Merge tag 'gfs2-merge-window' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2...
[deliverable/linux.git] / arch / arm64 / kernel / perf_event.c
1 /*
2 * PMU support
3 *
4 * Copyright (C) 2012 ARM Limited
5 * Author: Will Deacon <will.deacon@arm.com>
6 *
7 * This code is based heavily on the ARMv7 perf event code.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
20 */
21 #define pr_fmt(fmt) "hw perfevents: " fmt
22
23 #include <linux/bitmap.h>
24 #include <linux/interrupt.h>
25 #include <linux/irq.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/platform_device.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/uaccess.h>
34
35 #include <asm/cputype.h>
36 #include <asm/irq.h>
37 #include <asm/irq_regs.h>
38 #include <asm/pmu.h>
39
40 /*
41 * ARMv8 supports a maximum of 32 events.
42 * The cycle counter is included in this total.
43 */
44 #define ARMPMU_MAX_HWEVENTS 32
45
46 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
47 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
48 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
49
50 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
51
52 /* Set at runtime when we know what CPU type we are. */
53 static struct arm_pmu *cpu_pmu;
54
55 int
56 armpmu_get_max_events(void)
57 {
58 int max_events = 0;
59
60 if (cpu_pmu != NULL)
61 max_events = cpu_pmu->num_events;
62
63 return max_events;
64 }
65 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
66
67 int perf_num_counters(void)
68 {
69 return armpmu_get_max_events();
70 }
71 EXPORT_SYMBOL_GPL(perf_num_counters);
72
73 #define HW_OP_UNSUPPORTED 0xFFFF
74
75 #define C(_x) \
76 PERF_COUNT_HW_CACHE_##_x
77
78 #define CACHE_OP_UNSUPPORTED 0xFFFF
79
80 #define PERF_MAP_ALL_UNSUPPORTED \
81 [0 ... PERF_COUNT_HW_MAX - 1] = HW_OP_UNSUPPORTED
82
83 #define PERF_CACHE_MAP_ALL_UNSUPPORTED \
84 [0 ... C(MAX) - 1] = { \
85 [0 ... C(OP_MAX) - 1] = { \
86 [0 ... C(RESULT_MAX) - 1] = CACHE_OP_UNSUPPORTED, \
87 }, \
88 }
89
90 static int
91 armpmu_map_cache_event(const unsigned (*cache_map)
92 [PERF_COUNT_HW_CACHE_MAX]
93 [PERF_COUNT_HW_CACHE_OP_MAX]
94 [PERF_COUNT_HW_CACHE_RESULT_MAX],
95 u64 config)
96 {
97 unsigned int cache_type, cache_op, cache_result, ret;
98
99 cache_type = (config >> 0) & 0xff;
100 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
101 return -EINVAL;
102
103 cache_op = (config >> 8) & 0xff;
104 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
105 return -EINVAL;
106
107 cache_result = (config >> 16) & 0xff;
108 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
109 return -EINVAL;
110
111 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
112
113 if (ret == CACHE_OP_UNSUPPORTED)
114 return -ENOENT;
115
116 return ret;
117 }
118
119 static int
120 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
121 {
122 int mapping;
123
124 if (config >= PERF_COUNT_HW_MAX)
125 return -EINVAL;
126
127 mapping = (*event_map)[config];
128 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
129 }
130
131 static int
132 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
133 {
134 return (int)(config & raw_event_mask);
135 }
136
137 static int map_cpu_event(struct perf_event *event,
138 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
139 const unsigned (*cache_map)
140 [PERF_COUNT_HW_CACHE_MAX]
141 [PERF_COUNT_HW_CACHE_OP_MAX]
142 [PERF_COUNT_HW_CACHE_RESULT_MAX],
143 u32 raw_event_mask)
144 {
145 u64 config = event->attr.config;
146
147 switch (event->attr.type) {
148 case PERF_TYPE_HARDWARE:
149 return armpmu_map_event(event_map, config);
150 case PERF_TYPE_HW_CACHE:
151 return armpmu_map_cache_event(cache_map, config);
152 case PERF_TYPE_RAW:
153 return armpmu_map_raw_event(raw_event_mask, config);
154 }
155
156 return -ENOENT;
157 }
158
159 int
160 armpmu_event_set_period(struct perf_event *event,
161 struct hw_perf_event *hwc,
162 int idx)
163 {
164 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165 s64 left = local64_read(&hwc->period_left);
166 s64 period = hwc->sample_period;
167 int ret = 0;
168
169 if (unlikely(left <= -period)) {
170 left = period;
171 local64_set(&hwc->period_left, left);
172 hwc->last_period = period;
173 ret = 1;
174 }
175
176 if (unlikely(left <= 0)) {
177 left += period;
178 local64_set(&hwc->period_left, left);
179 hwc->last_period = period;
180 ret = 1;
181 }
182
183 /*
184 * Limit the maximum period to prevent the counter value
185 * from overtaking the one we are about to program. In
186 * effect we are reducing max_period to account for
187 * interrupt latency (and we are being very conservative).
