Merge remote-tracking branch 'asoc/fix/core' into tmp
[deliverable/linux.git] / arch / blackfin / mm / sram-alloc.c
1 /*
2 * SRAM allocator for Blackfin on-chip memory
3 *
4 * Copyright 2004-2009 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later.
7 */
8
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <asm/blackfin.h>
23 #include <asm/mem_map.h>
24 #include "blackfin_sram.h"
25
26 /* the data structure for L1 scratchpad and DATA SRAM */
27 struct sram_piece {
28 void *paddr;
29 int size;
30 pid_t pid;
31 struct sram_piece *next;
32 };
33
34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37
38 #if L1_DATA_A_LENGTH != 0
39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41 #endif
42
43 #if L1_DATA_B_LENGTH != 0
44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46 #endif
47
48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50 #endif
51
52 #if L1_CODE_LENGTH != 0
53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56 #endif
57
58 #if L2_LENGTH != 0
59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61 #endif
62
63 static struct kmem_cache *sram_piece_cache;
64
65 /* L1 Scratchpad SRAM initialization function */
66 static void __init l1sram_init(void)
67 {
68 unsigned int cpu;
69 unsigned long reserve;
70
71 #ifdef CONFIG_SMP
72 reserve = 0;
73 #else
74 reserve = sizeof(struct l1_scratch_task_info);
75 #endif
76
77 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78 per_cpu(free_l1_ssram_head, cpu).next =
79 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80 if (!per_cpu(free_l1_ssram_head, cpu).next) {
81 printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82 return;
83 }
84
85 per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86 per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87 per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88 per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89
90 per_cpu(used_l1_ssram_head, cpu).next = NULL;
91
92 /* mutex initialize */
93 spin_lock_init(&per_cpu(l1sram_lock, cpu));
94 printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95 L1_SCRATCH_LENGTH >> 10);
96 }
97 }
98
99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102 unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106 per_cpu(free_l1_data_A_sram_head, cpu).next =
107 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108 if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109 printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110 return;
111 }
112
113 per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114 (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115 per_cpu(free_l1_data_A_sram_head, cpu).next->size =
116 L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
117 per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118 per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119
120 per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121
122 printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123 L1_DATA_A_LENGTH >> 10,
124 per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125 }
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129 per_cpu(free_l1_data_B_sram_head, cpu).next =
130 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131 if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132 printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133 return;
134 }
135
136 per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137 (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138 per_cpu(free_l1_data_B_sram_head, cpu).next->size =
139 L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
140 per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141 per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142
143 per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144
145 printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146 L1_DATA_B_LENGTH >> 10,
147 per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148 /* mutex initialize */
149 }
150 #endif
151
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153 for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154 spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157
158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161 unsigned int cpu;
162 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163 per_cpu(free_l1_inst_sram_head, cpu).next =
164 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165 if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166 printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167 return;
168 }
169
170 per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171 (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172 per_cpu(free_l1_inst_sram_head, cpu).next->size =
