Merge tag 'drm-intel-next-fixes-2016-08-05' of git://anongit.freedesktop.org/drm...
[deliverable/linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2 * Copyright (C) 2012,2013 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * Derived from arch/arm/kvm/coproc.c:
6 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7 * Authors: Rusty Russell <rusty@rustcorp.com.au>
8 * Christoffer Dall <c.dall@virtualopensystems.com>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program. If not, see <http://www.gnu.org/licenses/>.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39
40 #include <trace/events/kvm.h>
41
42 #include "sys_regs.h"
43
44 #include "trace.h"
45
46 /*
47 * All of this file is extremly similar to the ARM coproc.c, but the
48 * types are different. My gut feeling is that it should be pretty
49 * easy to merge, but that would be an ABI breakage -- again. VFP
50 * would also need to be abstracted.
51 *
52 * For AArch32, we only take care of what is being trapped. Anything
53 * that has to do with init and userspace access has to go via the
54 * 64bit interface.
55 */
56
57 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58 static u32 cache_levels;
59
60 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
61 #define CSSELR_MAX 12
62
63 /* Which cache CCSIDR represents depends on CSSELR value. */
64 static u32 get_ccsidr(u32 csselr)
65 {
66 u32 ccsidr;
67
68 /* Make sure noone else changes CSSELR during this! */
69 local_irq_disable();
70 /* Put value into CSSELR */
71 asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
72 isb();
73 /* Read result out of CCSIDR */
74 asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
75 local_irq_enable();
76
77 return ccsidr;
78 }
79
80 /*
81 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82 */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84 struct sys_reg_params *p,
85 const struct sys_reg_desc *r)
86 {
87 if (!p->is_write)
88 return read_from_write_only(vcpu, p);
89
90 kvm_set_way_flush(vcpu);
91 return true;
92 }
93
94 /*
95 * Generic accessor for VM registers. Only called as long as HCR_TVM
96 * is set. If the guest enables the MMU, we stop trapping the VM
97 * sys_regs and leave it in complete control of the caches.
98 */
99 static bool access_vm_reg(struct kvm_vcpu *vcpu,
100 struct sys_reg_params *p,
101 const struct sys_reg_desc *r)
102 {
103 bool was_enabled = vcpu_has_cache_enabled(vcpu);
104
105 BUG_ON(!p->is_write);
106
107 if (!p->is_aarch32) {
108 vcpu_sys_reg(vcpu, r->reg) = p->regval;
109 } else {
110 if (!p->is_32bit)
111 vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
113 }
114
115 kvm_toggle_cache(vcpu, was_enabled);
116 return true;
117 }
118
119 /*
120 * Trap handler for the GICv3 SGI generation system register.
121 * Forward the request to the VGIC emulation.
122 * The cp15_64 code makes sure this automatically works
123 * for both AArch64 and AArch32 accesses.
124 */
125 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
126 struct sys_reg_params *p,
127 const struct sys_reg_desc *r)
128 {
129 if (!p->is_write)
130 return read_from_write_only(vcpu, p);
131
132 vgic_v3_dispatch_sgi(vcpu, p->regval);
133
134 return true;
135 }
136
137 static bool access_gic_sre(struct kvm_vcpu *vcpu,
138 struct sys_reg_params *p,
139 const struct sys_reg_desc *r)
140 {
141 if (p->is_write)
142 return ignore_write(vcpu, p);
143
144 p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
145 return true;
146 }
147
148 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
149 struct sys_reg_params *p,
150 const struct sys_reg_desc *r)
151 {
152 if (p->is_write)
153 return ignore_write(vcpu, p);
154 else
155 return read_zero(vcpu, p);
156 }
157
158 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
159 struct sys_reg_params *p,
160 const struct sys_reg_desc *r)
161 {
162 if (p->is_write) {
163 return ignore_write(vcpu, p);
164 } else {
165 p->regval = (1 << 3);
166 return true;
167 }
168 }
169
170 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
171 struct sys_reg_params *p,
172 const struct sys_reg_desc *r)
173 {
174 if (p->is_write) {
175 return ignore_write(vcpu, p);
176 } else {
177 u32 val;
178 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
179 p->regval = val;
180 return true;
181 }
182 }
183
184 /*
185 * We want to avoid world-switching all the DBG registers all the
186 * time:
187 *
188 * - If we've touched any debug register, it is likely that we're
189 * going to touch more of them. It then makes sense to disable the
190 * traps and start doing the save/restore dance
191 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
192 * then mandatory to save/restore the registers, as the guest
193 * depends on them.
194 *
195 * For this, we use a DIRTY bit, indicating the guest has modified the
196 * debug registers, used as follow:
197 *
198 * On guest entry:
199 * - If the dirty bit is set (because we're coming back from trapping),
200 * disable the traps, save host registers, restore guest registers.
201 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
202 * set the dirty bit, disable the traps, save host registers,
203 * restore guest registers.
204 * - Otherwise, enable the traps
205 *
206 * On guest exit:
207 * - If the dirty bit is set, save guest registers, restore host
208 * registers and clear the dirty bit. This ensure that the host can
209 * now use the debug registers.
210 */
211 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
212 struct sys_reg_params *p,
213 const struct sys_reg_desc *r)
214 {
215 if (p->is_write) {
216 vcpu_sys_reg(vcpu, r->reg) = p->regval;
217 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
218 } else {
219 p->regval = vcpu_sys_reg(vcpu, r->reg);
220 }
221
222 trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
223
224 return true;
225 }
226
227 /*
228 * reg_to_dbg/dbg_to_reg
229 *
230 * A 32 bit write to a debug register leave top bits alone
231 * A 32 bit read from a debug register only returns the bottom bits
232 *
233 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
234 * hyp.S code switches between host and guest values in future.
235 */
236 static void reg_to_dbg(struct kvm_vcpu *vcpu,
237 struct sys_reg_params *p,
238 u64 *dbg_reg)
239 {
240 u64 val = p->regval;
241
242 if (p->is_32bit) {
243 val &= 0xffffffffUL;
244 val |= ((*dbg_reg >> 32) << 32);
245 }
246
247 *dbg_reg = val;
248 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
249 }
250
251 static void dbg_to_reg(struct kvm_vcpu *vcpu,
252 struct sys_reg_params *p,
253 u64 *dbg_reg)
254 {
255 p->regval = *dbg_reg;
256 if (p->is_32bit)
257 p->regval &= 0xffffffffUL;
258 }
259
260 static bool trap_bvr(struct kvm_vcpu *vcpu,
261 struct sys_reg_params *p,
262 const struct sys_reg_desc *rd)
263 {
264 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
265
266 if (p->is_write)
267 reg_to_dbg(vcpu, p, dbg_reg);
268 else
269 dbg_to_reg(vcpu, p, dbg_reg);
270
271 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
272
273 return true;
274 }
275
276 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
277 const struct kvm_one_reg *reg, void __user *uaddr)
278 {
279 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
280
281 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
282 return -EFAULT;
283 return 0;
284 }
285
286 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
287 const struct kvm_one_reg *reg, void __user *uaddr)
288 {
289 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
290
291 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
292 return -EFAULT;
293 return 0;
294 }
295
296 static void reset_bvr(struct kvm_vcpu *vcpu,
297 const struct sys_reg_desc *rd)
298 {
299 vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
300 }
301
302 static bool trap_bcr(struct kvm_vcpu *vcpu,
303 struct sys_reg_params *p,
304 const struct sys_reg_desc *rd)
305 {
306 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
307
308 if (p->is_write)
309 reg_to_dbg(vcpu, p, dbg_reg);
310 else
311 dbg_to_reg(vcpu, p, dbg_reg);
312
313 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
314
315 return true;
316 }
317
318 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319 const struct kvm_one_reg *reg, void __user *uaddr)
320 {
321 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
322
323 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
324 return -EFAULT;
325
326 return 0;
327 }
328
329 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
330 const struct kvm_one_reg *reg, void __user *uaddr)
331 {
332 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
333
334 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
335 return -EFAULT;
336 return 0;
337 }
338
339 static void reset_bcr(struct kvm_vcpu *vcpu,
340 const struct sys_reg_desc *rd)
341 {
342 vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
343 }
344
345 static bool trap_wvr(struct kvm_vcpu *vcpu,
346 struct sys_reg_params *p,
347 const struct sys_reg_desc *rd)
348 {
349 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
350
351 if (p->is_write)
352 reg_to_dbg(vcpu, p, dbg_reg);
353 else
354 dbg_to_reg(vcpu, p, dbg_reg);
355
356 trace_trap_reg(__func__, rd->reg, p->is_write,
357 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
358
359 return true;
360 }
361
362 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
363 const struct kvm_one_reg *reg, void __user *uaddr)
364 {
365 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
366
367 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
368 return -EFAULT;
369 return 0;
370 }
371
372 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
373 const struct kvm_one_reg *reg, void __user *uaddr)
374 {
375 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
376
377 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
378 return -EFAULT;
379 return 0;
380 }
381
382 static void reset_wvr(struct kvm_vcpu *vcpu,
383 const struct sys_reg_desc *rd)
384 {
385 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
386 }
387
388 static bool trap_wcr(struct kvm_vcpu *vcpu,
389 struct sys_reg_params *p,
390 const struct sys_reg_desc *rd)
391 {
392 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
393
394 if (p->is_write)
395 reg_to_dbg(vcpu, p, dbg_reg);
396 else
397 dbg_to_reg(vcpu, p, dbg_reg);
398
399 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
400
401 return true;
402 }
403
404 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
405 const struct kvm_one_reg *reg, void __user *uaddr)
406 {
407 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
408
409 if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
410 return -EFAULT;
411 return 0;
412 }
413
414 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
415 const struct kvm_one_reg *reg, void __user *uaddr)
416 {
417 __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
418
419 if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
420 return -EFAULT;
421 return 0;
422 }
423
424 static void reset_wcr(struct kvm_vcpu *vcpu,
425 const struct sys_reg_desc *rd)
426 {
427 vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
428 }
429
430 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
431 {
432 u64 amair;
433
434 asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
435 vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
436 }
437
438 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
439 {
440 u64 mpidr;
441
442 /*
443 * Map the vcpu_id into the first three affinity level fields of
444 * the MPIDR. We limit the number of VCPUs in level 0 due to a
445 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
446 * of the GICv3 to be able to address each CPU directly when
447 * sending IPIs.
