[ARM] 2887/1: OMAP 2/4: Update files common to omap1 and omap2, take 2
[deliverable/linux.git] / arch / arm / plat-omap / clock.c
1 /*
2 * linux/arch/arm/plat-omap/clock.c
3 *
4 * Copyright (C) 2004 Nokia corporation
5 * Written by Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/list.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16
17 #include <asm/io.h>
18 #include <asm/semaphore.h>
19 #include <asm/hardware/clock.h>
20 #include <asm/arch/board.h>
21 #include <asm/arch/usb.h>
22
23 #include "clock.h"
24 #include "sram.h"
25
26 static LIST_HEAD(clocks);
27 static DECLARE_MUTEX(clocks_sem);
28 static DEFINE_SPINLOCK(clockfw_lock);
29 static void propagate_rate(struct clk * clk);
30 /* UART clock function */
31 static int set_uart_rate(struct clk * clk, unsigned long rate);
32 /* External clock (MCLK & BCLK) functions */
33 static int set_ext_clk_rate(struct clk * clk, unsigned long rate);
34 static long round_ext_clk_rate(struct clk * clk, unsigned long rate);
35 static void init_ext_clk(struct clk * clk);
36 /* MPU virtual clock functions */
37 static int select_table_rate(struct clk * clk, unsigned long rate);
38 static long round_to_table_rate(struct clk * clk, unsigned long rate);
39 void clk_setdpll(__u16, __u16);
40
41 static struct mpu_rate rate_table[] = {
42 /* MPU MHz, xtal MHz, dpll1 MHz, CKCTL, DPLL_CTL
43 * armdiv, dspdiv, dspmmu, tcdiv, perdiv, lcddiv
44 */
45 #if defined(CONFIG_OMAP_ARM_216MHZ)
46 { 216000000, 12000000, 216000000, 0x050d, 0x2910 }, /* 1/1/2/2/2/8 */
47 #endif
48 #if defined(CONFIG_OMAP_ARM_195MHZ)
49 { 195000000, 13000000, 195000000, 0x050e, 0x2790 }, /* 1/1/2/2/4/8 */
50 #endif
51 #if defined(CONFIG_OMAP_ARM_192MHZ)
52 { 192000000, 19200000, 192000000, 0x050f, 0x2510 }, /* 1/1/2/2/8/8 */
53 { 192000000, 12000000, 192000000, 0x050f, 0x2810 }, /* 1/1/2/2/8/8 */
54 { 96000000, 12000000, 192000000, 0x055f, 0x2810 }, /* 2/2/2/2/8/8 */
55 { 48000000, 12000000, 192000000, 0x0baf, 0x2810 }, /* 4/8/4/4/8/8 */
56 { 24000000, 12000000, 192000000, 0x0fff, 0x2810 }, /* 8/8/8/8/8/8 */
57 #endif
58 #if defined(CONFIG_OMAP_ARM_182MHZ)
59 { 182000000, 13000000, 182000000, 0x050e, 0x2710 }, /* 1/1/2/2/4/8 */
60 #endif
61 #if defined(CONFIG_OMAP_ARM_168MHZ)
62 { 168000000, 12000000, 168000000, 0x010f, 0x2710 }, /* 1/1/1/2/8/8 */
63 #endif
64 #if defined(CONFIG_OMAP_ARM_150MHZ)
65 { 150000000, 12000000, 150000000, 0x010a, 0x2cb0 }, /* 1/1/1/2/4/4 */
66 #endif
67 #if defined(CONFIG_OMAP_ARM_120MHZ)
68 { 120000000, 12000000, 120000000, 0x010a, 0x2510 }, /* 1/1/1/2/4/4 */
69 #endif
70 #if defined(CONFIG_OMAP_ARM_96MHZ)
71 { 96000000, 12000000, 96000000, 0x0005, 0x2410 }, /* 1/1/1/1/2/2 */
72 #endif
73 #if defined(CONFIG_OMAP_ARM_60MHZ)
74 { 60000000, 12000000, 60000000, 0x0005, 0x2290 }, /* 1/1/1/1/2/2 */
75 #endif
76 #if defined(CONFIG_OMAP_ARM_30MHZ)
77 { 30000000, 12000000, 60000000, 0x0555, 0x2290 }, /* 2/2/2/2/2/2 */
78 #endif
79 { 0, 0, 0, 0, 0 },
80 };
81
82
83 static void ckctl_recalc(struct clk * clk);
84 int __clk_enable(struct clk *clk);
85 void __clk_disable(struct clk *clk);
86 void __clk_unuse(struct clk *clk);
87 int __clk_use(struct clk *clk);
88
89
90 static void followparent_recalc(struct clk * clk)
91 {
92 clk->rate = clk->parent->rate;
93 }
94
95
96 static void watchdog_recalc(struct clk * clk)
97 {
98 clk->rate = clk->parent->rate / 14;
99 }
100
101 static void uart_recalc(struct clk * clk)
102 {
103 unsigned int val = omap_readl(clk->enable_reg);
104 if (val & clk->enable_bit)
105 clk->rate = 48000000;
106 else
107 clk->rate = 12000000;
108 }
109
110 static struct clk ck_ref = {
111 .name = "ck_ref",
112 .rate = 12000000,
113 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
114 ALWAYS_ENABLED,
115 };
116
117 static struct clk ck_dpll1 = {
118 .name = "ck_dpll1",
119 .parent = &ck_ref,
120 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
121 RATE_PROPAGATES | ALWAYS_ENABLED,
122 };
123
124 static struct clk ck_dpll1out = {
125 .name = "ck_dpll1out",
126 .parent = &ck_dpll1,
127 .flags = CLOCK_IN_OMAP16XX,
128 .enable_reg = ARM_IDLECT2,
129 .enable_bit = EN_CKOUT_ARM,
130 .recalc = &followparent_recalc,
131 };
132
133 static struct clk arm_ck = {
134 .name = "arm_ck",
135 .parent = &ck_dpll1,
136 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
137 RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
138 .rate_offset = CKCTL_ARMDIV_OFFSET,
139 .recalc = &ckctl_recalc,
140 };
141
142 static struct clk armper_ck = {
143 .name = "armper_ck",
144 .parent = &ck_dpll1,
145 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
146 RATE_CKCTL,
147 .enable_reg = ARM_IDLECT2,
148 .enable_bit = EN_PERCK,
149 .rate_offset = CKCTL_PERDIV_OFFSET,
150 .recalc = &ckctl_recalc,
151 };
152
153 static struct clk arm_gpio_ck = {
154 .name = "arm_gpio_ck",
155 .parent = &ck_dpll1,
156 .flags = CLOCK_IN_OMAP1510,
157 .enable_reg = ARM_IDLECT2,
158 .enable_bit = EN_GPIOCK,
159 .recalc = &followparent_recalc,
160 };
161
162 static struct clk armxor_ck = {
163 .name = "armxor_ck",
164 .parent = &ck_ref,
165 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
166 .enable_reg = ARM_IDLECT2,
167 .enable_bit = EN_XORPCK,
168 .recalc = &followparent_recalc,
169 };
170
171 static struct clk armtim_ck = {
172 .name = "armtim_ck",
173 .parent = &ck_ref,
174 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
175 .enable_reg = ARM_IDLECT2,
176 .enable_bit = EN_TIMCK,
177 .recalc = &followparent_recalc,
178 };
179
180 static struct clk armwdt_ck = {
181 .name = "armwdt_ck",
182 .parent = &ck_ref,
183 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
184 .enable_reg = ARM_IDLECT2,
185 .enable_bit = EN_WDTCK,
186 .recalc = &watchdog_recalc,
187 };
188
189 static struct clk arminth_ck16xx = {
190 .name = "arminth_ck",
191 .parent = &arm_ck,
192 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
193 .recalc = &followparent_recalc,
194 /* Note: On 16xx the frequency can be divided by 2 by programming
195 * ARM_CKCTL:ARM_INTHCK_SEL(14) to 1
196 *
197 * 1510 version is in TC clocks.