173 L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
174 per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175 per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176
177 per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178
179 printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180 L1_CODE_LENGTH >> 10,
181 per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182
183 /* mutex initialize */
184 spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185 }
186 #endif
187 }
188
189 #ifdef __ADSPBF60x__
190 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191 {
192 int status;
193
194 printk(KERN_ERR "L2 ecc error happened\n");
195 status = bfin_read32(L2CTL0_STAT);
196 if (status & 0x1)
197 printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
198 bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
199 if (status & 0x2)
200 printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
201 bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
202
203 status = status >> 8;
204 if (status)
205 printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206 status, bfin_read32(L2CTL0_ERRADDR0 + status));
207
208 panic("L2 Ecc error");
209 return IRQ_HANDLED;
210 }
211 #endif
212
213 static void __init l2_sram_init(void)
214 {
215 #if L2_LENGTH != 0
216
217 #ifdef __ADSPBF60x__
218 int ret;
219
220 ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221 NULL);
222 if (unlikely(ret < 0)) {
223 printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224 return;
225 }
226 #endif
227
228 free_l2_sram_head.next =
229 kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230 if (!free_l2_sram_head.next) {
231 printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232 return;
233 }
234
235 free_l2_sram_head.next->paddr =
236 (void *)L2_START + (_ebss_l2 - _stext_l2);
237 free_l2_sram_head.next->size =
238 L2_LENGTH - (_ebss_l2 - _stext_l2);
239 free_l2_sram_head.next->pid = 0;
240 free_l2_sram_head.next->next = NULL;
241
242 used_l2_sram_head.next = NULL;
243
244 printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245 L2_LENGTH >> 10,
246 free_l2_sram_head.next->size >> 10);
247
248 /* mutex initialize */
249 spin_lock_init(&l2_sram_lock);
250 #endif
251 }
252
253 static int __init bfin_sram_init(void)
254 {
255 sram_piece_cache = kmem_cache_create("sram_piece_cache",
256 sizeof(struct sram_piece),
257 0, SLAB_PANIC, NULL);
258
259 l1sram_init();
260 l1_data_sram_init();
261 l1_inst_sram_init();
262 l2_sram_init();
263
264 return 0;
265 }
266 pure_initcall(bfin_sram_init);
267
268 /* SRAM allocate function */
269 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270 struct sram_piece *pused_head)
271 {
272 struct sram_piece *pslot, *plast, *pavail;
273
274 if (size <= 0 || !pfree_head || !pused_head)
275 return NULL;
276
277 /* Align the size */
278 size = (size + 3) & ~3;
279
280 pslot = pfree_head->next;
281 plast = pfree_head;
282
283 /* search an available piece slot */
284 while (pslot != NULL && size > pslot->size) {
285 plast = pslot;
286 pslot = pslot->next;
287 }
288
289 if (!pslot)
290 return NULL;
291
292 if (pslot->size == size) {
293 plast->next = pslot->next;
294 pavail = pslot;
295 } else {
296 /* use atomic so our L1 allocator can be used atomically */
297 pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298
299 if (!pavail)
300 return NULL;
301
302 pavail->paddr = pslot->paddr;
303 pavail->size = size;
304 pslot->paddr += size;
305 pslot->size -= size;
306 }
307
308 pavail->pid = current->pid;
309
310 pslot = pused_head->next;
311 plast = pused_head;
312
313 /* insert new piece into used piece list !!! */
314 while (pslot != NULL && pavail->paddr < pslot->paddr) {
315 plast = pslot;
316 pslot = pslot->next;
317 }
318
319 pavail->next = pslot;
320 plast->next = pavail;
321
322 return pavail->paddr;
323 }
324
325 /* Allocate the largest available block. */
326 static void *_sram_alloc_max(struct sram_piece *pfree_head,
327 struct sram_piece *pused_head,
328 unsigned long *psize)
329 {
330 struct sram_piece *pslot, *pmax;
331
332 if (!pfree_head || !pused_head)
333 return NULL;
334
335 pmax = pslot = pfree_head->next;
336
337 /* search an available piece slot */
338 while (pslot != NULL) {
339 if (pslot->size > pmax->size)
340 pmax = pslot;
341 pslot = pslot->next;
342 }
343
344 if (!pmax)
345 return NULL;
346
347 *psize = pmax->size;
348
349 return _sram_alloc(*psize, pfree_head, pused_head);
350 }
351
352 /* SRAM free function */
353 static int _sram_free(const void *addr,
354 struct sram_piece *pfree_head,
355 struct sram_piece *pused_head)
356 {
357 struct sram_piece *pslot, *plast, *pavail;
358
359 if (!pfree_head || !pused_head)
360 return -1;
361
362 /* search the relevant memory slot */