448 */
449 mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
450 mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
451 mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
452 vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
453 }
454
455 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
456 {
457 u64 pmcr, val;
458
459 asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
460 /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
461 * except PMCR.E resetting to zero.
462 */
463 val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
464 | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
465 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
466 }
467
468 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
469 {
470 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
471
472 return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
473 }
474
475 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
476 {
477 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
478
479 return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
480 || vcpu_mode_priv(vcpu));
481 }
482
483 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
484 {
485 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
486
487 return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
488 || vcpu_mode_priv(vcpu));
489 }
490
491 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
492 {
493 u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
494
495 return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
496 || vcpu_mode_priv(vcpu));
497 }
498
499 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
500 const struct sys_reg_desc *r)
501 {
502 u64 val;
503
504 if (!kvm_arm_pmu_v3_ready(vcpu))
505 return trap_raz_wi(vcpu, p, r);
506
507 if (pmu_access_el0_disabled(vcpu))
508 return false;
509
510 if (p->is_write) {
511 /* Only update writeable bits of PMCR */
512 val = vcpu_sys_reg(vcpu, PMCR_EL0);
513 val &= ~ARMV8_PMU_PMCR_MASK;
514 val |= p->regval & ARMV8_PMU_PMCR_MASK;
515 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
516 kvm_pmu_handle_pmcr(vcpu, val);
517 } else {
518 /* PMCR.P & PMCR.C are RAZ */
519 val = vcpu_sys_reg(vcpu, PMCR_EL0)
520 & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
521 p->regval = val;
522 }
523
524 return true;
525 }
526
527 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
528 const struct sys_reg_desc *r)
529 {
530 if (!kvm_arm_pmu_v3_ready(vcpu))
531 return trap_raz_wi(vcpu, p, r);
532
533 if (pmu_access_event_counter_el0_disabled(vcpu))
534 return false;
535
536 if (p->is_write)
537 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
538 else
539 /* return PMSELR.SEL field */
540 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
541 & ARMV8_PMU_COUNTER_MASK;
542
543 return true;
544 }
545
546 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
547 const struct sys_reg_desc *r)
548 {
549 u64 pmceid;
550
551 if (!kvm_arm_pmu_v3_ready(vcpu))
552 return trap_raz_wi(vcpu, p, r);
553
554 BUG_ON(p->is_write);
555
556 if (pmu_access_el0_disabled(vcpu))
557 return false;
558
559 if (!(p->Op2 & 1))
560 asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
561 else
562 asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
563
564 p->regval = pmceid;
565
566 return true;
567 }
568
569 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
570 {
571 u64 pmcr, val;
572
573 pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
574 val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
575 if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
576 return false;
577
578 return true;
579 }
580
581 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
582 struct sys_reg_params *p,
583 const struct sys_reg_desc *r)
584 {
585 u64 idx;
586
587 if (!kvm_arm_pmu_v3_ready(vcpu))
588 return trap_raz_wi(vcpu, p, r);
589
590 if (r->CRn == 9 && r->CRm == 13) {
591 if (r->Op2 == 2) {
592 /* PMXEVCNTR_EL0 */
593 if (pmu_access_event_counter_el0_disabled(vcpu))
594 return false;
595
596 idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
597 & ARMV8_PMU_COUNTER_MASK;
598 } else if (r->Op2 == 0) {
599 /* PMCCNTR_EL0 */
600 if (pmu_access_cycle_counter_el0_disabled(vcpu))
601 return false;
602
603 idx = ARMV8_PMU_CYCLE_IDX;
604 } else {
605 BUG();
606 }
607 } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
608 /* PMEVCNTRn_EL0 */
609 if (pmu_access_event_counter_el0_disabled(vcpu))
610 return false;
611
612 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
613 } else {
614 BUG();
615 }
616
617 if (!pmu_counter_idx_valid(vcpu, idx))
618 return false;
619
620 if (p->is_write) {
621 if (pmu_access_el0_disabled(vcpu))
622 return false;
623
624 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
625 } else {
626 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
627 }
628
629 return true;
630 }
631
632 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
633 const struct sys_reg_desc *r)
634 {
635 u64 idx, reg;
636
637 if (!kvm_arm_pmu_v3_ready(vcpu))
638 return trap_raz_wi(vcpu, p, r);
639
640 if (pmu_access_el0_disabled(vcpu))
641 return false;
642
643 if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
644 /* PMXEVTYPER_EL0 */
645 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
646 reg = PMEVTYPER0_EL0 + idx;
647 } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
648 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
649 if (idx == ARMV8_PMU_CYCLE_IDX)
650 reg = PMCCFILTR_EL0;
651 else
652 /* PMEVTYPERn_EL0 */
653 reg = PMEVTYPER0_EL0 + idx;
654 } else {
655 BUG();
656 }
657
658 if (!pmu_counter_idx_valid(vcpu, idx))
659 return false;
660
661 if (p->is_write) {
662 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
663 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
664 } else {
665 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
666 }
667
668 return true;
669 }
670
671 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
672 const struct sys_reg_desc *r)
673 {
674 u64 val, mask;
675
676 if (!kvm_arm_pmu_v3_ready(vcpu))
677 return trap_raz_wi(vcpu, p, r);
678
679 if (pmu_access_el0_disabled(vcpu))
680 return false;
681
682 mask = kvm_pmu_valid_counter_mask(vcpu);
683 if (p->is_write) {
684 val = p->regval & mask;
685 if (r->Op2 & 0x1) {
686 /* accessing PMCNTENSET_EL0 */
687 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
688 kvm_pmu_enable_counter(vcpu, val);
689 } else {
690 /* accessing PMCNTENCLR_EL0 */
691 vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
692 kvm_pmu_disable_counter(vcpu, val);
693 }
694 } else {
695 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
696 }
697
698 return true;
699 }
700
701 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
702 const struct sys_reg_desc *r)
703 {
704 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
705
706 if (!kvm_arm_pmu_v3_ready(vcpu))
707 return trap_raz_wi(vcpu, p, r);
708
709 if (!vcpu_mode_priv(vcpu))
710 return false;
711
712 if (p->is_write) {
713 u64 val = p->regval & mask;
714
715 if (r->Op2 & 0x1)
716 /* accessing PMINTENSET_EL1 */
717 vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
718 else
719 /* accessing PMINTENCLR_EL1 */
720 vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
721 } else {
722 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
723 }
724
725 return true;
726 }
727
728 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
729 const struct sys_reg_desc *r)
730 {
731 u64 mask = kvm_pmu_valid_counter_mask(vcpu);
732
733 if (!kvm_arm_pmu_v3_ready(vcpu))
734 return trap_raz_wi(vcpu, p, r);
735
736 if (pmu_access_el0_disabled(vcpu))
737 return false;
738
739 if (p->is_write) {
740 if (r->CRm & 0x2)
741 /* accessing PMOVSSET_EL0 */
742 kvm_pmu_overflow_set(vcpu, p->regval & mask);
743 else
744 /* accessing PMOVSCLR_EL0 */
745 vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
746 } else {
747 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
748 }
749
750 return true;
751 }
752
753 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
754 const struct sys_reg_desc *r)
755 {
756 u64 mask;
757
758 if (!kvm_arm_pmu_v3_ready(vcpu))
759 return trap_raz_wi(vcpu, p, r);
760
761 if (pmu_write_swinc_el0_disabled(vcpu))
762 return false;
763
764 if (p->is_write) {
765 mask = kvm_pmu_valid_counter_mask(vcpu);
766 kvm_pmu_software_increment(vcpu, p->regval & mask);
767 return true;
768 }
769
770 return false;
771 }
772
773 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
774 const struct sys_reg_desc *r)
775 {
776 if (!kvm_arm_pmu_v3_ready(vcpu))
777 return trap_raz_wi(vcpu, p, r);
778
779 if (p->is_write) {
780 if (!vcpu_mode_priv(vcpu))
781 return false;
782
783 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
784 & ARMV8_PMU_USERENR_MASK;
785 } else {
786 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
787 & ARMV8_PMU_USERENR_MASK;