198 */
199 };
200
201 static struct clk dsp_ck = {
202 .name = "dsp_ck",
203 .parent = &ck_dpll1,
204 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
205 RATE_CKCTL,
206 .enable_reg = ARM_CKCTL,
207 .enable_bit = EN_DSPCK,
208 .rate_offset = CKCTL_DSPDIV_OFFSET,
209 .recalc = &ckctl_recalc,
210 };
211
212 static struct clk dspmmu_ck = {
213 .name = "dspmmu_ck",
214 .parent = &ck_dpll1,
215 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
216 RATE_CKCTL | ALWAYS_ENABLED,
217 .rate_offset = CKCTL_DSPMMUDIV_OFFSET,
218 .recalc = &ckctl_recalc,
219 };
220
221 static struct clk dspper_ck = {
222 .name = "dspper_ck",
223 .parent = &ck_dpll1,
224 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
225 RATE_CKCTL | DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
226 .enable_reg = DSP_IDLECT2,
227 .enable_bit = EN_PERCK,
228 .rate_offset = CKCTL_PERDIV_OFFSET,
229 .recalc = &followparent_recalc,
230 //.recalc = &ckctl_recalc,
231 };
232
233 static struct clk dspxor_ck = {
234 .name = "dspxor_ck",
235 .parent = &ck_ref,
236 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
237 DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
238 .enable_reg = DSP_IDLECT2,
239 .enable_bit = EN_XORPCK,
240 .recalc = &followparent_recalc,
241 };
242
243 static struct clk dsptim_ck = {
244 .name = "dsptim_ck",
245 .parent = &ck_ref,
246 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
247 DSP_DOMAIN_CLOCK | VIRTUAL_IO_ADDRESS,
248 .enable_reg = DSP_IDLECT2,
249 .enable_bit = EN_DSPTIMCK,
250 .recalc = &followparent_recalc,
251 };
252
253 static struct clk tc_ck = {
254 .name = "tc_ck",
255 .parent = &ck_dpll1,
256 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
257 RATE_CKCTL | RATE_PROPAGATES | ALWAYS_ENABLED,
258 .rate_offset = CKCTL_TCDIV_OFFSET,
259 .recalc = &ckctl_recalc,
260 };
261
262 static struct clk arminth_ck1510 = {
263 .name = "arminth_ck",
264 .parent = &tc_ck,
265 .flags = CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
266 .recalc = &followparent_recalc,
267 /* Note: On 1510 the frequency follows TC_CK
268 *
269 * 16xx version is in MPU clocks.