363 pslot = pused_head->next;
364 plast = pused_head;
365
366 /* search an available piece slot */
367 while (pslot != NULL && pslot->paddr != addr) {
368 plast = pslot;
369 pslot = pslot->next;
370 }
371
372 if (!pslot)
373 return -1;
374
375 plast->next = pslot->next;
376 pavail = pslot;
377 pavail->pid = 0;
378
379 /* insert free pieces back to the free list */
380 pslot = pfree_head->next;
381 plast = pfree_head;
382
383 while (pslot != NULL && addr > pslot->paddr) {
384 plast = pslot;
385 pslot = pslot->next;
386 }
387
388 if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389 plast->size += pavail->size;
390 kmem_cache_free(sram_piece_cache, pavail);
391 } else {
392 pavail->next = plast->next;
393 plast->next = pavail;
394 plast = pavail;
395 }
396
397 if (pslot && plast->paddr + plast->size == pslot->paddr) {
398 plast->size += pslot->size;
399 plast->next = pslot->next;
400 kmem_cache_free(sram_piece_cache, pslot);
401 }
402
403 return 0;
404 }
405
406 int sram_free(const void *addr)
407 {
408
409 #if L1_CODE_LENGTH != 0
410 if (addr >= (void *)get_l1_code_start()
411 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412 return l1_inst_sram_free(addr);
413 else
414 #endif
415 #if L1_DATA_A_LENGTH != 0
416 if (addr >= (void *)get_l1_data_a_start()
417 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418 return l1_data_A_sram_free(addr);
419 else
420 #endif
421 #if L1_DATA_B_LENGTH != 0
422 if (addr >= (void *)get_l1_data_b_start()
423 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424 return l1_data_B_sram_free(addr);
425 else
426 #endif
427 #if L2_LENGTH != 0
428 if (addr >= (void *)L2_START
429 && addr < (void *)(L2_START + L2_LENGTH))
430 return l2_sram_free(addr);
431 else
432 #endif
433 return -1;
434 }
435 EXPORT_SYMBOL(sram_free);
436
437 void *l1_data_A_sram_alloc(size_t size)
438 {
439 #if L1_DATA_A_LENGTH != 0
440 unsigned long flags;
441 void *addr;
442 unsigned int cpu;
443
444 cpu = smp_processor_id();
445 /* add mutex operation */
446 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447
448 addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449 &per_cpu(used_l1_data_A_sram_head, cpu));
450
451 /* add mutex operation */
452 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453
454 pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455 (long unsigned int)addr, size);
456
457 return addr;
458 #else
459 return NULL;
460 #endif
461 }
462 EXPORT_SYMBOL(l1_data_A_sram_alloc);
463
464 int l1_data_A_sram_free(const void *addr)
465 {
466 #if L1_DATA_A_LENGTH != 0
467 unsigned long flags;
468 int ret;
469 unsigned int cpu;
470
471 cpu = smp_processor_id();
472 /* add mutex operation */
473 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474
475 ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476 &per_cpu(used_l1_data_A_sram_head, cpu));
477
478 /* add mutex operation */
479 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480
481 return ret;
482 #else
483 return -1;
484 #endif
485 }
486 EXPORT_SYMBOL(l1_data_A_sram_free);
487
488 void *l1_data_B_sram_alloc(size_t size)
489 {
490 #if L1_DATA_B_LENGTH != 0
491 unsigned long flags;
492 void *addr;
493 unsigned int cpu;
494
495 cpu = smp_processor_id();
496 /* add mutex operation */
497 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498
499 addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500 &per_cpu(used_l1_data_B_sram_head, cpu));
501
502 /* add mutex operation */
503 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504
505 pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506 (long unsigned int)addr, size);
507
508 return addr;
509 #else
510 return NULL;
511 #endif
512 }
513 EXPORT_SYMBOL(l1_data_B_sram_alloc);
514
515 int l1_data_B_sram_free(const void *addr)
516 {
517 #if L1_DATA_B_LENGTH != 0
518 unsigned long flags;
519 int ret;
520 unsigned int cpu;
521
522 cpu = smp_processor_id();
523 /* add mutex operation */
524 spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525
526 ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527 &per_cpu(used_l1_data_B_sram_head, cpu));
528
529 /* add mutex operation */
530 spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531
532 return ret;
533 #else
534 return -1;
535 #endif
536 }
537 EXPORT_SYMBOL(l1_data_B_sram_free);
538
539 void *l1_data_sram_alloc(size_t size)
540 {
541 void *addr = l1_data_A_sram_alloc(size);
542
543 if (!addr)
544 addr = l1_data_B_sram_alloc(size);
545
546 return addr;
547 }
548 EXPORT_SYMBOL(l1_data_sram_alloc);
549
550 void *l1_data_sram_zalloc(size_t size)
551 {
552 void *addr = l1_data_sram_alloc(size);
553
554 if (addr)
555 memset(addr, 0x00, size);
556
557 return addr;
558 }
559 EXPORT_SYMBOL(l1_data_sram_zalloc);
560