788 }
789
790 return true;
791 }
792
793 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
794 #define DBG_BCR_BVR_WCR_WVR_EL1(n) \
795 /* DBGBVRn_EL1 */ \
796 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100), \
797 trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr }, \
798 /* DBGBCRn_EL1 */ \
799 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101), \
800 trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr }, \
801 /* DBGWVRn_EL1 */ \
802 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110), \
803 trap_wvr, reset_wvr, n, 0, get_wvr, set_wvr }, \
804 /* DBGWCRn_EL1 */ \
805 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111), \
806 trap_wcr, reset_wcr, n, 0, get_wcr, set_wcr }
807
808 /* Macro to expand the PMEVCNTRn_EL0 register */
809 #define PMU_PMEVCNTR_EL0(n) \
810 /* PMEVCNTRn_EL0 */ \
811 { Op0(0b11), Op1(0b011), CRn(0b1110), \
812 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
813 access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
814
815 /* Macro to expand the PMEVTYPERn_EL0 register */
816 #define PMU_PMEVTYPER_EL0(n) \
817 /* PMEVTYPERn_EL0 */ \
818 { Op0(0b11), Op1(0b011), CRn(0b1110), \
819 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
820 access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
821
822 /*
823 * Architected system registers.
824 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
825 *
826 * We could trap ID_DFR0 and tell the guest we don't support performance
827 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
828 * NAKed, so it will read the PMCR anyway.
829 *
830 * Therefore we tell the guest we have 0 counters. Unfortunately, we
831 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
832 * all PM registers, which doesn't crash the guest kernel at least.
833 *
834 * Debug handling: We do trap most, if not all debug related system
835 * registers. The implementation is good enough to ensure that a guest
836 * can use these with minimal performance degradation. The drawback is
837 * that we don't implement any of the external debug, none of the
838 * OSlock protocol. This should be revisited if we ever encounter a
839 * more demanding guest...
840 */
841 static const struct sys_reg_desc sys_reg_descs[] = {
842 /* DC ISW */
843 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
844 access_dcsw },
845 /* DC CSW */
846 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
847 access_dcsw },
848 /* DC CISW */
849 { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
850 access_dcsw },
851
852 DBG_BCR_BVR_WCR_WVR_EL1(0),
853 DBG_BCR_BVR_WCR_WVR_EL1(1),
854 /* MDCCINT_EL1 */
855 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
856 trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
857 /* MDSCR_EL1 */
858 { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
859 trap_debug_regs, reset_val, MDSCR_EL1, 0 },
860 DBG_BCR_BVR_WCR_WVR_EL1(2),
861 DBG_BCR_BVR_WCR_WVR_EL1(3),
862 DBG_BCR_BVR_WCR_WVR_EL1(4),
863 DBG_BCR_BVR_WCR_WVR_EL1(5),
864 DBG_BCR_BVR_WCR_WVR_EL1(6),
865 DBG_BCR_BVR_WCR_WVR_EL1(7),
866 DBG_BCR_BVR_WCR_WVR_EL1(8),
867 DBG_BCR_BVR_WCR_WVR_EL1(9),
868 DBG_BCR_BVR_WCR_WVR_EL1(10),
869 DBG_BCR_BVR_WCR_WVR_EL1(11),
870 DBG_BCR_BVR_WCR_WVR_EL1(12),
871 DBG_BCR_BVR_WCR_WVR_EL1(13),
872 DBG_BCR_BVR_WCR_WVR_EL1(14),
873 DBG_BCR_BVR_WCR_WVR_EL1(15),
874
875 /* MDRAR_EL1 */
876 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
877 trap_raz_wi },
878 /* OSLAR_EL1 */
879 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
880 trap_raz_wi },
881 /* OSLSR_EL1 */
882 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
883 trap_oslsr_el1 },
884 /* OSDLR_EL1 */
885 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
886 trap_raz_wi },
887 /* DBGPRCR_EL1 */
888 { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
889 trap_raz_wi },
890 /* DBGCLAIMSET_EL1 */
891 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
892 trap_raz_wi },
893 /* DBGCLAIMCLR_EL1 */
894 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
895 trap_raz_wi },
896 /* DBGAUTHSTATUS_EL1 */
897 { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
898 trap_dbgauthstatus_el1 },
899
900 /* MDCCSR_EL1 */
901 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
902 trap_raz_wi },
903 /* DBGDTR_EL0 */
904 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
905 trap_raz_wi },
906 /* DBGDTR[TR]X_EL0 */
907 { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
908 trap_raz_wi },
909
910 /* DBGVCR32_EL2 */
911 { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
912 NULL, reset_val, DBGVCR32_EL2, 0 },
913
914 /* MPIDR_EL1 */
915 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
916 NULL, reset_mpidr, MPIDR_EL1 },
917 /* SCTLR_EL1 */
918 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
919 access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
920 /* CPACR_EL1 */
921 { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
922 NULL, reset_val, CPACR_EL1, 0 },
923 /* TTBR0_EL1 */
924 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
925 access_vm_reg, reset_unknown, TTBR0_EL1 },
926 /* TTBR1_EL1 */
927 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
928 access_vm_reg, reset_unknown, TTBR1_EL1 },
929 /* TCR_EL1 */
930 { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
931 access_vm_reg, reset_val, TCR_EL1, 0 },
932
933 /* AFSR0_EL1 */
934 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
935 access_vm_reg, reset_unknown, AFSR0_EL1 },
936 /* AFSR1_EL1 */
937 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
938 access_vm_reg, reset_unknown, AFSR1_EL1 },
939 /* ESR_EL1 */
940 { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
941 access_vm_reg, reset_unknown, ESR_EL1 },
942 /* FAR_EL1 */
943 { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
944 access_vm_reg, reset_unknown, FAR_EL1 },
945 /* PAR_EL1 */
946 { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
947 NULL, reset_unknown, PAR_EL1 },
948
949 /* PMINTENSET_EL1 */
950 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
951 access_pminten, reset_unknown, PMINTENSET_EL1 },
952 /* PMINTENCLR_EL1 */
953 { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
954 access_pminten, NULL, PMINTENSET_EL1 },
955
956 /* MAIR_EL1 */
957 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
958 access_vm_reg, reset_unknown, MAIR_EL1 },
959 /* AMAIR_EL1 */
960 { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
961 access_vm_reg, reset_amair_el1, AMAIR_EL1 },
962
963 /* VBAR_EL1 */
964 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
965 NULL, reset_val, VBAR_EL1, 0 },
966
967 /* ICC_SGI1R_EL1 */
968 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
969 access_gic_sgi },
970 /* ICC_SRE_EL1 */
971 { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
972 access_gic_sre },
973
974 /* CONTEXTIDR_EL1 */
975 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
976 access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
977 /* TPIDR_EL1 */
978 { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
979 NULL, reset_unknown, TPIDR_EL1 },
980
981 /* CNTKCTL_EL1 */
982 { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
983 NULL, reset_val, CNTKCTL_EL1, 0},
984
985 /* CSSELR_EL1 */
986 { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
987 NULL, reset_unknown, CSSELR_EL1 },
988
989 /* PMCR_EL0 */
990 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
991 access_pmcr, reset_pmcr, },
992 /* PMCNTENSET_EL0 */
993 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
994 access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
995 /* PMCNTENCLR_EL0 */
996 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
997 access_pmcnten, NULL, PMCNTENSET_EL0 },
998 /* PMOVSCLR_EL0 */
999 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
1000 access_pmovs, NULL, PMOVSSET_EL0 },
1001 /* PMSWINC_EL0 */
1002 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
1003 access_pmswinc, reset_unknown, PMSWINC_EL0 },
1004 /* PMSELR_EL0 */
1005 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
1006 access_pmselr, reset_unknown, PMSELR_EL0 },
1007 /* PMCEID0_EL0 */
1008 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1009 access_pmceid },
1010 /* PMCEID1_EL0 */
1011 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1012 access_pmceid },
1013 /* PMCCNTR_EL0 */
1014 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1015 access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1016 /* PMXEVTYPER_EL0 */
1017 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1018 access_pmu_evtyper },
1019 /* PMXEVCNTR_EL0 */
1020 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1021 access_pmu_evcntr },
1022 /* PMUSERENR_EL0
1023 * This register resets as unknown in 64bit mode while it resets as zero
1024 * in 32bit mode. Here we choose to reset it as zero for consistency.