188 */
189 if (left > (armpmu->max_period >> 1))
190 left = armpmu->max_period >> 1;
191
192 local64_set(&hwc->prev_count, (u64)-left);
193
194 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
195
196 perf_event_update_userpage(event);
197
198 return ret;
199 }
200
201 u64
202 armpmu_event_update(struct perf_event *event,
203 struct hw_perf_event *hwc,
204 int idx)
205 {
206 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
207 u64 delta, prev_raw_count, new_raw_count;
208
209 again:
210 prev_raw_count = local64_read(&hwc->prev_count);
211 new_raw_count = armpmu->read_counter(idx);
212
213 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
214 new_raw_count) != prev_raw_count)
215 goto again;
216
217 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
218
219 local64_add(delta, &event->count);
220 local64_sub(delta, &hwc->period_left);
221
222 return new_raw_count;
223 }
224
225 static void
226 armpmu_read(struct perf_event *event)
227 {
228 struct hw_perf_event *hwc = &event->hw;
229
230 /* Don't read disabled counters! */
231 if (hwc->idx < 0)
232 return;
233
234 armpmu_event_update(event, hwc, hwc->idx);
235 }
236
237 static void
238 armpmu_stop(struct perf_event *event, int flags)
239 {
240 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
241 struct hw_perf_event *hwc = &event->hw;
242
243 /*
244 * ARM pmu always has to update the counter, so ignore
245 * PERF_EF_UPDATE, see comments in armpmu_start().
246 */
247 if (!(hwc->state & PERF_HES_STOPPED)) {
248 armpmu->disable(hwc, hwc->idx);
249 barrier(); /* why? */
250 armpmu_event_update(event, hwc, hwc->idx);
251 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
252 }
253 }
254
255 static void
256 armpmu_start(struct perf_event *event, int flags)
257 {
258 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
259 struct hw_perf_event *hwc = &event->hw;
260
261 /*
262 * ARM pmu always has to reprogram the period, so ignore
263 * PERF_EF_RELOAD, see the comment below.
264 */
265 if (flags & PERF_EF_RELOAD)
266 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
267
268 hwc->state = 0;
269 /*
270 * Set the period again. Some counters can't be stopped, so when we
271 * were stopped we simply disabled the IRQ source and the counter
272 * may have been left counting. If we don't do this step then we may
273 * get an interrupt too soon or *way* too late if the overflow has
274 * happened since disabling.
275 */
276 armpmu_event_set_period(event, hwc, hwc->idx);
277 armpmu->enable(hwc, hwc->idx);
278 }
279
280 static void
281 armpmu_del(struct perf_event *event, int flags)
282 {
283 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
284 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
285 struct hw_perf_event *hwc = &event->hw;
286 int idx = hwc->idx;
287
288 WARN_ON(idx < 0);
289
290 armpmu_stop(event, PERF_EF_UPDATE);
291 hw_events->events[idx] = NULL;
292 clear_bit(idx, hw_events->used_mask);
293
294 perf_event_update_userpage(event);
295 }
296
297 static int
298 armpmu_add(struct perf_event *event, int flags)
299 {
300 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
301 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
302 struct hw_perf_event *hwc = &event->hw;
303 int idx;
304 int err = 0;
305
306 perf_pmu_disable(event->pmu);
307
308 /* If we don't have a space for the counter then finish early. */
309 idx = armpmu->get_event_idx(hw_events, hwc);
310 if (idx < 0) {
311 err = idx;
312 goto out;
313 }
314
315 /*
316 * If there is an event in the counter we are going to use then make
317 * sure it is disabled.
318 */
319 event->hw.idx = idx;
320 armpmu->disable(hwc, idx);
321 hw_events->events[idx] = event;
322
323 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
324 if (flags & PERF_EF_START)
325 armpmu_start(event, PERF_EF_RELOAD);
326
327 /* Propagate our changes to the userspace mapping. */
328 perf_event_update_userpage(event);
329
330 out:
331 perf_pmu_enable(event->pmu);
332 return err;
333 }
334
335 static int
336 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
337 struct perf_event *event)
338 {
339 struct arm_pmu *armpmu;
340 struct hw_perf_event fake_event = event->hw;
341 struct pmu *leader_pmu = event->group_leader->pmu;
342
343 if (is_software_event(event))
344 return 1;
345
346 /*
347 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
348 * core perf code won't check that the pmu->ctx == leader->ctx
349 * until after pmu->event_init(event).
350 */
351 if (event->pmu != pmu)
352 return 0;
353
354 if (event->pmu != leader_pmu || event->state < PERF_EVENT_STATE_OFF)
355 return 1;
356
357 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
358 return 1;
359
360 armpmu = to_arm_pmu(event->pmu);
361 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
362 }
363
364 static int
365 validate_group(struct perf_event *event)
366 {
367 struct perf_event *sibling, *leader = event->group_leader;
368 struct pmu_hw_events fake_pmu;
369 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
370
371 /*
372 * Initialise the fake PMU. We only need to populate the
373 * used_mask for the purposes of validation.
