e6a722715a8dd9038f49979b00c03061a9d1858f
[deliverable/linux.git] / arch / cris / arch-v10 / kernel / time.c
1 /*
2 * linux/arch/cris/arch-v10/kernel/time.c
3 *
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Copyright (C) 1999-2002 Axis Communications AB
6 *
7 */
8
9 #include <linux/timex.h>
10 #include <linux/time.h>
11 #include <linux/jiffies.h>
12 #include <linux/interrupt.h>
13 #include <linux/swap.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <arch/svinto.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/irq_regs.h>
23
24 /* define this if you need to use print_timestamp */
25 /* it will make jiffies at 96 hz instead of 100 hz though */
26 #undef USE_CASCADE_TIMERS
27
28 unsigned long get_ns_in_jiffie(void)
29 {
30 unsigned char timer_count, t1;
31 unsigned short presc_count;
32 unsigned long ns;
33 unsigned long flags;
34
35 local_irq_save(flags);
36 timer_count = *R_TIMER0_DATA;
37 presc_count = *R_TIM_PRESC_STATUS;
38 /* presc_count might be wrapped */
39 t1 = *R_TIMER0_DATA;
40
41 if (timer_count != t1){
42 /* it wrapped, read prescaler again... */
43 presc_count = *R_TIM_PRESC_STATUS;
44 timer_count = t1;
45 }
46 local_irq_restore(flags);
47 if (presc_count >= PRESCALE_VALUE/2 ){
48 presc_count = PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
49 } else {
50 presc_count = PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
51 }
52
53 ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
54 ( (presc_count) * (1000000000/PRESCALE_FREQ));
55 return ns;
56 }
57
58 static u32 cris_v10_gettimeoffset(void)
59 {
60 u32 count;
61
62 /* The timer interrupt comes from Etrax timer 0. In order to get
63 * better precision, we check the current value. It might have
64 * underflowed already though.
65 */
66 count = *R_TIMER0_DATA;
67
68 /* Convert timer value to nsec */
69 return (TIMER0_DIV - count) * (NSEC_PER_SEC/HZ)/TIMER0_DIV;
70 }
71
72 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
73 *
74 * 3.10.4 Watchdog timer
75
76 * When the watchdog timer is started, it generates an NMI if the watchdog
77 * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
78 * stopped after an additional 3.3 ms, the watchdog resets the chip.
79 * The watchdog timer is stopped after reset. The watchdog timer is controlled
80 * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
81 * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
82 * described in the table below:
83 *
84 * Watchdog Value written:
85 * state: To enable: To key: Operation:
86 * -------- ---------- ------- ----------
87 * stopped 0 X No effect.
88 * stopped 1 key_val Start watchdog with key = key_val.
89 * started 0 ~key Stop watchdog
90 * started 1 ~key Restart watchdog with key = ~key.
91 * started X new_key_val Change key to new_key_val.
92 *
93 * Note: '~' is the bitwise NOT operator.
94 *
95 */
96
97 /* right now, starting the watchdog is the same as resetting it */
98 #define start_watchdog reset_watchdog
99
100 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
101 static int watchdog_key = 0; /* arbitrary number */
102 #endif
103
104 /* number of pages to consider "out of memory". it is normal that the memory
105 * is used though, so put this really low.
106 */
107
108 #define WATCHDOG_MIN_FREE_PAGES 8
109
110 void
111 reset_watchdog(void)
112 {
113 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
114 /* only keep watchdog happy as long as we have memory left! */
115 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
116 /* reset the watchdog with the inverse of the old key */
117 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
118 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
119 IO_STATE(R_WATCHDOG, enable, start);
120 }
121 #endif
122 }
123
124 /* stop the watchdog - we still need the correct key */
125
126 void
127 stop_watchdog(void)
128 {
129 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
130 watchdog_key ^= 0x7; /* invert key, which is 3 bits */
131 *R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
132 IO_STATE(R_WATCHDOG, enable, stop);
133 #endif
134 }
135
136
137 /*
138 * timer_interrupt() needs to keep up the real-time clock,
139 * as well as call the "xtime_update()" routine every clocktick
140 */
141
142 //static unsigned short myjiff; /* used by our debug routine print_timestamp */
143
144 extern void cris_do_profile(struct pt_regs *regs);
145
146 static inline irqreturn_t
147 timer_interrupt(int irq, void *dev_id)
148 {
149 struct pt_regs *regs = get_irq_regs();
150 /* acknowledge the timer irq */
151
152 #ifdef USE_CASCADE_TIMERS
153 *R_TIMER_CTRL =
154 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
155 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
156 IO_STATE( R_TIMER_CTRL, i1, clr) |
157 IO_STATE( R_TIMER_CTRL, tm1, run) |
158 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
159 IO_STATE( R_TIMER_CTRL, i0, clr) |
160 IO_STATE( R_TIMER_CTRL, tm0, run) |
161 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
162 #else
163 *R_TIMER_CTRL = r_timer_ctrl_shadow |
164 IO_STATE(R_TIMER_CTRL, i0, clr);
165 #endif
166
167 /* reset watchdog otherwise it resets us! */
168 reset_watchdog();
169
170 /* Update statistics. */
171 update_process_times(user_mode(regs));
172
173 /* call the real timer interrupt handler */
174
175 xtime_update(1);
176
177 cris_do_profile(regs); /* Save profiling information */
178 return IRQ_HANDLED;
179 }
180
181 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
182
183 static struct irqaction irq2 = {
184 .handler = timer_interrupt,
185 .flags = IRQF_SHARED,
186 .name = "timer",
187 };
188
189 void __init
190 time_init(void)
191 {
192 arch_gettimeoffset = cris_v10_gettimeoffset;
193
194 /* probe for the RTC and read it if it exists
195 * Before the RTC can be probed the loops_per_usec variable needs
196 * to be initialized to make usleep work. A better value for
197 * loops_per_usec is calculated by the kernel later once the
198 * clock has started.