1025 */
1026 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1027 access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1028 /* PMOVSSET_EL0 */
1029 { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1030 access_pmovs, reset_unknown, PMOVSSET_EL0 },
1031
1032 /* TPIDR_EL0 */
1033 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1034 NULL, reset_unknown, TPIDR_EL0 },
1035 /* TPIDRRO_EL0 */
1036 { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1037 NULL, reset_unknown, TPIDRRO_EL0 },
1038
1039 /* PMEVCNTRn_EL0 */
1040 PMU_PMEVCNTR_EL0(0),
1041 PMU_PMEVCNTR_EL0(1),
1042 PMU_PMEVCNTR_EL0(2),
1043 PMU_PMEVCNTR_EL0(3),
1044 PMU_PMEVCNTR_EL0(4),
1045 PMU_PMEVCNTR_EL0(5),
1046 PMU_PMEVCNTR_EL0(6),
1047 PMU_PMEVCNTR_EL0(7),
1048 PMU_PMEVCNTR_EL0(8),
1049 PMU_PMEVCNTR_EL0(9),
1050 PMU_PMEVCNTR_EL0(10),
1051 PMU_PMEVCNTR_EL0(11),
1052 PMU_PMEVCNTR_EL0(12),
1053 PMU_PMEVCNTR_EL0(13),
1054 PMU_PMEVCNTR_EL0(14),
1055 PMU_PMEVCNTR_EL0(15),
1056 PMU_PMEVCNTR_EL0(16),
1057 PMU_PMEVCNTR_EL0(17),
1058 PMU_PMEVCNTR_EL0(18),
1059 PMU_PMEVCNTR_EL0(19),
1060 PMU_PMEVCNTR_EL0(20),
1061 PMU_PMEVCNTR_EL0(21),
1062 PMU_PMEVCNTR_EL0(22),
1063 PMU_PMEVCNTR_EL0(23),
1064 PMU_PMEVCNTR_EL0(24),
1065 PMU_PMEVCNTR_EL0(25),
1066 PMU_PMEVCNTR_EL0(26),
1067 PMU_PMEVCNTR_EL0(27),
1068 PMU_PMEVCNTR_EL0(28),
1069 PMU_PMEVCNTR_EL0(29),
1070 PMU_PMEVCNTR_EL0(30),
1071 /* PMEVTYPERn_EL0 */
1072 PMU_PMEVTYPER_EL0(0),
1073 PMU_PMEVTYPER_EL0(1),
1074 PMU_PMEVTYPER_EL0(2),
1075 PMU_PMEVTYPER_EL0(3),
1076 PMU_PMEVTYPER_EL0(4),
1077 PMU_PMEVTYPER_EL0(5),
1078 PMU_PMEVTYPER_EL0(6),
1079 PMU_PMEVTYPER_EL0(7),
1080 PMU_PMEVTYPER_EL0(8),
1081 PMU_PMEVTYPER_EL0(9),
1082 PMU_PMEVTYPER_EL0(10),
1083 PMU_PMEVTYPER_EL0(11),
1084 PMU_PMEVTYPER_EL0(12),
1085 PMU_PMEVTYPER_EL0(13),
1086 PMU_PMEVTYPER_EL0(14),
1087 PMU_PMEVTYPER_EL0(15),
1088 PMU_PMEVTYPER_EL0(16),
1089 PMU_PMEVTYPER_EL0(17),
1090 PMU_PMEVTYPER_EL0(18),
1091 PMU_PMEVTYPER_EL0(19),
1092 PMU_PMEVTYPER_EL0(20),
1093 PMU_PMEVTYPER_EL0(21),
1094 PMU_PMEVTYPER_EL0(22),
1095 PMU_PMEVTYPER_EL0(23),
1096 PMU_PMEVTYPER_EL0(24),
1097 PMU_PMEVTYPER_EL0(25),
1098 PMU_PMEVTYPER_EL0(26),
1099 PMU_PMEVTYPER_EL0(27),
1100 PMU_PMEVTYPER_EL0(28),
1101 PMU_PMEVTYPER_EL0(29),
1102 PMU_PMEVTYPER_EL0(30),
1103 /* PMCCFILTR_EL0
1104 * This register resets as unknown in 64bit mode while it resets as zero
1105 * in 32bit mode. Here we choose to reset it as zero for consistency.
1106 */
1107 { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1108 access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1109
1110 /* DACR32_EL2 */
1111 { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1112 NULL, reset_unknown, DACR32_EL2 },
1113 /* IFSR32_EL2 */
1114 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1115 NULL, reset_unknown, IFSR32_EL2 },
1116 /* FPEXC32_EL2 */
1117 { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1118 NULL, reset_val, FPEXC32_EL2, 0x70 },
1119 };
1120
1121 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1122 struct sys_reg_params *p,
1123 const struct sys_reg_desc *r)
1124 {
1125 if (p->is_write) {
1126 return ignore_write(vcpu, p);
1127 } else {
1128 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1129 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1130 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1131
1132 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1133 (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1134 (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1135 | (6 << 16) | (el3 << 14) | (el3 << 12));
1136 return true;
1137 }
1138 }
1139
1140 static bool trap_debug32(struct kvm_vcpu *vcpu,
1141 struct sys_reg_params *p,
1142 const struct sys_reg_desc *r)
1143 {
1144 if (p->is_write) {
1145 vcpu_cp14(vcpu, r->reg) = p->regval;
1146 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1147 } else {
1148 p->regval = vcpu_cp14(vcpu, r->reg);
1149 }
1150
1151 return true;
1152 }
1153
1154 /* AArch32 debug register mappings
1155 *
1156 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1157 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1158 *
1159 * All control registers and watchpoint value registers are mapped to
1160 * the lower 32 bits of their AArch64 equivalents. We share the trap
1161 * handlers with the above AArch64 code which checks what mode the
1162 * system is in.