374 */
375 memset(fake_used_mask, 0, sizeof(fake_used_mask));
376 fake_pmu.used_mask = fake_used_mask;
377
378 if (!validate_event(event->pmu, &fake_pmu, leader))
379 return -EINVAL;
380
381 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
382 if (!validate_event(event->pmu, &fake_pmu, sibling))
383 return -EINVAL;
384 }
385
386 if (!validate_event(event->pmu, &fake_pmu, event))
387 return -EINVAL;
388
389 return 0;
390 }
391
392 static void
393 armpmu_disable_percpu_irq(void *data)
394 {
395 unsigned int irq = *(unsigned int *)data;
396 disable_percpu_irq(irq);
397 }
398
399 static void
400 armpmu_release_hardware(struct arm_pmu *armpmu)
401 {
402 int irq;
403 unsigned int i, irqs;
404 struct platform_device *pmu_device = armpmu->plat_device;
405
406 irqs = min(pmu_device->num_resources, num_possible_cpus());
407 if (!irqs)
408 return;
409
410 irq = platform_get_irq(pmu_device, 0);
411 if (irq <= 0)
412 return;
413
414 if (irq_is_percpu(irq)) {
415 on_each_cpu(armpmu_disable_percpu_irq, &irq, 1);
416 free_percpu_irq(irq, &cpu_hw_events);
417 } else {
418 for (i = 0; i < irqs; ++i) {
419 int cpu = i;
420
421 if (armpmu->irq_affinity)
422 cpu = armpmu->irq_affinity[i];
423
424 if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
425 continue;
426 irq = platform_get_irq(pmu_device, i);
427 if (irq > 0)
428 free_irq(irq, armpmu);
429 }
430 }
431 }
432
433 static void
434 armpmu_enable_percpu_irq(void *data)
435 {
436 unsigned int irq = *(unsigned int *)data;
437 enable_percpu_irq(irq, IRQ_TYPE_NONE);
438 }
439
440 static int
441 armpmu_reserve_hardware(struct arm_pmu *armpmu)
442 {
443 int err, irq;
444 unsigned int i, irqs;
445 struct platform_device *pmu_device = armpmu->plat_device;
446
447 if (!pmu_device)
448 return -ENODEV;
449
450 irqs = min(pmu_device->num_resources, num_possible_cpus());
451 if (!irqs) {
452 pr_err("no irqs for PMUs defined\n");
453 return -ENODEV;
454 }
455
456 irq = platform_get_irq(pmu_device, 0);
457 if (irq <= 0) {
458 pr_err("failed to get valid irq for PMU device\n");
459 return -ENODEV;
460 }
461
462 if (irq_is_percpu(irq)) {
463 err = request_percpu_irq(irq, armpmu->handle_irq,
464 "arm-pmu", &cpu_hw_events);
465
466 if (err) {
467 pr_err("unable to request percpu IRQ%d for ARM PMU counters\n",
468 irq);
469 armpmu_release_hardware(armpmu);
470 return err;
471 }
472
473 on_each_cpu(armpmu_enable_percpu_irq, &irq, 1);
474 } else {
475 for (i = 0; i < irqs; ++i) {
476 int cpu = i;
477
478 err = 0;
479 irq = platform_get_irq(pmu_device, i);
480 if (irq <= 0)
481 continue;
482
483 if (armpmu->irq_affinity)
484 cpu = armpmu->irq_affinity[i];
485
486 /*
487 * If we have a single PMU interrupt that we can't shift,
488 * assume that we're running on a uniprocessor machine and
489 * continue. Otherwise, continue without this interrupt.
490 */
491 if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
492 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
493 irq, cpu);
494 continue;
495 }
496
497 err = request_irq(irq, armpmu->handle_irq,
498 IRQF_NOBALANCING | IRQF_NO_THREAD,
499 "arm-pmu", armpmu);
500 if (err) {
501 pr_err("unable to request IRQ%d for ARM PMU counters\n",
502 irq);
503 armpmu_release_hardware(armpmu);
504 return err;
505 }
506
507 cpumask_set_cpu(cpu, &armpmu->active_irqs);
508 }
509 }
510
511 return 0;
512 }
513
514 static void
515 hw_perf_event_destroy(struct perf_event *event)
516 {
517 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
518 atomic_t *active_events = &armpmu->active_events;
519 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
520
521 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
522 armpmu_release_hardware(armpmu);
523 mutex_unlock(pmu_reserve_mutex);
524 }
525 }
526
527 static int
528 event_requires_mode_exclusion(struct perf_event_attr *attr)
529 {
530 return attr->exclude_idle || attr->exclude_user ||
531 attr->exclude_kernel || attr->exclude_hv;
532 }
533
534 static int
535 __hw_perf_event_init(struct perf_event *event)
536 {
537 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
538 struct hw_perf_event *hwc = &event->hw;
539 int mapping, err;
540
541 mapping = armpmu->map_event(event);
542
543 if (mapping < 0) {
544 pr_debug("event %x:%llx not supported\n", event->attr.type,
545 event->attr.config);
546 return mapping;
547 }
548
549 /*
550 * We don't assign an index until we actually place the event onto
551 * hardware. Use -1 to signify that we haven't decided where to put it
552 * yet. For SMP systems, each core has it's own PMU so we can't do any
553 * clever allocation or constraints checking at this point.
554 */
555 hwc->idx = -1;
556 hwc->config_base = 0;
557 hwc->config = 0;
558 hwc->event_base = 0;
559
560 /*
561 * Check whether we need to exclude the counter from certain modes.
562 */
563 if ((!armpmu->set_event_filter ||
564 armpmu->set_event_filter(hwc, &event->attr)) &&
565 event_requires_mode_exclusion(&event->attr)) {
566 pr_debug("ARM performance counters do not support mode exclusion\n");
567 return -EPERM;
568 }
569
570 /*
571 * Store the event encoding into the config_base field.
