * - VIPT non-aliasing cache: fully coherent so nothing required.
291 * - VIVT: fully aliasing, so we need to handle every alias in our
292 * current VM view.
293 * - VIPT aliasing: need to handle one alias in our current VM view.
294 *
295 * If we need to handle aliasing:
296 * If the page only exists in the page cache and there are no user
297 * space mappings, we can be lazy and remember that we may have dirty
298 * kernel cache lines for later. Otherwise, we assume we have
299 * aliasing mappings.
300 *
301 * Note that we disable the lazy flush for SMP configurations where
302 * the cache maintenance operations are not automatically broadcasted.
303 */
304 void flush_dcache_page(struct page *page)
305 {
306 struct address_space *mapping;
307
308 /*
309 * The zero page is never written to, so never has any dirty
310 * cache lines, and therefore never needs to be flushed.
311 */
312 if (page == ZERO_PAGE(0))
313 return;
314
315 mapping = page_mapping(page);
316
317 if (!cache_ops_need_broadcast() &&
318 mapping && !page_mapped(page))
319 clear_bit(PG_dcache_clean, &page->flags);
320 else {
321 __flush_dcache_page(mapping, page);
322 if (mapping && cache_is_vivt())
323 __flush_dcache_aliases(mapping, page);
324 else if (mapping)
325 __flush_icache_all();
326 set_bit(PG_dcache_clean, &page->flags);
327 }
328 }
329 EXPORT_SYMBOL(flush_dcache_page);
330
331 /*
332 * Ensure cache coherency for the kernel mapping of this page. We can
333 * assume that the page is pinned via kmap.
334 *
335 * If the page only exists in the page cache and there are no user
336 * space mappings, this is a no-op since the page was already marked
337 * dirty at creation. Otherwise, we need to flush the dirty kernel
338 * cache lines directly.
339 */
340 void flush_kernel_dcache_page(struct page *page)
341 {
342 if (cache_is_vivt() || cache_is_vipt_aliasing()) {
343 struct address_space *mapping;
344
345 mapping = page_mapping(page);
346
347 if (!mapping || mapping_mapped(mapping)) {
348 void *addr;
349
350 addr = page_address(page);
351 /*
352 * kmap_atomic() doesn't set the page virtual
353 * address for highmem pages, and
354 * kunmap_atomic() takes care of cache
355 * flushing already.
356 */
357 if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
358 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
359 }
360 }
361 }
362 EXPORT_SYMBOL(flush_kernel_dcache_page);
363
364 /*
365 * Flush an anonymous page so that users of get_user_pages()
366 * can safely access the data. The expected sequence is:
367 *
368 * get_user_pages()
369 * -> flush_anon_page
370 * memcpy() to/from page
371 * if written to page, flush_dcache_page()
372 */
373 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
374 {
375 unsigned long pfn;
376
377 /* VIPT non-aliasing caches need do nothing */
378 if (cache_is_vipt_nonaliasing())
379 return;
380
381 /*
382 * Write back and invalidate userspace mapping.
383 */
384 pfn = page_to_pfn(page);
385 if (cache_is_vivt()) {
386 flush_cache_page(vma, vmaddr, pfn);
387 } else {
388 /*
389 * For aliasing VIPT, we can flush an alias of the
390 * userspace address only.
391 */
392 flush_pfn_alias(pfn, vmaddr);
393 __flush_icache_all();
394 }
395
396 /*
397 * Invalidate kernel mapping. No data should be contained
398 * in this mapping of the page. FIXME: this is overkill
399 * since we actually ask for a write-back and invalidate.
400 */
401 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
402 }
403
404 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
405 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
406 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
407 pmd_t *pmdp)
408 {
409 pmd_t pmd = pmd_mksplitting(*pmdp);
410 VM_BUG_ON(address & ~PMD_MASK);
411 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
412
413 /* dummy IPI to serialise against fast_gup */
414 kick_all_cpus_sync();
415 }
416 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
417 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
This page took 0.047265 seconds and 5 git commands to generate.