561 int l1_data_sram_free(const void *addr)
562 {
563 int ret;
564 ret = l1_data_A_sram_free(addr);
565 if (ret == -1)
566 ret = l1_data_B_sram_free(addr);
567 return ret;
568 }
569 EXPORT_SYMBOL(l1_data_sram_free);
570
571 void *l1_inst_sram_alloc(size_t size)
572 {
573 #if L1_CODE_LENGTH != 0
574 unsigned long flags;
575 void *addr;
576 unsigned int cpu;
577
578 cpu = smp_processor_id();
579 /* add mutex operation */
580 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581
582 addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583 &per_cpu(used_l1_inst_sram_head, cpu));
584
585 /* add mutex operation */
586 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587
588 pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589 (long unsigned int)addr, size);
590
591 return addr;
592 #else
593 return NULL;
594 #endif
595 }
596 EXPORT_SYMBOL(l1_inst_sram_alloc);
597
598 int l1_inst_sram_free(const void *addr)
599 {
600 #if L1_CODE_LENGTH != 0
601 unsigned long flags;
602 int ret;
603 unsigned int cpu;
604
605 cpu = smp_processor_id();
606 /* add mutex operation */
607 spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608
609 ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610 &per_cpu(used_l1_inst_sram_head, cpu));
611
612 /* add mutex operation */
613 spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614
615 return ret;
616 #else
617 return -1;
618 #endif
619 }
620 EXPORT_SYMBOL(l1_inst_sram_free);
621
622 /* L1 Scratchpad memory allocate function */
623 void *l1sram_alloc(size_t size)
624 {
625 unsigned long flags;
626 void *addr;
627 unsigned int cpu;
628
629 cpu = smp_processor_id();
630 /* add mutex operation */
631 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632
633 addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634 &per_cpu(used_l1_ssram_head, cpu));
635
636 /* add mutex operation */
637 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638
639 return addr;
640 }
641
642 /* L1 Scratchpad memory allocate function */
643 void *l1sram_alloc_max(size_t *psize)
644 {
645 unsigned long flags;
646 void *addr;
647 unsigned int cpu;
648
649 cpu = smp_processor_id();
650 /* add mutex operation */
651 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652
653 addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654 &per_cpu(used_l1_ssram_head, cpu), psize);
655
656 /* add mutex operation */
657 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658
659 return addr;
660 }
661
662 /* L1 Scratchpad memory free function */
663 int l1sram_free(const void *addr)
664 {
665 unsigned long flags;
666 int ret;
667 unsigned int cpu;
668
669 cpu = smp_processor_id();
670 /* add mutex operation */
671 spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672
673 ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674 &per_cpu(used_l1_ssram_head, cpu));
675
676 /* add mutex operation */
677 spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678
679 return ret;
680 }
681
682 void *l2_sram_alloc(size_t size)
683 {
684 #if L2_LENGTH != 0
685 unsigned long flags;
686 void *addr;
687
688 /* add mutex operation */
689 spin_lock_irqsave(&l2_sram_lock, flags);
690
691 addr = _sram_alloc(size, &free_l2_sram_head,
692 &used_l2_sram_head);
693
694 /* add mutex operation */
695 spin_unlock_irqrestore(&l2_sram_lock, flags);
696
697 pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698 (long unsigned int)addr, size);
699
700 return addr;
701 #else
702 return NULL;
703 #endif
704 }
705 EXPORT_SYMBOL(l2_sram_alloc);
706
707 void *l2_sram_zalloc(size_t size)
708 {
709 void *addr = l2_sram_alloc(size);
710
711 if (addr)
712 memset(addr, 0x00, size);
713
714 return addr;
715 }
716 EXPORT_SYMBOL(l2_sram_zalloc);
717
718 int l2_sram_free(const void *addr)
719 {
720 #if L2_LENGTH != 0
721 unsigned long flags;
722 int ret;
723
724 /* add mutex operation */
725 spin_lock_irqsave(&l2_sram_lock, flags);
726
727 ret = _sram_free(addr, &free_l2_sram_head,
728 &used_l2_sram_head);
729
730 /* add mutex operation */
731 spin_unlock_irqrestore(&l2_sram_lock, flags);
732
733 return ret;
734 #else
735 return -1;
736 #endif
737 }
738 EXPORT_SYMBOL(l2_sram_free);
739
740 int sram_free_with_lsl(const void *addr)
741 {
742 struct sram_list_struct *lsl, **tmp;
743 struct mm_struct *mm = current->mm;
744 int ret = -1;
745
746 for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747 if ((*tmp)->addr == addr) {
748 lsl = *tmp;
749 ret = sram_free(addr);
750 *tmp = lsl->next;
751 kfree(lsl);
752 break;
753 }
754
755 return ret;
756 }
757 EXPORT_SYMBOL(sram_free_with_lsl);
758
759 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760 * tracked. These are designed for userspace so that when a process exits,
761 * we can safely reap their resources.