572 */
573 hwc->config_base |= (unsigned long)mapping;
574
575 if (!hwc->sample_period) {
576 /*
577 * For non-sampling runs, limit the sample_period to half
578 * of the counter width. That way, the new counter value
579 * is far less likely to overtake the previous one unless
580 * you have some serious IRQ latency issues.
581 */
582 hwc->sample_period = armpmu->max_period >> 1;
583 hwc->last_period = hwc->sample_period;
584 local64_set(&hwc->period_left, hwc->sample_period);
585 }
586
587 err = 0;
588 if (event->group_leader != event) {
589 err = validate_group(event);
590 if (err)
591 return -EINVAL;
592 }
593
594 return err;
595 }
596
597 static int armpmu_event_init(struct perf_event *event)
598 {
599 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
600 int err = 0;
601 atomic_t *active_events = &armpmu->active_events;
602
603 if (armpmu->map_event(event) == -ENOENT)
604 return -ENOENT;
605
606 event->destroy = hw_perf_event_destroy;
607
608 if (!atomic_inc_not_zero(active_events)) {
609 mutex_lock(&armpmu->reserve_mutex);
610 if (atomic_read(active_events) == 0)
611 err = armpmu_reserve_hardware(armpmu);
612
613 if (!err)
614 atomic_inc(active_events);
615 mutex_unlock(&armpmu->reserve_mutex);
616 }
617
618 if (err)
619 return err;
620
621 err = __hw_perf_event_init(event);
622 if (err)
623 hw_perf_event_destroy(event);
624
625 return err;
626 }
627
628 static void armpmu_enable(struct pmu *pmu)
629 {
630 struct arm_pmu *armpmu = to_arm_pmu(pmu);
631 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
632 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
633
634 if (enabled)
635 armpmu->start();
636 }
637
638 static void armpmu_disable(struct pmu *pmu)
639 {
640 struct arm_pmu *armpmu = to_arm_pmu(pmu);
641 armpmu->stop();
642 }
643
644 static void __init armpmu_init(struct arm_pmu *armpmu)
645 {
646 atomic_set(&armpmu->active_events, 0);
647 mutex_init(&armpmu->reserve_mutex);
648
649 armpmu->pmu = (struct pmu) {
650 .pmu_enable = armpmu_enable,
651 .pmu_disable = armpmu_disable,
652 .event_init = armpmu_event_init,
653 .add = armpmu_add,
654 .del = armpmu_del,
655 .start = armpmu_start,
656 .stop = armpmu_stop,
657 .read = armpmu_read,
658 };
659 }
660
661 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
662 {
663 armpmu_init(armpmu);
664 return perf_pmu_register(&armpmu->pmu, name, type);
665 }
666
667 /*
668 * ARMv8 PMUv3 Performance Events handling code.
669 * Common event types.
670 */
671 enum armv8_pmuv3_perf_types {
672 /* Required events. */
673 ARMV8_PMUV3_PERFCTR_PMNC_SW_INCR = 0x00,
674 ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL = 0x03,
675 ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS = 0x04,
676 ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED = 0x10,
677 ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES = 0x11,
678 ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED = 0x12,
679
680 /* At least one of the following is required. */
681 ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED = 0x08,
682 ARMV8_PMUV3_PERFCTR_OP_SPEC = 0x1B,
683
684 /* Common architectural events. */
685 ARMV8_PMUV3_PERFCTR_MEM_READ = 0x06,
686 ARMV8_PMUV3_PERFCTR_MEM_WRITE = 0x07,
687 ARMV8_PMUV3_PERFCTR_EXC_TAKEN = 0x09,
688 ARMV8_PMUV3_PERFCTR_EXC_EXECUTED = 0x0A,
689 ARMV8_PMUV3_PERFCTR_CID_WRITE = 0x0B,
690 ARMV8_PMUV3_PERFCTR_PC_WRITE = 0x0C,
691 ARMV8_PMUV3_PERFCTR_PC_IMM_BRANCH = 0x0D,
692 ARMV8_PMUV3_PERFCTR_PC_PROC_RETURN = 0x0E,
693 ARMV8_PMUV3_PERFCTR_MEM_UNALIGNED_ACCESS = 0x0F,
694 ARMV8_PMUV3_PERFCTR_TTBR_WRITE = 0x1C,
695
696 /* Common microarchitectural events. */
697 ARMV8_PMUV3_PERFCTR_L1_ICACHE_REFILL = 0x01,
698 ARMV8_PMUV3_PERFCTR_ITLB_REFILL = 0x02,
699 ARMV8_PMUV3_PERFCTR_DTLB_REFILL = 0x05,
700 ARMV8_PMUV3_PERFCTR_MEM_ACCESS = 0x13,
701 ARMV8_PMUV3_PERFCTR_L1_ICACHE_ACCESS = 0x14,
702 ARMV8_PMUV3_PERFCTR_L1_DCACHE_WB = 0x15,
703 ARMV8_PMUV3_PERFCTR_L2_CACHE_ACCESS = 0x16,
704 ARMV8_PMUV3_PERFCTR_L2_CACHE_REFILL = 0x17,
705 ARMV8_PMUV3_PERFCTR_L2_CACHE_WB = 0x18,
706 ARMV8_PMUV3_PERFCTR_BUS_ACCESS = 0x19,
707 ARMV8_PMUV3_PERFCTR_MEM_ERROR = 0x1A,
708 ARMV8_PMUV3_PERFCTR_BUS_CYCLES = 0x1D,
709 };
710
711 /* PMUv3 HW events mapping. */
712 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
713 PERF_MAP_ALL_UNSUPPORTED,
714 [PERF_COUNT_HW_CPU_CYCLES] = ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES,