1163 */
1164
1165 static bool trap_xvr(struct kvm_vcpu *vcpu,
1166 struct sys_reg_params *p,
1167 const struct sys_reg_desc *rd)
1168 {
1169 u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1170
1171 if (p->is_write) {
1172 u64 val = *dbg_reg;
1173
1174 val &= 0xffffffffUL;
1175 val |= p->regval << 32;
1176 *dbg_reg = val;
1177
1178 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1179 } else {
1180 p->regval = *dbg_reg >> 32;
1181 }
1182
1183 trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1184
1185 return true;
1186 }
1187
1188 #define DBG_BCR_BVR_WCR_WVR(n) \
1189 /* DBGBVRn */ \
1190 { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \
1191 /* DBGBCRn */ \
1192 { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \
1193 /* DBGWVRn */ \
1194 { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \
1195 /* DBGWCRn */ \
1196 { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1197
1198 #define DBGBXVR(n) \
1199 { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1200
1201 /*
1202 * Trapped cp14 registers. We generally ignore most of the external
1203 * debug, on the principle that they don't really make sense to a
1204 * guest. Revisit this one day, would this principle change.
1205 */
1206 static const struct sys_reg_desc cp14_regs[] = {
1207 /* DBGIDR */
1208 { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1209 /* DBGDTRRXext */
1210 { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1211
1212 DBG_BCR_BVR_WCR_WVR(0),
1213 /* DBGDSCRint */
1214 { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1215 DBG_BCR_BVR_WCR_WVR(1),
1216 /* DBGDCCINT */
1217 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1218 /* DBGDSCRext */
1219 { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1220 DBG_BCR_BVR_WCR_WVR(2),
1221 /* DBGDTR[RT]Xint */
1222 { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1223 /* DBGDTR[RT]Xext */
1224 { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1225 DBG_BCR_BVR_WCR_WVR(3),
1226 DBG_BCR_BVR_WCR_WVR(4),
1227 DBG_BCR_BVR_WCR_WVR(5),
1228 /* DBGWFAR */
1229 { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1230 /* DBGOSECCR */
1231 { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1232 DBG_BCR_BVR_WCR_WVR(6),
1233 /* DBGVCR */
1234 { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1235 DBG_BCR_BVR_WCR_WVR(7),
1236 DBG_BCR_BVR_WCR_WVR(8),
1237 DBG_BCR_BVR_WCR_WVR(9),
1238 DBG_BCR_BVR_WCR_WVR(10),
1239 DBG_BCR_BVR_WCR_WVR(11),
1240 DBG_BCR_BVR_WCR_WVR(12),
1241 DBG_BCR_BVR_WCR_WVR(13),
1242 DBG_BCR_BVR_WCR_WVR(14),
1243 DBG_BCR_BVR_WCR_WVR(15),
1244
1245 /* DBGDRAR (32bit) */
1246 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1247
1248 DBGBXVR(0),
1249 /* DBGOSLAR */
1250 { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1251 DBGBXVR(1),
1252 /* DBGOSLSR */
1253 { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1254 DBGBXVR(2),
1255 DBGBXVR(3),
1256 /* DBGOSDLR */
1257 { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1258 DBGBXVR(4),
1259 /* DBGPRCR */
1260 { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1261 DBGBXVR(5),
1262 DBGBXVR(6),
1263 DBGBXVR(7),
1264 DBGBXVR(8),
1265 DBGBXVR(9),
1266 DBGBXVR(10),
1267 DBGBXVR(11),
1268 DBGBXVR(12),
1269 DBGBXVR(13),
1270 DBGBXVR(14),
1271 DBGBXVR(15),
1272
1273 /* DBGDSAR (32bit) */
1274 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1275
1276 /* DBGDEVID2 */
1277 { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1278 /* DBGDEVID1 */
1279 { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1280 /* DBGDEVID */
1281 { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1282 /* DBGCLAIMSET */
1283 { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1284 /* DBGCLAIMCLR */
1285 { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1286 /* DBGAUTHSTATUS */
1287 { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1288 };
1289
1290 /* Trapped cp14 64bit registers */
1291 static const struct sys_reg_desc cp14_64_regs[] = {
1292 /* DBGDRAR (64bit) */
1293 { Op1( 0), CRm( 1), .access = trap_raz_wi },
1294
1295 /* DBGDSAR (64bit) */
1296 { Op1( 0), CRm( 2), .access = trap_raz_wi },
1297 };
1298
1299 /* Macro to expand the PMEVCNTRn register */
1300 #define PMU_PMEVCNTR(n) \
1301 /* PMEVCNTRn */ \
1302 { Op1(0), CRn(0b1110), \
1303 CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1304 access_pmu_evcntr }
1305
1306 /* Macro to expand the PMEVTYPERn register */
1307 #define PMU_PMEVTYPER(n) \
1308 /* PMEVTYPERn */ \
1309 { Op1(0), CRn(0b1110), \
1310 CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)), \
1311 access_pmu_evtyper }
1312
1313 /*
1314 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1315 * depending on the way they are accessed (as a 32bit or a 64bit
1316 * register).
1317 */
1318 static const struct sys_reg_desc cp15_regs[] = {
1319 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1320
1321 { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1322 { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1323 { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1324 { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1325 { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1326 { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1327 { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1328 { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1329 { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1330 { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1331 { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1332
1333 /*
1334 * DC{C,I,CI}SW operations:
1335 */
1336 { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1337 { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1338 { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1339
1340 /* PMU */
1341 { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1342 { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1343 { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1344 { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1345 { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1346 { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1347 { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1348 { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1349 { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1350 { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1351 { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1352 { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1353 { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1354 { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1355 { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1356
1357 { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1358 { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1359 { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1360 { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1361
1362 /* ICC_SRE */
1363 { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
1364
1365 { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1366
1367 /* PMEVCNTRn */
1368 PMU_PMEVCNTR(0),
1369 PMU_PMEVCNTR(1),
1370 PMU_PMEVCNTR(2),
1371 PMU_PMEVCNTR(3),
1372 PMU_PMEVCNTR(4),
1373 PMU_PMEVCNTR(5),
1374 PMU_PMEVCNTR(6),
1375 PMU_PMEVCNTR(7),
1376 PMU_PMEVCNTR(8),
1377 PMU_PMEVCNTR(9),
1378 PMU_PMEVCNTR(10),
1379 PMU_PMEVCNTR(11),
1380 PMU_PMEVCNTR(12),
1381 PMU_PMEVCNTR(13),
1382 PMU_PMEVCNTR(14),
1383 PMU_PMEVCNTR(15),
1384 PMU_PMEVCNTR(16),
1385 PMU_PMEVCNTR(17),
1386 PMU_PMEVCNTR(18),
1387 PMU_PMEVCNTR(19),
1388 PMU_PMEVCNTR(20),
1389 PMU_PMEVCNTR(21),
1390 PMU_PMEVCNTR(22),
1391 PMU_PMEVCNTR(23),
1392 PMU_PMEVCNTR(24),
1393 PMU_PMEVCNTR(25),
1394 PMU_PMEVCNTR(26),
1395 PMU_PMEVCNTR(27),
1396 PMU_PMEVCNTR(28),
1397 PMU_PMEVCNTR(29),
1398 PMU_PMEVCNTR(30),
1399 /* PMEVTYPERn */
1400 PMU_PMEVTYPER(0),
1401 PMU_PMEVTYPER(1),
1402 PMU_PMEVTYPER(2),
1403 PMU_PMEVTYPER(3),
1404 PMU_PMEVTYPER(4),
1405 PMU_PMEVTYPER(5),
1406 PMU_PMEVTYPER(6),
1407 PMU_PMEVTYPER(7),
1408 PMU_PMEVTYPER(8),
1409 PMU_PMEVTYPER(9),
1410 PMU_PMEVTYPER(10),
1411 PMU_PMEVTYPER(11),
1412 PMU_PMEVTYPER(12),
1413 PMU_PMEVTYPER(13),
1414 PMU_PMEVTYPER(14),
1415 PMU_PMEVTYPER(15),
1416 PMU_PMEVTYPER(16),
1417 PMU_PMEVTYPER(17),
1418 PMU_PMEVTYPER(18),
1419 PMU_PMEVTYPER(19),
1420 PMU_PMEVTYPER(20),
1421 PMU_PMEVTYPER(21),
1422 PMU_PMEVTYPER(22),
1423 PMU_PMEVTYPER(23),
1424 PMU_PMEVTYPER(24),
1425 PMU_PMEVTYPER(25),
1426 PMU_PMEVTYPER(26),
1427 PMU_PMEVTYPER(27),
1428 PMU_PMEVTYPER(28),
1429 PMU_PMEVTYPER(29),
1430 PMU_PMEVTYPER(30),
1431 /* PMCCFILTR */
1432 { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1433 };
1434
1435 static const struct sys_reg_desc cp15_64_regs[] = {
1436 { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1437 { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1438 { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1439 { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1440 };
1441
1442 /* Target specific emulation tables */
1443 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1444
1445 void kvm_register_target_sys_reg_table(unsigned int target,
1446 struct kvm_sys_reg_target_table *table)
1447 {
1448 target_tables[target] = table;
1449 }
1450
1451 /* Get specific register table for this target. */
1452 static const struct sys_reg_desc *get_target_table(unsigned target,
1453 bool mode_is_64,
1454 size_t *num)
1455 {
1456 struct kvm_sys_reg_target_table *table;
1457
1458 table = target_tables[target];
1459 if (mode_is_64) {
1460 *num = table->table64.num;
1461 return table->table64.table;
1462 } else {
1463 *num = table->table32.num;
1464 return table->table32.table;
1465 }
1466 }
1467
1468 #define reg_to_match_value(x) \
1469 ({ \
1470 unsigned long val; \
1471 val = (x)->Op0 << 14; \
1472 val |= (x)->Op1 << 11; \
1473 val |= (x)->CRn << 7; \
1474 val |= (x)->CRm << 3; \
1475 val |= (x)->Op2; \
1476 val; \
1477 })
1478
1479 static int match_sys_reg(const void *key, const void *elt)
1480 {
1481 const unsigned long pval = (unsigned long)key;
1482 const struct sys_reg_desc *r = elt;
1483
1484 return pval - reg_to_match_value(r);
1485 }
1486
1487 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1488 const struct sys_reg_desc table[],
1489 unsigned int num)
1490 {
1491 unsigned long pval = reg_to_match_value(params);
1492
1493 return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1494 }
1495
1496 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1497 {
1498 kvm_inject_undefined(vcpu);
1499 return 1;
1500 }
1501
1502 /*
1503 * emulate_cp -- tries to match a sys_reg access in a handling table, and
1504 * call the corresponding trap handler.