270 */
271 };
272
273 static struct clk tipb_ck = {
274 .name = "tibp_ck",
275 .parent = &tc_ck,
276 .flags = CLOCK_IN_OMAP1510 | ALWAYS_ENABLED,
277 .recalc = &followparent_recalc,
278 };
279
280 static struct clk l3_ocpi_ck = {
281 .name = "l3_ocpi_ck",
282 .parent = &tc_ck,
283 .flags = CLOCK_IN_OMAP16XX,
284 .enable_reg = ARM_IDLECT3,
285 .enable_bit = EN_OCPI_CK,
286 .recalc = &followparent_recalc,
287 };
288
289 static struct clk tc1_ck = {
290 .name = "tc1_ck",
291 .parent = &tc_ck,
292 .flags = CLOCK_IN_OMAP16XX,
293 .enable_reg = ARM_IDLECT3,
294 .enable_bit = EN_TC1_CK,
295 .recalc = &followparent_recalc,
296 };
297
298 static struct clk tc2_ck = {
299 .name = "tc2_ck",
300 .parent = &tc_ck,
301 .flags = CLOCK_IN_OMAP16XX,
302 .enable_reg = ARM_IDLECT3,
303 .enable_bit = EN_TC2_CK,
304 .recalc = &followparent_recalc,
305 };
306
307 static struct clk dma_ck = {
308 .name = "dma_ck",
309 .parent = &tc_ck,
310 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
311 ALWAYS_ENABLED,
312 .recalc = &followparent_recalc,
313 };
314
315 static struct clk dma_lcdfree_ck = {
316 .name = "dma_lcdfree_ck",
317 .parent = &tc_ck,
318 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
319 .recalc = &followparent_recalc,
320 };
321
322 static struct clk api_ck = {
323 .name = "api_ck",
324 .parent = &tc_ck,
325 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX,
326 .enable_reg = ARM_IDLECT2,
327 .enable_bit = EN_APICK,
328 .recalc = &followparent_recalc,
329 };
330
331 static struct clk lb_ck = {
332 .name = "lb_ck",
333 .parent = &tc_ck,
334 .flags = CLOCK_IN_OMAP1510,
335 .enable_reg = ARM_IDLECT2,
336 .enable_bit = EN_LBCK,
337 .recalc = &followparent_recalc,
338 };
339
340 static struct clk rhea1_ck = {
341 .name = "rhea1_ck",
342 .parent = &tc_ck,
343 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
344 .recalc = &followparent_recalc,
345 };
346
347 static struct clk rhea2_ck = {
348 .name = "rhea2_ck",
349 .parent = &tc_ck,
350 .flags = CLOCK_IN_OMAP16XX | ALWAYS_ENABLED,
351 .recalc = &followparent_recalc,
352 };
353
354 static struct clk lcd_ck = {
355 .name = "lcd_ck",
356 .parent = &ck_dpll1,
357 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | CLOCK_IN_OMAP730 |
358 RATE_CKCTL,
359 .enable_reg = ARM_IDLECT2,
360 .enable_bit = EN_LCDCK,
361 .rate_offset = CKCTL_LCDDIV_OFFSET,
362 .recalc = &ckctl_recalc,
363 };
364
365 static struct clk uart1_1510 = {
366 .name = "uart1_ck",
367 /* Direct from ULPD, no parent */
368 .rate = 12000000,
369 .flags = CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT | ALWAYS_ENABLED,
370 .enable_reg = MOD_CONF_CTRL_0,
371 .enable_bit = 29, /* Chooses between 12MHz and 48MHz */
372 .set_rate = &set_uart_rate,
373 .recalc = &uart_recalc,
374 };
375
376 static struct clk uart1_16xx = {
377 .name = "uart1_ck",
378 /* Direct from ULPD, no parent */
379 .rate = 48000000,
380 .flags = CLOCK_IN_OMAP16XX | RATE_FIXED | ENABLE_REG_32BIT,
381 .enable_reg = MOD_CONF_CTRL_0,
382 .enable_bit = 29,
383 };
384
385 static struct clk uart2_ck = {
386 .name = "uart2_ck",
387 /* Direct from ULPD, no parent */
388 .rate = 12000000,
389 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX | ENABLE_REG_32BIT |
390 ALWAYS_ENABLED,
391 .enable_reg = MOD_CONF_CTRL_0,
392 .enable_bit = 30, /* Chooses between 12MHz and 48MHz */
393 .set_rate = &set_uart_rate,
394 .recalc = &uart_recalc,
395 };
396
397 static struct clk uart3_1510 = {
398 .name = "uart3_ck",
399 /* Direct from ULPD, no parent */
400 .rate = 12000000,
401 .flags = CLOCK_IN_OMAP1510 | ENABLE_REG_32BIT | ALWAYS_ENABLED,
402 .enable_reg = MOD_CONF_CTRL_0,
403 .enable_bit = 31, /* Chooses between 12MHz and 48MHz */
404 .set_rate = &set_uart_rate,
405 .recalc = &uart_recalc,
406 };
407
408 static struct clk uart3_16xx = {
409 .name = "uart3_ck",
410 /* Direct from ULPD, no parent */
411 .rate = 48000000,
412 .flags = CLOCK_IN_OMAP16XX | RATE_FIXED | ENABLE_REG_32BIT,
413 .enable_reg = MOD_CONF_CTRL_0,
414 .enable_bit = 31,
415 };
416
417 static struct clk usb_clko = { /* 6 MHz output on W4_USB_CLKO */
418 .name = "usb_clko",
419 /* Direct from ULPD, no parent */
420 .rate = 6000000,
421 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
422 RATE_FIXED | ENABLE_REG_32BIT,
423 .enable_reg = ULPD_CLOCK_CTRL,
424 .enable_bit = USB_MCLK_EN_BIT,
425 };
426
427 static struct clk usb_hhc_ck1510 = {
428 .name = "usb_hhc_ck",
429 /* Direct from ULPD, no parent */
430 .rate = 48000000, /* Actually 2 clocks, 12MHz and 48MHz */
431 .flags = CLOCK_IN_OMAP1510 |
432 RATE_FIXED | ENABLE_REG_32BIT,
433 .enable_reg = MOD_CONF_CTRL_0,
434 .enable_bit = USB_HOST_HHC_UHOST_EN,
435 };
436
437 static struct clk usb_hhc_ck16xx = {
438 .name = "usb_hhc_ck",
439 /* Direct from ULPD, no parent */
440 .rate = 48000000,
441 /* OTG_SYSCON_2.OTG_PADEN == 0 (not 1510-compatible) */