715 [PERF_COUNT_HW_INSTRUCTIONS] = ARMV8_PMUV3_PERFCTR_INSTR_EXECUTED,
716 [PERF_COUNT_HW_CACHE_REFERENCES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
717 [PERF_COUNT_HW_CACHE_MISSES] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
718 [PERF_COUNT_HW_BRANCH_MISSES] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
719 };
720
721 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
722 [PERF_COUNT_HW_CACHE_OP_MAX]
723 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
724 PERF_CACHE_MAP_ALL_UNSUPPORTED,
725
726 [C(L1D)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
727 [C(L1D)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
728 [C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_ACCESS,
729 [C(L1D)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_L1_DCACHE_REFILL,
730
731 [C(BPU)][C(OP_READ)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
732 [C(BPU)][C(OP_READ)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
733 [C(BPU)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_PRED,
734 [C(BPU)][C(OP_WRITE)][C(RESULT_MISS)] = ARMV8_PMUV3_PERFCTR_PC_BRANCH_MIS_PRED,
735 };
736
737 /*
738 * Perf Events' indices
739 */
740 #define ARMV8_IDX_CYCLE_COUNTER 0
741 #define ARMV8_IDX_COUNTER0 1
742 #define ARMV8_IDX_COUNTER_LAST (ARMV8_IDX_CYCLE_COUNTER + cpu_pmu->num_events - 1)
743
744 #define ARMV8_MAX_COUNTERS 32
745 #define ARMV8_COUNTER_MASK (ARMV8_MAX_COUNTERS - 1)
746
747 /*
748 * ARMv8 low level PMU access
749 */
750
751 /*
752 * Perf Event to low level counters mapping
753 */
754 #define ARMV8_IDX_TO_COUNTER(x) \
755 (((x) - ARMV8_IDX_COUNTER0) & ARMV8_COUNTER_MASK)
756
757 /*
758 * Per-CPU PMCR: config reg
759 */
760 #define ARMV8_PMCR_E (1 << 0) /* Enable all counters */
761 #define ARMV8_PMCR_P (1 << 1) /* Reset all counters */
762 #define ARMV8_PMCR_C (1 << 2) /* Cycle counter reset */
763 #define ARMV8_PMCR_D (1 << 3) /* CCNT counts every 64th cpu cycle */
764 #define ARMV8_PMCR_X (1 << 4) /* Export to ETM */
765 #define ARMV8_PMCR_DP (1 << 5) /* Disable CCNT if non-invasive debug*/
766 #define ARMV8_PMCR_N_SHIFT 11 /* Number of counters supported */
767 #define ARMV8_PMCR_N_MASK 0x1f
768 #define ARMV8_PMCR_MASK 0x3f /* Mask for writable bits */
769
770 /*
771 * PMOVSR: counters overflow flag status reg
772 */
773 #define ARMV8_OVSR_MASK 0xffffffff /* Mask for writable bits */
774 #define ARMV8_OVERFLOWED_MASK ARMV8_OVSR_MASK
775
776 /*
777 * PMXEVTYPER: Event selection reg
778 */
779 #define ARMV8_EVTYPE_MASK 0xc80003ff /* Mask for writable bits */
780 #define ARMV8_EVTYPE_EVENT 0x3ff /* Mask for EVENT bits */
781
782 /*
783 * Event filters for PMUv3
784 */
785 #define ARMV8_EXCLUDE_EL1 (1 << 31)
786 #define ARMV8_EXCLUDE_EL0 (1 << 30)
787 #define ARMV8_INCLUDE_EL2 (1 << 27)
788
789 static inline u32 armv8pmu_pmcr_read(void)
790 {
791 u32 val;
792 asm volatile("mrs %0, pmcr_el0" : "=r" (val));
793 return val;
794 }
795
796 static inline void armv8pmu_pmcr_write(u32 val)
797 {
798 val &= ARMV8_PMCR_MASK;
799 isb();
800 asm volatile("msr pmcr_el0, %0" :: "r" (val));
801 }
802
803 static inline int armv8pmu_has_overflowed(u32 pmovsr)
804 {
805 return pmovsr & ARMV8_OVERFLOWED_MASK;
806 }
807
808 static inline int armv8pmu_counter_valid(int idx)
809 {
810 return idx >= ARMV8_IDX_CYCLE_COUNTER && idx <= ARMV8_IDX_COUNTER_LAST;
811 }
812
813 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
814 {
815 int ret = 0;
816 u32 counter;
817
818 if (!armv8pmu_counter_valid(idx)) {
819 pr_err("CPU%u checking wrong counter %d overflow status\n",
820 smp_processor_id(), idx);
821 } else {
822 counter = ARMV8_IDX_TO_COUNTER(idx);
823 ret = pmnc & BIT(counter);
824 }
825
826 return ret;
827 }
828
829 static inline int armv8pmu_select_counter(int idx)
830 {
831 u32 counter;
832
833 if (!armv8pmu_counter_valid(idx)) {
834 pr_err("CPU%u selecting wrong PMNC counter %d\n",
835 smp_processor_id(), idx);
836 return -EINVAL;
837 }
838
839 counter = ARMV8_IDX_TO_COUNTER(idx);
840 asm volatile("msr pmselr_el0, %0" :: "r" (counter));
841 isb();
842
843 return idx;
844 }
845
846 static inline u32 armv8pmu_read_counter(int idx)
847 {
848 u32 value = 0;
849
850 if (!armv8pmu_counter_valid(idx))
851 pr_err("CPU%u reading wrong counter %d\n",
852 smp_processor_id(), idx);
853 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
854 asm volatile("mrs %0, pmccntr_el0" : "=r" (value));