1505 *
1506 * @params: pointer to the descriptor of the access
1507 * @table: array of trap descriptors
1508 * @num: size of the trap descriptor array
1509 *
1510 * Return 0 if the access has been handled, and -1 if not.
1511 */
1512 static int emulate_cp(struct kvm_vcpu *vcpu,
1513 struct sys_reg_params *params,
1514 const struct sys_reg_desc *table,
1515 size_t num)
1516 {
1517 const struct sys_reg_desc *r;
1518
1519 if (!table)
1520 return -1; /* Not handled */
1521
1522 r = find_reg(params, table, num);
1523
1524 if (r) {
1525 /*
1526 * Not having an accessor means that we have
1527 * configured a trap that we don't know how to
1528 * handle. This certainly qualifies as a gross bug
1529 * that should be fixed right away.
1530 */
1531 BUG_ON(!r->access);
1532
1533 if (likely(r->access(vcpu, params, r))) {
1534 /* Skip instruction, since it was emulated */
1535 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1536 /* Handled */
1537 return 0;
1538 }
1539 }
1540
1541 /* Not handled */
1542 return -1;
1543 }
1544
1545 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1546 struct sys_reg_params *params)
1547 {
1548 u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1549 int cp = -1;
1550
1551 switch(hsr_ec) {
1552 case ESR_ELx_EC_CP15_32:
1553 case ESR_ELx_EC_CP15_64:
1554 cp = 15;
1555 break;
1556 case ESR_ELx_EC_CP14_MR:
1557 case ESR_ELx_EC_CP14_64:
1558 cp = 14;
1559 break;
1560 default:
1561 WARN_ON(1);
1562 }
1563
1564 kvm_err("Unsupported guest CP%d access at: %08lx\n",
1565 cp, *vcpu_pc(vcpu));
1566 print_sys_reg_instr(params);
1567 kvm_inject_undefined(vcpu);
1568 }
1569
1570 /**
1571 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1572 * @vcpu: The VCPU pointer
1573 * @run: The kvm_run struct
1574 */
1575 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1576 const struct sys_reg_desc *global,
1577 size_t nr_global,
1578 const struct sys_reg_desc *target_specific,
1579 size_t nr_specific)
1580 {
1581 struct sys_reg_params params;
1582 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1583 int Rt = (hsr >> 5) & 0xf;
1584 int Rt2 = (hsr >> 10) & 0xf;
1585
1586 params.is_aarch32 = true;
1587 params.is_32bit = false;
1588 params.CRm = (hsr >> 1) & 0xf;
1589 params.is_write = ((hsr & 1) == 0);
1590
1591 params.Op0 = 0;
1592 params.Op1 = (hsr >> 16) & 0xf;
1593 params.Op2 = 0;
1594 params.CRn = 0;
1595
1596 /*
1597 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1598 * backends between AArch32 and AArch64, we get away with it.
1599 */
1600 if (params.is_write) {
1601 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1602 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1603 }
1604
1605 if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1606 goto out;
1607 if (!emulate_cp(vcpu, &params, global, nr_global))
1608 goto out;
1609
1610 unhandled_cp_access(vcpu, &params);
1611
1612 out:
1613 /* Split up the value between registers for the read side */
1614 if (!params.is_write) {
1615 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1616 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1617 }
1618
1619 return 1;
1620 }
1621
1622 /**
1623 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1624 * @vcpu: The VCPU pointer
1625 * @run: The kvm_run struct
1626 */
1627 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1628 const struct sys_reg_desc *global,
1629 size_t nr_global,
1630 const struct sys_reg_desc *target_specific,
1631 size_t nr_specific)
1632 {
1633 struct sys_reg_params params;
1634 u32 hsr = kvm_vcpu_get_hsr(vcpu);
1635 int Rt = (hsr >> 5) & 0xf;
1636
1637 params.is_aarch32 = true;
1638 params.is_32bit = true;
1639 params.CRm = (hsr >> 1) & 0xf;
1640 params.regval = vcpu_get_reg(vcpu, Rt);
1641 params.is_write = ((hsr & 1) == 0);
1642 params.CRn = (hsr >> 10) & 0xf;
1643 params.Op0 = 0;
1644 params.Op1 = (hsr >> 14) & 0x7;
1645 params.Op2 = (hsr >> 17) & 0x7;
1646
1647 if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1648 !emulate_cp(vcpu, &params, global, nr_global)) {
1649 if (!params.is_write)
1650 vcpu_set_reg(vcpu, Rt, params.regval);
1651 return 1;
1652 }
1653
1654 unhandled_cp_access(vcpu, &params);
1655 return 1;
1656 }
1657
1658 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1659 {
1660 const struct sys_reg_desc *target_specific;
1661 size_t num;
1662
1663 target_specific = get_target_table(vcpu->arch.target, false, &num);
1664 return kvm_handle_cp_64(vcpu,
1665 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1666 target_specific, num);
1667 }
1668
1669 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1670 {
1671 const struct sys_reg_desc *target_specific;
1672 size_t num;
1673
1674 target_specific = get_target_table(vcpu->arch.target, false, &num);
1675 return kvm_handle_cp_32(vcpu,
1676 cp15_regs, ARRAY_SIZE(cp15_regs),
1677 target_specific, num);
1678 }
1679
1680 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1681 {
1682 return kvm_handle_cp_64(vcpu,
1683 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1684 NULL, 0);
1685 }
1686
1687 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1688 {
1689 return kvm_handle_cp_32(vcpu,
1690 cp14_regs, ARRAY_SIZE(cp14_regs),
1691 NULL, 0);
1692 }
1693
1694 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1695 struct sys_reg_params *params)
1696 {
1697 size_t num;
1698 const struct sys_reg_desc *table, *r;
1699
1700 table = get_target_table(vcpu->arch.target, true, &num);
1701
1702 /* Search target-specific then generic table. */
1703 r = find_reg(params, table, num);
1704 if (!r)
1705 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1706
1707 if (likely(r)) {
1708 /*
1709 * Not having an accessor means that we have
1710 * configured a trap that we don't know how to
1711 * handle. This certainly qualifies as a gross bug
1712 * that should be fixed right away.