762 */
763 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764 {
765 void *addr = NULL;
766 struct sram_list_struct *lsl = NULL;
767 struct mm_struct *mm = current->mm;
768
769 lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770 if (!lsl)
771 return NULL;
772
773 if (flags & L1_INST_SRAM)
774 addr = l1_inst_sram_alloc(size);
775
776 if (addr == NULL && (flags & L1_DATA_A_SRAM))
777 addr = l1_data_A_sram_alloc(size);
778
779 if (addr == NULL && (flags & L1_DATA_B_SRAM))
780 addr = l1_data_B_sram_alloc(size);
781
782 if (addr == NULL && (flags & L2_SRAM))
783 addr = l2_sram_alloc(size);
784
785 if (addr == NULL) {
786 kfree(lsl);
787 return NULL;
788 }
789 lsl->addr = addr;
790 lsl->length = size;
791 lsl->next = mm->context.sram_list;
792 mm->context.sram_list = lsl;
793 return addr;
794 }
795 EXPORT_SYMBOL(sram_alloc_with_lsl);
796
797 #ifdef CONFIG_PROC_FS
798 /* Once we get a real allocator, we'll throw all of this away.
799 * Until then, we need some sort of visibility into the L1 alloc.
800 */
801 /* Need to keep line of output the same. Currently, that is 44 bytes
802 * (including newline).
803 */
804 static int _sram_proc_show(struct seq_file *m, const char *desc,
805 struct sram_piece *pfree_head,
806 struct sram_piece *pused_head)
807 {
808 struct sram_piece *pslot;
809
810 if (!pfree_head || !pused_head)
811 return -1;
812
813 seq_printf(m, "--- SRAM %-14s Size PID State \n", desc);
814
815 /* search the relevant memory slot */
816 pslot = pused_head->next;
817
818 while (pslot != NULL) {
819 seq_printf(m, "%p-%p %10i %5i %-10s\n",
820 pslot->paddr, pslot->paddr + pslot->size,
821 pslot->size, pslot->pid, "ALLOCATED");
822
823 pslot = pslot->next;
824 }
825
826 pslot = pfree_head->next;
827
828 while (pslot != NULL) {
829 seq_printf(m, "%p-%p %10i %5i %-10s\n",
830 pslot->paddr, pslot->paddr + pslot->size,
831 pslot->size, pslot->pid, "FREE");
832
833 pslot = pslot->next;
834 }
835
836 return 0;
837 }
838 static int sram_proc_show(struct seq_file *m, void *v)
839 {
840 unsigned int cpu;
841
842 for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843 if (_sram_proc_show(m, "Scratchpad",
844 &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845 goto not_done;
846 #if L1_DATA_A_LENGTH != 0
847 if (_sram_proc_show(m, "L1 Data A",
848 &per_cpu(free_l1_data_A_sram_head, cpu),
849 &per_cpu(used_l1_data_A_sram_head, cpu)))
850 goto not_done;
851 #endif
852 #if L1_DATA_B_LENGTH != 0
853 if (_sram_proc_show(m, "L1 Data B",
854 &per_cpu(free_l1_data_B_sram_head, cpu),
855 &per_cpu(used_l1_data_B_sram_head, cpu)))
856 goto not_done;
857 #endif
858 #if L1_CODE_LENGTH != 0
859 if (_sram_proc_show(m, "L1 Instruction",
860 &per_cpu(free_l1_inst_sram_head, cpu),
861 &per_cpu(used_l1_inst_sram_head, cpu)))
862 goto not_done;
863 #endif
864 }
865 #if L2_LENGTH != 0
866 if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867 goto not_done;
868 #endif
869 not_done:
870 return 0;
871 }
872
873 static int sram_proc_open(struct inode *inode, struct file *file)
874 {
875 return single_open(file, sram_proc_show, NULL);
876 }
877
878 static const struct file_operations sram_proc_ops = {
879 .open = sram_proc_open,
880 .read = seq_read,
881 .llseek = seq_lseek,
882 .release = single_release,
883 };
884
885 static int __init sram_proc_init(void)
886 {
887 struct proc_dir_entry *ptr;
888
889 ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890 if (!ptr) {
891 printk(KERN_WARNING "unable to create /proc/sram\n");
892 return -1;
893 }
894 return 0;
895 }
896 late_initcall(sram_proc_init);
897 #endif
This page took 0.049542 seconds and 6 git commands to generate.