855 else if (armv8pmu_select_counter(idx) == idx)
856 asm volatile("mrs %0, pmxevcntr_el0" : "=r" (value));
857
858 return value;
859 }
860
861 static inline void armv8pmu_write_counter(int idx, u32 value)
862 {
863 if (!armv8pmu_counter_valid(idx))
864 pr_err("CPU%u writing wrong counter %d\n",
865 smp_processor_id(), idx);
866 else if (idx == ARMV8_IDX_CYCLE_COUNTER)
867 asm volatile("msr pmccntr_el0, %0" :: "r" (value));
868 else if (armv8pmu_select_counter(idx) == idx)
869 asm volatile("msr pmxevcntr_el0, %0" :: "r" (value));
870 }
871
872 static inline void armv8pmu_write_evtype(int idx, u32 val)
873 {
874 if (armv8pmu_select_counter(idx) == idx) {
875 val &= ARMV8_EVTYPE_MASK;
876 asm volatile("msr pmxevtyper_el0, %0" :: "r" (val));
877 }
878 }
879
880 static inline int armv8pmu_enable_counter(int idx)
881 {
882 u32 counter;
883
884 if (!armv8pmu_counter_valid(idx)) {
885 pr_err("CPU%u enabling wrong PMNC counter %d\n",
886 smp_processor_id(), idx);
887 return -EINVAL;
888 }
889
890 counter = ARMV8_IDX_TO_COUNTER(idx);
891 asm volatile("msr pmcntenset_el0, %0" :: "r" (BIT(counter)));
892 return idx;
893 }
894
895 static inline int armv8pmu_disable_counter(int idx)
896 {
897 u32 counter;
898
899 if (!armv8pmu_counter_valid(idx)) {
900 pr_err("CPU%u disabling wrong PMNC counter %d\n",
901 smp_processor_id(), idx);
902 return -EINVAL;
903 }
904
905 counter = ARMV8_IDX_TO_COUNTER(idx);
906 asm volatile("msr pmcntenclr_el0, %0" :: "r" (BIT(counter)));
907 return idx;
908 }
909
910 static inline int armv8pmu_enable_intens(int idx)
911 {
912 u32 counter;
913
914 if (!armv8pmu_counter_valid(idx)) {
915 pr_err("CPU%u enabling wrong PMNC counter IRQ enable %d\n",
916 smp_processor_id(), idx);
917 return -EINVAL;
918 }
919
920 counter = ARMV8_IDX_TO_COUNTER(idx);
921 asm volatile("msr pmintenset_el1, %0" :: "r" (BIT(counter)));
922 return idx;
923 }
924
925 static inline int armv8pmu_disable_intens(int idx)
926 {
927 u32 counter;
928
929 if (!armv8pmu_counter_valid(idx)) {
930 pr_err("CPU%u disabling wrong PMNC counter IRQ enable %d\n",
931 smp_processor_id(), idx);
932 return -EINVAL;
933 }
934
935 counter = ARMV8_IDX_TO_COUNTER(idx);
936 asm volatile("msr pmintenclr_el1, %0" :: "r" (BIT(counter)));
937 isb();
938 /* Clear the overflow flag in case an interrupt is pending. */
939 asm volatile("msr pmovsclr_el0, %0" :: "r" (BIT(counter)));
940 isb();
941 return idx;
942 }
943
944 static inline u32 armv8pmu_getreset_flags(void)
945 {
946 u32 value;
947
948 /* Read */
949 asm volatile("mrs %0, pmovsclr_el0" : "=r" (value));
950
951 /* Write to clear flags */
952 value &= ARMV8_OVSR_MASK;
953 asm volatile("msr pmovsclr_el0, %0" :: "r" (value));
954
955 return value;
956 }
957
958 static void armv8pmu_enable_event(struct hw_perf_event *hwc, int idx)
959 {
960 unsigned long flags;
961 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
962
963 /*
964 * Enable counter and interrupt, and set the counter to count
965 * the event that we're interested in.
966 */
967 raw_spin_lock_irqsave(&events->pmu_lock, flags);
968
969 /*
970 * Disable counter
971 */
972 armv8pmu_disable_counter(idx);
973
974 /*
975 * Set event (if destined for PMNx counters).
976 */
977 armv8pmu_write_evtype(idx, hwc->config_base);
978
979 /*
980 * Enable interrupt for this counter
981 */
982 armv8pmu_enable_intens(idx);
983
984 /*
985 * Enable counter
986 */
987 armv8pmu_enable_counter(idx);
988
989 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
990 }
991
992 static void armv8pmu_disable_event(struct hw_perf_event *hwc, int idx)
993 {
994 unsigned long flags;
995 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
996
997 /*
998 * Disable counter and interrupt
999 */
1000 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1001
1002 /*
1003 * Disable counter
1004 */
1005 armv8pmu_disable_counter(idx);
1006
1007 /*
1008 * Disable interrupt for this counter
1009 */
1010 armv8pmu_disable_intens(idx);
1011
1012 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1013 }
1014
1015 static irqreturn_t armv8pmu_handle_irq(int irq_num, void *dev)
1016 {
1017 u32 pmovsr;
1018 struct perf_sample_data data;
1019 struct pmu_hw_events *cpuc;
1020 struct pt_regs *regs;
1021 int idx;
1022
1023 /*
1024 * Get and reset the IRQ flags
1025 */
1026 pmovsr = armv8pmu_getreset_flags();
1027
1028 /*
1029 * Did an overflow occur?