1713 */
1714 BUG_ON(!r->access);
1715
1716 if (likely(r->access(vcpu, params, r))) {
1717 /* Skip instruction, since it was emulated */
1718 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1719 return 1;
1720 }
1721 /* If access function fails, it should complain. */
1722 } else {
1723 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1724 *vcpu_pc(vcpu));
1725 print_sys_reg_instr(params);
1726 }
1727 kvm_inject_undefined(vcpu);
1728 return 1;
1729 }
1730
1731 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1732 const struct sys_reg_desc *table, size_t num)
1733 {
1734 unsigned long i;
1735
1736 for (i = 0; i < num; i++)
1737 if (table[i].reset)
1738 table[i].reset(vcpu, &table[i]);
1739 }
1740
1741 /**
1742 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1743 * @vcpu: The VCPU pointer
1744 * @run: The kvm_run struct
1745 */
1746 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1747 {
1748 struct sys_reg_params params;
1749 unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1750 int Rt = (esr >> 5) & 0x1f;
1751 int ret;
1752
1753 trace_kvm_handle_sys_reg(esr);
1754
1755 params.is_aarch32 = false;
1756 params.is_32bit = false;
1757 params.Op0 = (esr >> 20) & 3;
1758 params.Op1 = (esr >> 14) & 0x7;
1759 params.CRn = (esr >> 10) & 0xf;
1760 params.CRm = (esr >> 1) & 0xf;
1761 params.Op2 = (esr >> 17) & 0x7;
1762 params.regval = vcpu_get_reg(vcpu, Rt);
1763 params.is_write = !(esr & 1);
1764
1765 ret = emulate_sys_reg(vcpu, &params);
1766
1767 if (!params.is_write)
1768 vcpu_set_reg(vcpu, Rt, params.regval);
1769 return ret;
1770 }
1771
1772 /******************************************************************************
1773 * Userspace API
1774 *****************************************************************************/
1775
1776 static bool index_to_params(u64 id, struct sys_reg_params *params)
1777 {
1778 switch (id & KVM_REG_SIZE_MASK) {
1779 case KVM_REG_SIZE_U64:
1780 /* Any unused index bits means it's not valid. */
1781 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1782 | KVM_REG_ARM_COPROC_MASK
1783 | KVM_REG_ARM64_SYSREG_OP0_MASK
1784 | KVM_REG_ARM64_SYSREG_OP1_MASK
1785 | KVM_REG_ARM64_SYSREG_CRN_MASK
1786 | KVM_REG_ARM64_SYSREG_CRM_MASK
1787 | KVM_REG_ARM64_SYSREG_OP2_MASK))
1788 return false;
1789 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1790 >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1791 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1792 >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1793 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1794 >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1795 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1796 >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1797 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1798 >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1799 return true;
1800 default:
1801 return false;
1802 }
1803 }
1804
1805 /* Decode an index value, and find the sys_reg_desc entry. */
1806 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1807 u64 id)
1808 {
1809 size_t num;
1810 const struct sys_reg_desc *table, *r;
1811 struct sys_reg_params params;
1812
1813 /* We only do sys_reg for now. */
1814 if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1815 return NULL;
1816
1817 if (!index_to_params(id, &params))
1818 return NULL;
1819
1820 table = get_target_table(vcpu->arch.target, true, &num);
1821 r = find_reg(&params, table, num);
1822 if (!r)
1823 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1824
1825 /* Not saved in the sys_reg array? */
1826 if (r && !r->reg)
1827 r = NULL;
1828
1829 return r;
1830 }
1831
1832 /*
1833 * These are the invariant sys_reg registers: we let the guest see the
1834 * host versions of these, so they're part of the guest state.
1835 *
1836 * A future CPU may provide a mechanism to present different values to
1837 * the guest, or a future kvm may trap them.
1838 */
1839
1840 #define FUNCTION_INVARIANT(reg) \
1841 static void get_##reg(struct kvm_vcpu *v, \
1842 const struct sys_reg_desc *r) \
1843 { \
1844 u64 val; \
1845 \
1846 asm volatile("mrs %0, " __stringify(reg) "\n" \
1847 : "=r" (val)); \
1848 ((struct sys_reg_desc *)r)->val = val; \
1849 }
1850
1851 FUNCTION_INVARIANT(midr_el1)
1852 FUNCTION_INVARIANT(ctr_el0)
1853 FUNCTION_INVARIANT(revidr_el1)
1854 FUNCTION_INVARIANT(id_pfr0_el1)
1855 FUNCTION_INVARIANT(id_pfr1_el1)
1856 FUNCTION_INVARIANT(id_dfr0_el1)
1857 FUNCTION_INVARIANT(id_afr0_el1)
1858 FUNCTION_INVARIANT(id_mmfr0_el1)
1859 FUNCTION_INVARIANT(id_mmfr1_el1)
1860 FUNCTION_INVARIANT(id_mmfr2_el1)
1861 FUNCTION_INVARIANT(id_mmfr3_el1)
1862 FUNCTION_INVARIANT(id_isar0_el1)
1863 FUNCTION_INVARIANT(id_isar1_el1)
1864 FUNCTION_INVARIANT(id_isar2_el1)
1865 FUNCTION_INVARIANT(id_isar3_el1)
1866 FUNCTION_INVARIANT(id_isar4_el1)
1867 FUNCTION_INVARIANT(id_isar5_el1)
1868 FUNCTION_INVARIANT(clidr_el1)
1869 FUNCTION_INVARIANT(aidr_el1)
1870
1871 /* ->val is filled in by kvm_sys_reg_table_init() */
1872 static struct sys_reg_desc invariant_sys_regs[] = {
1873 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1874 NULL, get_midr_el1 },
1875 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1876 NULL, get_revidr_el1 },
1877 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1878 NULL, get_id_pfr0_el1 },
1879 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1880 NULL, get_id_pfr1_el1 },
1881 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1882 NULL, get_id_dfr0_el1 },
1883 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1884 NULL, get_id_afr0_el1 },
1885 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1886 NULL, get_id_mmfr0_el1 },
1887 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1888 NULL, get_id_mmfr1_el1 },
1889 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1890 NULL, get_id_mmfr2_el1 },
1891 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1892 NULL, get_id_mmfr3_el1 },
1893 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1894 NULL, get_id_isar0_el1 },
1895 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1896 NULL, get_id_isar1_el1 },
1897 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1898 NULL, get_id_isar2_el1 },
1899 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1900 NULL, get_id_isar3_el1 },
1901 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1902 NULL, get_id_isar4_el1 },
1903 { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1904 NULL, get_id_isar5_el1 },
1905 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1906 NULL, get_clidr_el1 },
1907 { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1908 NULL, get_aidr_el1 },
1909 { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1910 NULL, get_ctr_el0 },
1911 };
1912
1913 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1914 {
1915 if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1916 return -EFAULT;
1917 return 0;
1918 }
1919
1920 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1921 {
1922 if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1923 return -EFAULT;
1924 return 0;
1925 }
1926
1927 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1928 {
1929 struct sys_reg_params params;
1930 const struct sys_reg_desc *r;
1931
1932 if (!index_to_params(id, &params))
1933 return -ENOENT;
1934
1935 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1936 if (!r)
1937 return -ENOENT;
1938
1939 return reg_to_user(uaddr, &r->val, id);
1940 }
1941
1942 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1943 {
1944 struct sys_reg_params params;
1945 const struct sys_reg_desc *r;
1946 int err;
1947 u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1948
1949 if (!index_to_params(id, &params))
1950 return -ENOENT;
1951 r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1952 if (!r)
1953 return -ENOENT;
1954
1955 err = reg_from_user(&val, uaddr, id);
1956 if (err)
1957 return err;
1958
1959 /* This is what we mean by invariant: you can't change it. */
1960 if (r->val != val)
1961 return -EINVAL;
1962
1963 return 0;
1964 }
1965
1966 static bool is_valid_cache(u32 val)
1967 {
1968 u32 level, ctype;
1969
1970 if (val >= CSSELR_MAX)
1971 return false;
1972
1973 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
1974 level = (val >> 1);
1975 ctype = (cache_levels >> (level * 3)) & 7;
1976
1977 switch (ctype) {
1978 case 0: /* No cache */
1979 return false;
1980 case 1: /* Instruction cache only */
1981 return (val & 1);
1982 case 2: /* Data cache only */
1983 case 4: /* Unified cache */
1984 return !(val & 1);
1985 case 3: /* Separate instruction and data caches */
1986 return true;
1987 default: /* Reserved: we can't know instruction or data. */
1988 return false;
1989 }
1990 }
1991