442 .flags = CLOCK_IN_OMAP16XX |
443 RATE_FIXED | ENABLE_REG_32BIT,
444 .enable_reg = OTG_BASE + 0x08 /* OTG_SYSCON_2 */,
445 .enable_bit = 8 /* UHOST_EN */,
446 };
447
448 static struct clk usb_dc_ck = {
449 .name = "usb_dc_ck",
450 /* Direct from ULPD, no parent */
451 .rate = 48000000,
452 .flags = CLOCK_IN_OMAP16XX | RATE_FIXED,
453 .enable_reg = SOFT_REQ_REG,
454 .enable_bit = 4,
455 };
456
457 static struct clk mclk_1510 = {
458 .name = "mclk",
459 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
460 .rate = 12000000,
461 .flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
462 };
463
464 static struct clk mclk_16xx = {
465 .name = "mclk",
466 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
467 .flags = CLOCK_IN_OMAP16XX,
468 .enable_reg = COM_CLK_DIV_CTRL_SEL,
469 .enable_bit = COM_ULPD_PLL_CLK_REQ,
470 .set_rate = &set_ext_clk_rate,
471 .round_rate = &round_ext_clk_rate,
472 .init = &init_ext_clk,
473 };
474
475 static struct clk bclk_1510 = {
476 .name = "bclk",
477 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
478 .rate = 12000000,
479 .flags = CLOCK_IN_OMAP1510 | RATE_FIXED,
480 };
481
482 static struct clk bclk_16xx = {
483 .name = "bclk",
484 /* Direct from ULPD, no parent. May be enabled by ext hardware. */
485 .flags = CLOCK_IN_OMAP16XX,
486 .enable_reg = SWD_CLK_DIV_CTRL_SEL,
487 .enable_bit = SWD_ULPD_PLL_CLK_REQ,
488 .set_rate = &set_ext_clk_rate,
489 .round_rate = &round_ext_clk_rate,
490 .init = &init_ext_clk,
491 };
492
493 static struct clk mmc1_ck = {
494 .name = "mmc1_ck",
495 /* Functional clock is direct from ULPD, interface clock is ARMPER */
496 .parent = &armper_ck,
497 .rate = 48000000,
498 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
499 RATE_FIXED | ENABLE_REG_32BIT,
500 .enable_reg = MOD_CONF_CTRL_0,
501 .enable_bit = 23,
502 };
503
504 static struct clk mmc2_ck = {
505 .name = "mmc2_ck",
506 /* Functional clock is direct from ULPD, interface clock is ARMPER */
507 .parent = &armper_ck,
508 .rate = 48000000,
509 .flags = CLOCK_IN_OMAP16XX |
510 RATE_FIXED | ENABLE_REG_32BIT,
511 .enable_reg = MOD_CONF_CTRL_0,
512 .enable_bit = 20,
513 };
514
515 static struct clk virtual_ck_mpu = {
516 .name = "mpu",
517 .flags = CLOCK_IN_OMAP1510 | CLOCK_IN_OMAP16XX |
518 VIRTUAL_CLOCK | ALWAYS_ENABLED,
519 .parent = &arm_ck, /* Is smarter alias for */
520 .recalc = &followparent_recalc,
521 .set_rate = &select_table_rate,
522 .round_rate = &round_to_table_rate,
523 };
524
525
526 static struct clk * onchip_clks[] = {
527 /* non-ULPD clocks */
528 &ck_ref,
529 &ck_dpll1,
530 /* CK_GEN1 clocks */
531 &ck_dpll1out,
532 &arm_ck,
533 &armper_ck,
534 &arm_gpio_ck,
535 &armxor_ck,
536 &armtim_ck,
537 &armwdt_ck,
538 &arminth_ck1510, &arminth_ck16xx,
539 /* CK_GEN2 clocks */
540 &dsp_ck,
541 &dspmmu_ck,
542 &dspper_ck,
543 &dspxor_ck,
544 &dsptim_ck,
545 /* CK_GEN3 clocks */
546 &tc_ck,
547 &tipb_ck,
548 &l3_ocpi_ck,
549 &tc1_ck,
550 &tc2_ck,
551 &dma_ck,
552 &dma_lcdfree_ck,
553 &api_ck,
554 &lb_ck,
555 &rhea1_ck,
556 &rhea2_ck,
557 &lcd_ck,
558 /* ULPD clocks */
559 &uart1_1510,
560 &uart1_16xx,
561 &uart2_ck,
562 &uart3_1510,
563 &uart3_16xx,
564 &usb_clko,
565 &usb_hhc_ck1510, &usb_hhc_ck16xx,
566 &usb_dc_ck,
567 &mclk_1510, &mclk_16xx,
568 &bclk_1510, &bclk_16xx,
569 &mmc1_ck,
570 &mmc2_ck,
571 /* Virtual clocks */
572 &virtual_ck_mpu,
573 };
574
575 struct clk *clk_get(struct device *dev, const char *id)
576 {
577 struct clk *p, *clk = ERR_PTR(-ENOENT);
578
579 down(&clocks_sem);
580 list_for_each_entry(p, &clocks, node) {
581 if (strcmp(id, p->name) == 0 && try_module_get(p->owner)) {
582 clk = p;
583 break;
584 }
585 }
586 up(&clocks_sem);
587
588 return clk;
589 }
590 EXPORT_SYMBOL(clk_get);
591
592
593 void clk_put(struct clk *clk)
594 {
595 if (clk && !IS_ERR(clk))
596 module_put(clk->owner);
597 }
598 EXPORT_SYMBOL(clk_put);
599
600
601 int __clk_enable(struct clk *clk)
602 {
603 __u16 regval16;
604 __u32 regval32;
605
606 if (clk->flags & ALWAYS_ENABLED)
607 return 0;
608
609 if (unlikely(clk->enable_reg == 0)) {
610 printk(KERN_ERR "clock.c: Enable for %s without enable code\n",
611 clk->name);
612 return 0;
613 }
614
615 if (clk->flags & DSP_DOMAIN_CLOCK) {
616 __clk_use(&api_ck);
617 }
618
619 if (clk->flags & ENABLE_REG_32BIT) {
620 if (clk->flags & VIRTUAL_IO_ADDRESS) {
621 regval32 = __raw_readl(clk->enable_reg);
622 regval32 |= (1 << clk->enable_bit);
623 __raw_writel(regval32, clk->enable_reg);
624 } else {
625 regval32 = omap_readl(clk->enable_reg);
626 regval32 |= (1 << clk->enable_bit);
627 omap_writel(regval32, clk->enable_reg);
628 }
629 } else {
630 if (clk->flags & VIRTUAL_IO_ADDRESS) {
631 regval16 = __raw_readw(clk->enable_reg);
632 regval16 |= (1 << clk->enable_bit);
633 __raw_writew(regval16, clk->enable_reg);
634 } else {
635 regval16 = omap_readw(clk->enable_reg);