1030 */
1031 if (!armv8pmu_has_overflowed(pmovsr))
1032 return IRQ_NONE;
1033
1034 /*
1035 * Handle the counter(s) overflow(s)
1036 */
1037 regs = get_irq_regs();
1038
1039 cpuc = this_cpu_ptr(&cpu_hw_events);
1040 for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
1041 struct perf_event *event = cpuc->events[idx];
1042 struct hw_perf_event *hwc;
1043
1044 /* Ignore if we don't have an event. */
1045 if (!event)
1046 continue;
1047
1048 /*
1049 * We have a single interrupt for all counters. Check that
1050 * each counter has overflowed before we process it.
1051 */
1052 if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
1053 continue;
1054
1055 hwc = &event->hw;
1056 armpmu_event_update(event, hwc, idx);
1057 perf_sample_data_init(&data, 0, hwc->last_period);
1058 if (!armpmu_event_set_period(event, hwc, idx))
1059 continue;
1060
1061 if (perf_event_overflow(event, &data, regs))
1062 cpu_pmu->disable(hwc, idx);
1063 }
1064
1065 /*
1066 * Handle the pending perf events.
1067 *
1068 * Note: this call *must* be run with interrupts disabled. For
1069 * platforms that can have the PMU interrupts raised as an NMI, this
1070 * will not work.
1071 */
1072 irq_work_run();
1073
1074 return IRQ_HANDLED;
1075 }
1076
1077 static void armv8pmu_start(void)
1078 {
1079 unsigned long flags;
1080 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1081
1082 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1083 /* Enable all counters */
1084 armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMCR_E);
1085 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1086 }
1087
1088 static void armv8pmu_stop(void)
1089 {
1090 unsigned long flags;
1091 struct pmu_hw_events *events = cpu_pmu->get_hw_events();
1092
1093 raw_spin_lock_irqsave(&events->pmu_lock, flags);
1094 /* Disable all counters */
1095 armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMCR_E);
1096 raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
1097 }
1098
1099 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
1100 struct hw_perf_event *event)
1101 {
1102 int idx;
1103 unsigned long evtype = event->config_base & ARMV8_EVTYPE_EVENT;
1104
1105 /* Always place a cycle counter into the cycle counter. */
1106 if (evtype == ARMV8_PMUV3_PERFCTR_CLOCK_CYCLES) {
1107 if (test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
1108 return -EAGAIN;
1109
1110 return ARMV8_IDX_CYCLE_COUNTER;
1111 }
1112
1113 /*
1114 * For anything other than a cycle counter, try and use
1115 * the events counters
1116 */
1117 for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; ++idx) {
1118 if (!test_and_set_bit(idx, cpuc->used_mask))
1119 return idx;
1120 }
1121
1122 /* The counters are all in use. */
1123 return -EAGAIN;
1124 }
1125
1126 /*
1127 * Add an event filter to a given event. This will only work for PMUv2 PMUs.
1128 */
1129 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
1130 struct perf_event_attr *attr)
1131 {
1132 unsigned long config_base = 0;
1133
1134 if (attr->exclude_idle)
1135 return -EPERM;
1136 if (attr->exclude_user)
1137 config_base |= ARMV8_EXCLUDE_EL0;
1138 if (attr->exclude_kernel)
1139 config_base |= ARMV8_EXCLUDE_EL1;
1140 if (!attr->exclude_hv)
1141 config_base |= ARMV8_INCLUDE_EL2;
1142
1143 /*
1144 * Install the filter into config_base as this is used to
1145 * construct the event type.