1992 static int demux_c15_get(u64 id, void __user *uaddr)
1993 {
1994 u32 val;
1995 u32 __user *uval = uaddr;
1996
1997 /* Fail if we have unknown bits set. */
1998 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1999 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2000 return -ENOENT;
2001
2002 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2003 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2004 if (KVM_REG_SIZE(id) != 4)
2005 return -ENOENT;
2006 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2007 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2008 if (!is_valid_cache(val))
2009 return -ENOENT;
2010
2011 return put_user(get_ccsidr(val), uval);
2012 default:
2013 return -ENOENT;
2014 }
2015 }
2016
2017 static int demux_c15_set(u64 id, void __user *uaddr)
2018 {
2019 u32 val, newval;
2020 u32 __user *uval = uaddr;
2021
2022 /* Fail if we have unknown bits set. */
2023 if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2024 | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2025 return -ENOENT;
2026
2027 switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2028 case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2029 if (KVM_REG_SIZE(id) != 4)
2030 return -ENOENT;
2031 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2032 >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2033 if (!is_valid_cache(val))
2034 return -ENOENT;
2035
2036 if (get_user(newval, uval))
2037 return -EFAULT;
2038
2039 /* This is also invariant: you can't change it. */
2040 if (newval != get_ccsidr(val))
2041 return -EINVAL;
2042 return 0;
2043 default:
2044 return -ENOENT;
2045 }
2046 }
2047
2048 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2049 {
2050 const struct sys_reg_desc *r;
2051 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2052
2053 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2054 return demux_c15_get(reg->id, uaddr);
2055
2056 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2057 return -ENOENT;
2058
2059 r = index_to_sys_reg_desc(vcpu, reg->id);
2060 if (!r)
2061 return get_invariant_sys_reg(reg->id, uaddr);
2062
2063 if (r->get_user)
2064 return (r->get_user)(vcpu, r, reg, uaddr);
2065
2066 return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2067 }
2068
2069 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2070 {
2071 const struct sys_reg_desc *r;
2072 void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2073
2074 if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2075 return demux_c15_set(reg->id, uaddr);
2076
2077 if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2078 return -ENOENT;
2079
2080 r = index_to_sys_reg_desc(vcpu, reg->id);
2081 if (!r)
2082 return set_invariant_sys_reg(reg->id, uaddr);
2083
2084 if (r->set_user)
2085 return (r->set_user)(vcpu, r, reg, uaddr);
2086
2087 return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2088 }
2089
2090 static unsigned int num_demux_regs(void)
2091 {
2092 unsigned int i, count = 0;
2093
2094 for (i = 0; i < CSSELR_MAX; i++)
2095 if (is_valid_cache(i))
2096 count++;
2097
2098 return count;
2099 }
2100
2101 static int write_demux_regids(u64 __user *uindices)
2102 {
2103 u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2104 unsigned int i;
2105
2106 val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2107 for (i = 0; i < CSSELR_MAX; i++) {
2108 if (!is_valid_cache(i))
2109 continue;
2110 if (put_user(val | i, uindices))
2111 return -EFAULT;
2112 uindices++;
2113 }
2114 return 0;
2115 }
2116
2117 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2118 {
2119 return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2120 KVM_REG_ARM64_SYSREG |
2121 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2122 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2123 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2124 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2125 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2126 }
2127
2128 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2129 {
2130 if (!*uind)
2131 return true;
2132
2133 if (put_user(sys_reg_to_index(reg), *uind))
2134 return false;
2135
2136 (*uind)++;
2137 return true;
2138 }
2139
2140 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2141 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2142 {
2143 const struct sys_reg_desc *i1, *i2, *end1, *end2;
2144 unsigned int total = 0;
2145 size_t num;
2146
2147 /* We check for duplicates here, to allow arch-specific overrides. */
2148 i1 = get_target_table(vcpu->arch.target, true, &num);
2149 end1 = i1 + num;
2150 i2 = sys_reg_descs;
2151 end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2152
2153 BUG_ON(i1 == end1 || i2 == end2);
2154
2155 /* Walk carefully, as both tables may refer to the same register. */
2156 while (i1 || i2) {
2157 int cmp = cmp_sys_reg(i1, i2);
2158 /* target-specific overrides generic entry. */
2159 if (cmp <= 0) {
2160 /* Ignore registers we trap but don't save. */
2161 if (i1->reg) {
2162 if (!copy_reg_to_user(i1, &uind))
2163 return -EFAULT;
2164 total++;
2165 }
2166 } else {
2167 /* Ignore registers we trap but don't save. */
2168 if (i2->reg) {
2169 if (!copy_reg_to_user(i2, &uind))
2170 return -EFAULT;
2171 total++;
2172 }
2173 }
2174
2175 if (cmp <= 0 && ++i1 == end1)
2176 i1 = NULL;
2177 if (cmp >= 0 && ++i2 == end2)
2178 i2 = NULL;
2179 }
2180 return total;
2181 }
2182
2183 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2184 {
2185 return ARRAY_SIZE(invariant_sys_regs)
2186 + num_demux_regs()
2187 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2188 }
2189
2190 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2191 {
2192 unsigned int i;
2193 int err;
2194
2195 /* Then give them all the invariant registers' indices. */
2196 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2197 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2198 return -EFAULT;
2199 uindices++;
2200 }
2201
2202 err = walk_sys_regs(vcpu, uindices);
2203 if (err < 0)
2204 return err;
2205 uindices += err;
2206
2207 return write_demux_regids(uindices);
2208 }
2209
2210 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2211 {
2212 unsigned int i;
2213
2214 for (i = 1; i < n; i++) {
2215 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2216 kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2217 return 1;
2218 }
2219 }
2220
2221 return 0;
2222 }
2223
2224 void kvm_sys_reg_table_init(void)
2225 {
2226 unsigned int i;
2227 struct sys_reg_desc clidr;
2228
2229 /* Make sure tables are unique and in order. */
2230 BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2231 BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2232 BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2233 BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2234 BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2235 BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2236
2237 /* We abuse the reset function to overwrite the table itself. */
2238 for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2239 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2240
2241 /*
2242 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
2243 *
2244 * If software reads the Cache Type fields from Ctype1
2245 * upwards, once it has seen a value of 0b000, no caches
2246 * exist at further-out levels of the hierarchy. So, for
2247 * example, if Ctype3 is the first Cache Type field with a
2248 * value of 0b000, the values of Ctype4 to Ctype7 must be
2249 * ignored.
2250 */
2251 get_clidr_el1(NULL, &clidr); /* Ugly... */
2252 cache_levels = clidr.val;
2253 for (i = 0; i < 7; i++)
2254 if (((cache_levels >> (i*3)) & 7) == 0)
2255 break;
2256 /* Clear all higher bits. */
2257 cache_levels &= (1 << (i*3))-1;
2258 }
2259
2260 /**
2261 * kvm_reset_sys_regs - sets system registers to reset value
2262 * @vcpu: The VCPU pointer
2263 *
2264 * This function finds the right table above and sets the registers on the
2265 * virtual CPU struct to their architecturally defined reset values.
2266 */
2267 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2268 {
2269 size_t num;
2270 const struct sys_reg_desc *table;
2271
2272 /* Catch someone adding a register without putting in reset entry. */
2273 memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2274
2275 /* Generic chip reset first (so target could override). */
2276 reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2277
2278 table = get_target_table(vcpu->arch.target, true, &num);
2279 reset_sys_reg_descs(vcpu, table, num);
2280
2281 for (num = 1; num < NR_SYS_REGS; num++)
2282 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2283 panic("Didn't reset vcpu_sys_reg(%zi)", num);
2284 }
This page took 0.107014 seconds and 6 git commands to generate.