636 regval16 |= (1 << clk->enable_bit);
637 omap_writew(regval16, clk->enable_reg);
638 }
639 }
640
641 if (clk->flags & DSP_DOMAIN_CLOCK) {
642 __clk_unuse(&api_ck);
643 }
644
645 return 0;
646 }
647
648
649 void __clk_disable(struct clk *clk)
650 {
651 __u16 regval16;
652 __u32 regval32;
653
654 if (clk->enable_reg == 0)
655 return;
656
657 if (clk->flags & DSP_DOMAIN_CLOCK) {
658 __clk_use(&api_ck);
659 }
660
661 if (clk->flags & ENABLE_REG_32BIT) {
662 if (clk->flags & VIRTUAL_IO_ADDRESS) {
663 regval32 = __raw_readl(clk->enable_reg);
664 regval32 &= ~(1 << clk->enable_bit);
665 __raw_writel(regval32, clk->enable_reg);
666 } else {
667 regval32 = omap_readl(clk->enable_reg);
668 regval32 &= ~(1 << clk->enable_bit);
669 omap_writel(regval32, clk->enable_reg);
670 }
671 } else {
672 if (clk->flags & VIRTUAL_IO_ADDRESS) {
673 regval16 = __raw_readw(clk->enable_reg);
674 regval16 &= ~(1 << clk->enable_bit);
675 __raw_writew(regval16, clk->enable_reg);
676 } else {
677 regval16 = omap_readw(clk->enable_reg);
678 regval16 &= ~(1 << clk->enable_bit);
679 omap_writew(regval16, clk->enable_reg);
680 }
681 }
682
683 if (clk->flags & DSP_DOMAIN_CLOCK) {
684 __clk_unuse(&api_ck);
685 }
686 }
687
688
689 void __clk_unuse(struct clk *clk)
690 {
691 if (clk->usecount > 0 && !(--clk->usecount)) {
692 __clk_disable(clk);
693 if (likely(clk->parent))
694 __clk_unuse(clk->parent);
695 }
696 }
697
698
699 int __clk_use(struct clk *clk)
700 {
701 int ret = 0;
702 if (clk->usecount++ == 0) {
703 if (likely(clk->parent))
704 ret = __clk_use(clk->parent);
705
706 if (unlikely(ret != 0)) {
707 clk->usecount--;
708 return ret;
709 }
710
711 ret = __clk_enable(clk);
712
713 if (unlikely(ret != 0) && clk->parent) {
714 __clk_unuse(clk->parent);
715 clk->usecount--;
716 }
717 }
718
719 return ret;
720 }
721
722
723 int clk_enable(struct clk *clk)
724 {
725 unsigned long flags;
726 int ret;
727
728 spin_lock_irqsave(&clockfw_lock, flags);
729 ret = __clk_enable(clk);
730 spin_unlock_irqrestore(&clockfw_lock, flags);
731 return ret;
732 }
733 EXPORT_SYMBOL(clk_enable);
734
735
736 void clk_disable(struct clk *clk)
737 {
738 unsigned long flags;
739
740 spin_lock_irqsave(&clockfw_lock, flags);
741 __clk_disable(clk);
742 spin_unlock_irqrestore(&clockfw_lock, flags);
743 }
744 EXPORT_SYMBOL(clk_disable);
745
746
747 int clk_use(struct clk *clk)
748 {
749 unsigned long flags;
750 int ret = 0;
751
752 spin_lock_irqsave(&clockfw_lock, flags);
753 ret = __clk_use(clk);
754 spin_unlock_irqrestore(&clockfw_lock, flags);
755 return ret;
756 }
757 EXPORT_SYMBOL(clk_use);
758
759
760 void clk_unuse(struct clk *clk)
761 {
762 unsigned long flags;
763
764 spin_lock_irqsave(&clockfw_lock, flags);
765 __clk_unuse(clk);
766 spin_unlock_irqrestore(&clockfw_lock, flags);
767 }
768 EXPORT_SYMBOL(clk_unuse);
769
770
771 int clk_get_usecount(struct clk *clk)
772 {
773 return clk->usecount;
774 }
775 EXPORT_SYMBOL(clk_get_usecount);
776
777
778 unsigned long clk_get_rate(struct clk *clk)
779 {
780 return clk->rate;
781 }
782 EXPORT_SYMBOL(clk_get_rate);
783
784
785 static __u16 verify_ckctl_value(__u16 newval)
786 {
787 /* This function checks for following limitations set
788 * by the hardware (all conditions must be true):
789 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
790 * ARM_CK >= TC_CK
791 * DSP_CK >= TC_CK
792 * DSPMMU_CK >= TC_CK
793 *
794 * In addition following rules are enforced:
795 * LCD_CK <= TC_CK
796 * ARMPER_CK <= TC_CK
797 *
798 * However, maximum frequencies are not checked for!
799 */
800 __u8 per_exp;
801 __u8 lcd_exp;
802 __u8 arm_exp;
803 __u8 dsp_exp;
804 __u8 tc_exp;
805 __u8 dspmmu_exp;
806
807 per_exp = (newval >> CKCTL_PERDIV_OFFSET) & 3;
808 lcd_exp = (newval >> CKCTL_LCDDIV_OFFSET) & 3;
809 arm_exp = (newval >> CKCTL_ARMDIV_OFFSET) & 3;
810 dsp_exp = (newval >> CKCTL_DSPDIV_OFFSET) & 3;
811 tc_exp = (newval >> CKCTL_TCDIV_OFFSET) & 3;
812 dspmmu_exp = (newval >> CKCTL_DSPMMUDIV_OFFSET) & 3;
813
814 if (dspmmu_exp < dsp_exp)
815 dspmmu_exp = dsp_exp;
816 if (dspmmu_exp > dsp_exp+1)
817 dspmmu_exp = dsp_exp+1;
818 if (tc_exp < arm_exp)
819 tc_exp = arm_exp;
820 if (tc_exp < dspmmu_exp)
821 tc_exp = dspmmu_exp;
822 if (tc_exp > lcd_exp)
823 lcd_exp = tc_exp;
824 if (tc_exp > per_exp)
825 per_exp = tc_exp;
826
827 newval &= 0xf000;
828 newval |= per_exp << CKCTL_PERDIV_OFFSET;
829 newval |= lcd_exp << CKCTL_LCDDIV_OFFSET;
830 newval |= arm_exp << CKCTL_ARMDIV_OFFSET;
831 newval |= dsp_exp << CKCTL_DSPDIV_OFFSET;
832 newval |= tc_exp << CKCTL_TCDIV_OFFSET;
833 newval |= dspmmu_exp << CKCTL_DSPMMUDIV_OFFSET;
834
835 return newval;
836 }
837
838
839 static int calc_dsor_exp(struct clk *clk, unsigned long rate)
840 {
841 /* Note: If target frequency is too low, this function will return 4,
842 * which is invalid value. Caller must check for this value and act
843 * accordingly.