1146 */
1147 event->config_base = config_base;
1148
1149 return 0;
1150 }
1151
1152 static void armv8pmu_reset(void *info)
1153 {
1154 u32 idx, nb_cnt = cpu_pmu->num_events;
1155
1156 /* The counter and interrupt enable registers are unknown at reset. */
1157 for (idx = ARMV8_IDX_CYCLE_COUNTER; idx < nb_cnt; ++idx)
1158 armv8pmu_disable_event(NULL, idx);
1159
1160 /* Initialize & Reset PMNC: C and P bits. */
1161 armv8pmu_pmcr_write(ARMV8_PMCR_P | ARMV8_PMCR_C);
1162
1163 /* Disable access from userspace. */
1164 asm volatile("msr pmuserenr_el0, %0" :: "r" (0));
1165 }
1166
1167 static int armv8_pmuv3_map_event(struct perf_event *event)
1168 {
1169 return map_cpu_event(event, &armv8_pmuv3_perf_map,
1170 &armv8_pmuv3_perf_cache_map,
1171 ARMV8_EVTYPE_EVENT);
1172 }
1173
1174 static struct arm_pmu armv8pmu = {
1175 .handle_irq = armv8pmu_handle_irq,
1176 .enable = armv8pmu_enable_event,
1177 .disable = armv8pmu_disable_event,
1178 .read_counter = armv8pmu_read_counter,
1179 .write_counter = armv8pmu_write_counter,
1180 .get_event_idx = armv8pmu_get_event_idx,
1181 .start = armv8pmu_start,
1182 .stop = armv8pmu_stop,
1183 .reset = armv8pmu_reset,
1184 .max_period = (1LLU << 32) - 1,
1185 };
1186
1187 static u32 __init armv8pmu_read_num_pmnc_events(void)
1188 {
1189 u32 nb_cnt;
1190
1191 /* Read the nb of CNTx counters supported from PMNC */
1192 nb_cnt = (armv8pmu_pmcr_read() >> ARMV8_PMCR_N_SHIFT) & ARMV8_PMCR_N_MASK;
1193
1194 /* Add the CPU cycles counter and return */
1195 return nb_cnt + 1;
1196 }
1197
1198 static struct arm_pmu *__init armv8_pmuv3_pmu_init(void)
1199 {
1200 armv8pmu.name = "arm/armv8-pmuv3";
1201 armv8pmu.map_event = armv8_pmuv3_map_event;
1202 armv8pmu.num_events = armv8pmu_read_num_pmnc_events();
1203 armv8pmu.set_event_filter = armv8pmu_set_event_filter;
1204 return &armv8pmu;
1205 }
1206
1207 /*
1208 * Ensure the PMU has sane values out of reset.
1209 * This requires SMP to be available, so exists as a separate initcall.
1210 */
1211 static int __init
1212 cpu_pmu_reset(void)
1213 {
1214 if (cpu_pmu && cpu_pmu->reset)
1215 return on_each_cpu(cpu_pmu->reset, NULL, 1);
1216 return 0;
1217 }
1218 arch_initcall(cpu_pmu_reset);
1219
1220 /*
1221 * PMU platform driver and devicetree bindings.
1222 */
1223 static const struct of_device_id armpmu_of_device_ids[] = {
1224 {.compatible = "arm,armv8-pmuv3"},
1225 {},
1226 };
1227
1228 static int armpmu_device_probe(struct platform_device *pdev)
1229 {
1230 int i, irq, *irqs;
1231
1232 if (!cpu_pmu)
1233 return -ENODEV;
1234
1235 /* Don't bother with PPIs; they're already affine */
1236 irq = platform_get_irq(pdev, 0);
1237 if (irq >= 0 && irq_is_percpu(irq))
1238 goto out;
1239
1240 irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
1241 if (!irqs)
1242 return -ENOMEM;
1243
1244 for (i = 0; i < pdev->num_resources; ++i) {
1245 struct device_node *dn;
1246 int cpu;
1247
1248 dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity",
1249 i);
1250 if (!dn) {
1251 pr_warn("Failed to parse %s/interrupt-affinity[%d]\n",
1252 of_node_full_name(pdev->dev.of_node), i);
1253 break;
1254 }
1255
1256 for_each_possible_cpu(cpu)
1257 if (dn == of_cpu_device_node_get(cpu))
1258 break;
1259
1260 if (cpu >= nr_cpu_ids) {
1261 pr_warn("Failed to find logical CPU for %s\n",
1262 dn->name);
1263 of_node_put(dn);
1264 break;
1265 }
1266 of_node_put(dn);
1267
1268 irqs[i] = cpu;
1269 }
1270
1271 if (i == pdev->num_resources)
1272 cpu_pmu->irq_affinity = irqs;
1273 else
1274 kfree(irqs);
1275
1276 out:
1277 cpu_pmu->plat_device = pdev;
1278 return 0;
1279 }
1280
1281 static struct platform_driver armpmu_driver = {
1282 .driver = {
1283 .name = "arm-pmu",
1284 .of_match_table = armpmu_of_device_ids,
1285 },
1286 .probe = armpmu_device_probe,
1287 };
1288
1289 static int __init register_pmu_driver(void)
1290 {
1291 return platform_driver_register(&armpmu_driver);
1292 }
1293 device_initcall(register_pmu_driver);
1294
1295 static struct pmu_hw_events *armpmu_get_cpu_events(void)
1296 {
1297 return this_cpu_ptr(&cpu_hw_events);
1298 }
1299
1300 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
1301 {
1302 int cpu;
1303 for_each_possible_cpu(cpu) {
1304 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
1305 events->events = per_cpu(hw_events, cpu);
1306 events->used_mask = per_cpu(used_mask, cpu);
1307 raw_spin_lock_init(&events->pmu_lock);
1308 }
1309 armpmu->get_hw_events = armpmu_get_cpu_events;
1310 }
1311
1312 static int __init init_hw_perf_events(void)
1313 {
1314 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
1315
1316 switch ((dfr >> 8) & 0xf) {
1317 case 0x1: /* PMUv3 */
1318 cpu_pmu = armv8_pmuv3_pmu_init();
1319 break;
1320 }
1321
1322 if (cpu_pmu) {
1323 pr_info("enabled with %s PMU driver, %d counters available\n",
1324 cpu_pmu->name, cpu_pmu->num_events);
1325 cpu_pmu_init(cpu_pmu);
1326 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
1327 } else {
1328 pr_info("no hardware support available\n");
1329 }
1330
1331 return 0;
1332 }
1333 early_initcall(init_hw_perf_events);
1334
This page took 0.059897 seconds and 6 git commands to generate.