199 */
200 loops_per_usec = 50;
201
202 /* Setup the etrax timers
203 * Base frequency is 25000 hz, divider 250 -> 100 HZ
204 * In normal mode, we use timer0, so timer1 is free. In cascade
205 * mode (which we sometimes use for debugging) both timers are used.
206 * Remember that linux/timex.h contains #defines that rely on the
207 * timer settings below (hz and divide factor) !!!
208 */
209
210 #ifdef USE_CASCADE_TIMERS
211 *R_TIMER_CTRL =
212 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
213 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
214 IO_STATE( R_TIMER_CTRL, i1, nop) |
215 IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
216 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
217 IO_STATE( R_TIMER_CTRL, i0, nop) |
218 IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
219 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
220
221 *R_TIMER_CTRL = r_timer_ctrl_shadow =
222 IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
223 IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
224 IO_STATE( R_TIMER_CTRL, i1, nop) |
225 IO_STATE( R_TIMER_CTRL, tm1, run) |
226 IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
227 IO_STATE( R_TIMER_CTRL, i0, nop) |
228 IO_STATE( R_TIMER_CTRL, tm0, run) |
229 IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
230 #else
231 *R_TIMER_CTRL =
232 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
233 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
234 IO_STATE(R_TIMER_CTRL, i1, nop) |
235 IO_STATE(R_TIMER_CTRL, tm1, stop_ld) |
236 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
237 IO_STATE(R_TIMER_CTRL, i0, nop) |
238 IO_STATE(R_TIMER_CTRL, tm0, stop_ld) |
239 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
240
241 *R_TIMER_CTRL = r_timer_ctrl_shadow =
242 IO_FIELD(R_TIMER_CTRL, timerdiv1, 192) |
243 IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV) |
244 IO_STATE(R_TIMER_CTRL, i1, nop) |
245 IO_STATE(R_TIMER_CTRL, tm1, run) |
246 IO_STATE(R_TIMER_CTRL, clksel1, c19k2Hz) |
247 IO_STATE(R_TIMER_CTRL, i0, nop) |
248 IO_STATE(R_TIMER_CTRL, tm0, run) |
249 IO_STATE(R_TIMER_CTRL, clksel0, flexible);
250
251 *R_TIMER_PRESCALE = PRESCALE_VALUE;
252 #endif
253
254 *R_IRQ_MASK0_SET =
255 IO_STATE(R_IRQ_MASK0_SET, timer0, set); /* unmask the timer irq */
256
257 /* now actually register the timer irq handler that calls timer_interrupt() */
258
259 setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
260
261 /* enable watchdog if we should use one */
262
263 #if defined(CONFIG_ETRAX_WATCHDOG) && !defined(CONFIG_SVINTO_SIM)
264 printk("Enabling watchdog...\n");
265 start_watchdog();
266
267 /* If we use the hardware watchdog, we want to trap it as an NMI
268 and dump registers before it resets us. For this to happen, we
269 must set the "m" NMI enable flag (which once set, is unset only
270 when an NMI is taken).
271
272 The same goes for the external NMI, but that doesn't have any
273 driver or infrastructure support yet. */
274 asm ("setf m");
275
276 *R_IRQ_MASK0_SET =
277 IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
278 *R_VECT_MASK_SET =
279 IO_STATE(R_VECT_MASK_SET, nmi, set);
280 #endif
281 }
This page took 0.042114 seconds and 4 git commands to generate.