844 *
845 * Note: This function does not check for following limitations set
846 * by the hardware (all conditions must be true):
847 * DSPMMU_CK == DSP_CK or DSPMMU_CK == DSP_CK/2
848 * ARM_CK >= TC_CK
849 * DSP_CK >= TC_CK
850 * DSPMMU_CK >= TC_CK
851 */
852 unsigned long realrate;
853 struct clk * parent;
854 unsigned dsor_exp;
855
856 if (unlikely(!(clk->flags & RATE_CKCTL)))
857 return -EINVAL;
858
859 parent = clk->parent;
860 if (unlikely(parent == 0))
861 return -EIO;
862
863 realrate = parent->rate;
864 for (dsor_exp=0; dsor_exp<4; dsor_exp++) {
865 if (realrate <= rate)
866 break;
867
868 realrate /= 2;
869 }
870
871 return dsor_exp;
872 }
873
874
875 static void ckctl_recalc(struct clk * clk)
876 {
877 int dsor;
878
879 /* Calculate divisor encoded as 2-bit exponent */
880 if (clk->flags & DSP_DOMAIN_CLOCK) {
881 /* The clock control bits are in DSP domain,
882 * so api_ck is needed for access.
883 * Note that DSP_CKCTL virt addr = phys addr, so
884 * we must use __raw_readw() instead of omap_readw().
885 */
886 __clk_use(&api_ck);
887 dsor = 1 << (3 & (__raw_readw(DSP_CKCTL) >> clk->rate_offset));
888 __clk_unuse(&api_ck);
889 } else {
890 dsor = 1 << (3 & (omap_readw(ARM_CKCTL) >> clk->rate_offset));
891 }
892 if (unlikely(clk->rate == clk->parent->rate / dsor))
893 return; /* No change, quick exit */
894 clk->rate = clk->parent->rate / dsor;
895
896 if (unlikely(clk->flags & RATE_PROPAGATES))
897 propagate_rate(clk);
898 }
899
900
901 long clk_round_rate(struct clk *clk, unsigned long rate)
902 {
903 int dsor_exp;
904
905 if (clk->flags & RATE_FIXED)
906 return clk->rate;
907
908 if (clk->flags & RATE_CKCTL) {
909 dsor_exp = calc_dsor_exp(clk, rate);
910 if (dsor_exp < 0)
911 return dsor_exp;
912 if (dsor_exp > 3)
913 dsor_exp = 3;
914 return clk->parent->rate / (1 << dsor_exp);
915 }
916
917 if(clk->round_rate != 0)
918 return clk->round_rate(clk, rate);
919
920 return clk->rate;
921 }
922 EXPORT_SYMBOL(clk_round_rate);
923
924
925 static void propagate_rate(struct clk * clk)
926 {
927 struct clk ** clkp;
928
929 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
930 if (likely((*clkp)->parent != clk)) continue;
931 if (likely((*clkp)->recalc))
932 (*clkp)->recalc(*clkp);
933 }
934 }
935
936
937 static int select_table_rate(struct clk * clk, unsigned long rate)
938 {
939 /* Find the highest supported frequency <= rate and switch to it */
940 struct mpu_rate * ptr;
941
942 if (clk != &virtual_ck_mpu)
943 return -EINVAL;
944
945 for (ptr = rate_table; ptr->rate; ptr++) {
946 if (ptr->xtal != ck_ref.rate)
947 continue;
948
949 /* DPLL1 cannot be reprogrammed without risking system crash */
950 if (likely(ck_dpll1.rate!=0) && ptr->pll_rate != ck_dpll1.rate)
951 continue;
952
953 /* Can check only after xtal frequency check */
954 if (ptr->rate <= rate)
955 break;
956 }
957
958 if (!ptr->rate)
959 return -EINVAL;
960
961 /*
962 * In most cases we should not need to reprogram DPLL.
963 * Reprogramming the DPLL is tricky, it must be done from SRAM.
964 */
965 omap_sram_reprogram_clock(ptr->dpllctl_val, ptr->ckctl_val);
966
967 ck_dpll1.rate = ptr->pll_rate;
968 propagate_rate(&ck_dpll1);
969 return 0;
970 }
971
972
973 static long round_to_table_rate(struct clk * clk, unsigned long rate)
974 {
975 /* Find the highest supported frequency <= rate */
976 struct mpu_rate * ptr;
977 long highest_rate;
978
979 if (clk != &virtual_ck_mpu)
980 return -EINVAL;
981
982 highest_rate = -EINVAL;
983
984 for (ptr = rate_table; ptr->rate; ptr++) {
985 if (ptr->xtal != ck_ref.rate)
986 continue;
987
988 highest_rate = ptr->rate;
989
990 /* Can check only after xtal frequency check */
991 if (ptr->rate <= rate)
992 break;
993 }
994
995 return highest_rate;
996 }
997
998
999 int clk_set_rate(struct clk *clk, unsigned long rate)
1000 {
1001 int ret = -EINVAL;
1002 int dsor_exp;
1003 __u16 regval;
1004 unsigned long flags;
1005
1006 if (clk->flags & RATE_CKCTL) {
1007 dsor_exp = calc_dsor_exp(clk, rate);
1008 if (dsor_exp > 3)
1009 dsor_exp = -EINVAL;
1010 if (dsor_exp < 0)
1011 return dsor_exp;
1012
1013 spin_lock_irqsave(&clockfw_lock, flags);
1014 regval = omap_readw(ARM_CKCTL);
1015 regval &= ~(3 << clk->rate_offset);
1016 regval |= dsor_exp << clk->rate_offset;
1017 regval = verify_ckctl_value(regval);
1018 omap_writew(regval, ARM_CKCTL);
1019 clk->rate = clk->parent->rate / (1 << dsor_exp);
1020 spin_unlock_irqrestore(&clockfw_lock, flags);
1021 ret = 0;
1022 } else if(clk->set_rate != 0) {
1023 spin_lock_irqsave(&clockfw_lock, flags);
1024 ret = clk->set_rate(clk, rate);
1025 spin_unlock_irqrestore(&clockfw_lock, flags);
1026 }
1027
1028 if (unlikely(ret == 0 && (clk->flags & RATE_PROPAGATES)))
1029 propagate_rate(clk);
1030
1031 return ret;
1032 }
1033 EXPORT_SYMBOL(clk_set_rate);
1034
1035
1036 static unsigned calc_ext_dsor(unsigned long rate)
1037 {
1038 unsigned dsor;
1039
1040 /* MCLK and BCLK divisor selection is not linear:
1041 * freq = 96MHz / dsor
1042 *
1043 * RATIO_SEL range: dsor <-> RATIO_SEL
1044 * 0..6: (RATIO_SEL+2) <-> (dsor-2)
1045 * 6..48: (8+(RATIO_SEL-6)*2) <-> ((dsor-8)/2+6)
1046 * Minimum dsor is 2 and maximum is 96. Odd divisors starting from 9
1047 * can not be used.
1048 */
1049 for (dsor = 2; dsor < 96; ++dsor) {
1050 if ((dsor & 1) && dsor > 8)
1051 continue;
1052 if (rate >= 96000000 / dsor)
1053 break;
1054 }
1055 return dsor;
1056 }
1057
1058 /* Only needed on 1510 */
1059 static int set_uart_rate(struct clk * clk, unsigned long rate)
1060 {
1061 unsigned int val;
1062
1063 val = omap_readl(clk->enable_reg);
1064 if (rate == 12000000)
1065 val &= ~(1 << clk->enable_bit);
1066 else if (rate == 48000000)
1067 val |= (1 << clk->enable_bit);
1068 else
1069 return -EINVAL;
1070 omap_writel(val, clk->enable_reg);
1071 clk->rate = rate;
1072
1073 return 0;
1074 }
1075
1076 static int set_ext_clk_rate(struct clk * clk, unsigned long rate)
1077 {
1078 unsigned dsor;
1079 __u16 ratio_bits;
1080
1081 dsor = calc_ext_dsor(rate);
1082 clk->rate = 96000000 / dsor;
1083 if (dsor > 8)
1084 ratio_bits = ((dsor - 8) / 2 + 6) << 2;
1085 else
1086 ratio_bits = (dsor - 2) << 2;
1087
1088 ratio_bits |= omap_readw(clk->enable_reg) & ~0xfd;
1089 omap_writew(ratio_bits, clk->enable_reg);
1090
1091 return 0;
1092 }
1093
1094
1095 static long round_ext_clk_rate(struct clk * clk, unsigned long rate)
1096 {
1097 return 96000000 / calc_ext_dsor(rate);
1098 }
1099
1100
1101 static void init_ext_clk(struct clk * clk)
1102 {
1103 unsigned dsor;
1104 __u16 ratio_bits;
1105
1106 /* Determine current rate and ensure clock is based on 96MHz APLL */
1107 ratio_bits = omap_readw(clk->enable_reg) & ~1;
1108 omap_writew(ratio_bits, clk->enable_reg);
1109
1110 ratio_bits = (ratio_bits & 0xfc) >> 2;
1111 if (ratio_bits > 6)
1112 dsor = (ratio_bits - 6) * 2 + 8;
1113 else
1114 dsor = ratio_bits + 2;
1115
1116 clk-> rate = 96000000 / dsor;
1117 }
1118
1119
1120 int clk_register(struct clk *clk)
1121 {
1122 down(&clocks_sem);
1123 list_add(&clk->node, &clocks);
1124 if (clk->init)
1125 clk->init(clk);
1126 up(&clocks_sem);
1127 return 0;
1128 }
1129 EXPORT_SYMBOL(clk_register);
1130
1131 void clk_unregister(struct clk *clk)
1132 {
1133 down(&clocks_sem);
1134 list_del(&clk->node);
1135 up(&clocks_sem);
1136 }
1137 EXPORT_SYMBOL(clk_unregister);
1138
1139 #ifdef CONFIG_OMAP_RESET_CLOCKS
1140 /*
1141 * Resets some clocks that may be left on from bootloader,
1142 * but leaves serial clocks on. See also omap_late_clk_reset().
1143 */
1144 static inline void omap_early_clk_reset(void)
1145 {
1146 //omap_writel(0x3 << 29, MOD_CONF_CTRL_0);
1147 }
1148 #else
1149 #define omap_early_clk_reset() {}
1150 #endif
1151
1152 int __init clk_init(void)
1153 {
1154 struct clk ** clkp;
1155 const struct omap_clock_config *info;
1156 int crystal_type = 0; /* Default 12 MHz */
1157
1158 omap_early_clk_reset();
1159
1160 for (clkp = onchip_clks; clkp < onchip_clks+ARRAY_SIZE(onchip_clks); clkp++) {
1161 if (((*clkp)->flags &CLOCK_IN_OMAP1510) && cpu_is_omap1510()) {
1162 clk_register(*clkp);
1163 continue;
1164 }
1165
1166 if (((*clkp)->flags &CLOCK_IN_OMAP16XX) && cpu_is_omap16xx()) {
1167 clk_register(*clkp);
1168 continue;
1169 }
1170
1171 if (((*clkp)->flags &CLOCK_IN_OMAP730) && cpu_is_omap730()) {
1172 clk_register(*clkp);
1173 continue;
1174 }
1175 }
1176
1177 info = omap_get_config(OMAP_TAG_CLOCK, struct omap_clock_config);
1178 if (info != NULL) {
1179 if (!cpu_is_omap1510())
1180 crystal_type = info->system_clock_type;
1181 }
1182
1183 #if defined(CONFIG_ARCH_OMAP730)
1184 ck_ref.rate = 13000000;
1185 #elif defined(CONFIG_ARCH_OMAP16XX)
1186 if (crystal_type == 2)
1187 ck_ref.rate = 19200000;
1188 #endif
1189
1190 printk("Clocks: ARM_SYSST: 0x%04x DPLL_CTL: 0x%04x ARM_CKCTL: 0x%04x\n",
1191 omap_readw(ARM_SYSST), omap_readw(DPLL_CTL),
1192 omap_readw(ARM_CKCTL));
1193
1194 /* We want to be in syncronous scalable mode */
1195 omap_writew(0x1000, ARM_SYSST);
1196
1197 #ifdef CONFIG_OMAP_CLOCKS_SET_BY_BOOTLOADER
1198 /* Use values set by bootloader. Determine PLL rate and recalculate
1199 * dependent clocks as if kernel had changed PLL or divisors.
1200 */
1201 {
1202 unsigned pll_ctl_val = omap_readw(DPLL_CTL);
1203
1204 ck_dpll1.rate = ck_ref.rate; /* Base xtal rate */
1205 if (pll_ctl_val & 0x10) {
1206 /* PLL enabled, apply multiplier and divisor */
1207 if (pll_ctl_val & 0xf80)
1208 ck_dpll1.rate *= (pll_ctl_val & 0xf80) >> 7;
1209 ck_dpll1.rate /= ((pll_ctl_val & 0x60) >> 5) + 1;
1210 } else {
1211 /* PLL disabled, apply bypass divisor */
1212 switch (pll_ctl_val & 0xc) {
1213 case 0:
1214 break;
1215 case 0x4:
1216 ck_dpll1.rate /= 2;
1217 break;
1218 default:
1219 ck_dpll1.rate /= 4;
1220 break;
1221 }
1222 }
1223 }
1224 propagate_rate(&ck_dpll1);
1225 #else
1226 /* Find the highest supported frequency and enable it */
1227 if (select_table_rate(&virtual_ck_mpu, ~0)) {
1228 printk(KERN_ERR "System frequencies not set. Check your config.\n");
1229 /* Guess sane values (60MHz) */
1230 omap_writew(0x2290, DPLL_CTL);
1231 omap_writew(0x1005, ARM_CKCTL);
1232 ck_dpll1.rate = 60000000;
1233 propagate_rate(&ck_dpll1);
1234 }
1235 #endif
1236 /* Cache rates for clocks connected to ck_ref (not dpll1) */
1237 propagate_rate(&ck_ref);
1238 printk(KERN_INFO "Clocking rate (xtal/DPLL1/MPU): "
1239 "%ld.%01ld/%ld.%01ld/%ld.%01ld MHz\n",
1240 ck_ref.rate / 1000000, (ck_ref.rate / 100000) % 10,
1241 ck_dpll1.rate / 1000000, (ck_dpll1.rate / 100000) % 10,
1242 arm_ck.rate / 1000000, (arm_ck.rate / 100000) % 10);
1243
1244 #ifdef CONFIG_MACH_OMAP_PERSEUS2
1245 /* Select slicer output as OMAP input clock */
1246 omap_writew(omap_readw(OMAP730_PCC_UPLD_CTRL) & ~0x1, OMAP730_PCC_UPLD_CTRL);
1247 #endif
1248
1249 /* Turn off DSP and ARM_TIMXO. Make sure ARM_INTHCK is not divided */
1250 omap_writew(omap_readw(ARM_CKCTL) & 0x0fff, ARM_CKCTL);
1251
1252 /* Put DSP/MPUI into reset until needed */
1253 omap_writew(0, ARM_RSTCT1);
1254 omap_writew(1, ARM_RSTCT2);
1255 omap_writew(0x400, ARM_IDLECT1);
1256
1257 /*
1258 * According to OMAP5910 Erratum SYS_DMA_1, bit DMACK_REQ (bit 8)
1259 * of the ARM_IDLECT2 register must be set to zero. The power-on
1260 * default value of this bit is one.
1261 */
1262 omap_writew(0x0000, ARM_IDLECT2); /* Turn LCD clock off also */
1263
1264 /*
1265 * Only enable those clocks we will need, let the drivers
1266 * enable other clocks as necessary
1267 */
1268 clk_use(&armper_ck);
1269 clk_use(&armxor_ck);
1270 clk_use(&armtim_ck);
1271
1272 if (cpu_is_omap1510())
1273 clk_enable(&arm_gpio_ck);
1274
1275 return 0;
1276 }
1277
1278
1279 #ifdef CONFIG_OMAP_RESET_CLOCKS
1280
1281 static int __init omap_late_clk_reset(void)
1282 {
1283 /* Turn off all unused clocks */
1284 struct clk *p;
1285 __u32 regval32;
1286
1287 /* USB_REQ_EN will be disabled later if necessary (usb_dc_ck) */
1288 regval32 = omap_readw(SOFT_REQ_REG) & (1 << 4);
1289 omap_writew(regval32, SOFT_REQ_REG);
1290 omap_writew(0, SOFT_REQ_REG2);
1291
1292 list_for_each_entry(p, &clocks, node) {
1293 if (p->usecount > 0 || (p->flags & ALWAYS_ENABLED) ||
1294 p->enable_reg == 0)
1295 continue;
1296
1297 /* Assume no DSP clocks have been activated by bootloader */
1298 if (p->flags & DSP_DOMAIN_CLOCK)
1299 continue;
1300
1301 /* Is the clock already disabled? */
1302 if (p->flags & ENABLE_REG_32BIT) {
1303 if (p->flags & VIRTUAL_IO_ADDRESS)
1304 regval32 = __raw_readl(p->enable_reg);
1305 else
1306 regval32 = omap_readl(p->enable_reg);
1307 } else {
1308 if (p->flags & VIRTUAL_IO_ADDRESS)
1309 regval32 = __raw_readw(p->enable_reg);
1310 else
1311 regval32 = omap_readw(p->enable_reg);
1312 }
1313
1314 if ((regval32 & (1 << p->enable_bit)) == 0)
1315 continue;
1316
1317 /* FIXME: This clock seems to be necessary but no-one
1318 * has asked for its activation. */
1319 if (p == &tc2_ck // FIX: pm.c (SRAM), CCP, Camera
1320 || p == &ck_dpll1out // FIX: SoSSI, SSR
1321 || p == &arm_gpio_ck // FIX: GPIO code for 1510
1322 ) {
1323 printk(KERN_INFO "FIXME: Clock \"%s\" seems unused\n",
1324 p->name);
1325 continue;
1326 }
1327
1328 printk(KERN_INFO "Disabling unused clock \"%s\"... ", p->name);
1329 __clk_disable(p);
1330 printk(" done\n");
1331 }
1332
1333 return 0;
1334 }
1335
1336 late_initcall(omap_late_clk_reset);
1337
1338 #endif
This page took 0.07759 seconds and 5 git commands to generate.