CRISv32: Better handling of watchdog bite
[deliverable/linux.git] / arch / cris / arch-v32 / kernel / time.c
1 /*
2 * linux/arch/cris/arch-v32/kernel/time.c
3 *
4 * Copyright (C) 2003-2010 Axis Communications AB
5 *
6 */
7
8 #include <linux/timex.h>
9 #include <linux/time.h>
10 #include <linux/clocksource.h>
11 #include <linux/interrupt.h>
12 #include <linux/swap.h>
13 #include <linux/sched.h>
14 #include <linux/init.h>
15 #include <linux/threads.h>
16 #include <linux/cpufreq.h>
17 #include <linux/mm.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
24
25 #include <hwregs/reg_map.h>
26 #include <hwregs/reg_rdwr.h>
27 #include <hwregs/timer_defs.h>
28 #include <hwregs/intr_vect_defs.h>
29 #ifdef CONFIG_CRIS_MACH_ARTPEC3
30 #include <hwregs/clkgen_defs.h>
31 #endif
32
33 /* Watchdog defines */
34 #define ETRAX_WD_KEY_MASK 0x7F /* key is 7 bit */
35 #define ETRAX_WD_HZ 763 /* watchdog counts at 763 Hz */
36 /* Number of 763 counts before watchdog bites */
37 #define ETRAX_WD_CNT ((2*ETRAX_WD_HZ)/HZ + 1)
38
39 /* Register the continuos readonly timer available in FS and ARTPEC-3. */
40 static cycle_t read_cont_rotime(struct clocksource *cs)
41 {
42 return (u32)REG_RD(timer, regi_timer0, r_time);
43 }
44
45 static struct clocksource cont_rotime = {
46 .name = "crisv32_rotime",
47 .rating = 300,
48 .read = read_cont_rotime,
49 .mask = CLOCKSOURCE_MASK(32),
50 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
51 };
52
53 static int __init etrax_init_cont_rotime(void)
54 {
55 clocksource_register_khz(&cont_rotime, 100000);
56 return 0;
57 }
58 arch_initcall(etrax_init_cont_rotime);
59
60 unsigned long timer_regs[NR_CPUS] =
61 {
62 regi_timer0,
63 #ifdef CONFIG_SMP
64 regi_timer2
65 #endif
66 };
67
68 extern int set_rtc_mmss(unsigned long nowtime);
69
70 #ifdef CONFIG_CPU_FREQ
71 static int cris_time_freq_notifier(struct notifier_block *nb,
72 unsigned long val, void *data);
73
74 static struct notifier_block cris_time_freq_notifier_block = {
75 .notifier_call = cris_time_freq_notifier,
76 };
77 #endif
78
79 unsigned long get_ns_in_jiffie(void)
80 {
81 reg_timer_r_tmr0_data data;
82 unsigned long ns;
83
84 data = REG_RD(timer, regi_timer0, r_tmr0_data);
85 ns = (TIMER0_DIV - data) * 10;
86 return ns;
87 }
88
89 /* From timer MDS describing the hardware watchdog:
90 * 4.3.1 Watchdog Operation
91 * The watchdog timer is an 8-bit timer with a configurable start value.
92 * Once started the watchdog counts downwards with a frequency of 763 Hz
93 * (100/131072 MHz). When the watchdog counts down to 1, it generates an
94 * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
95 * chip.
96 */
97 /* This gives us 1.3 ms to do something useful when the NMI comes */
98
99 /* Right now, starting the watchdog is the same as resetting it */
100 #define start_watchdog reset_watchdog
101
102 #if defined(CONFIG_ETRAX_WATCHDOG)
103 static short int watchdog_key = 42; /* arbitrary 7 bit number */
104 #endif
105
106 /* Number of pages to consider "out of memory". It is normal that the memory
107 * is used though, so set this really low. */
108 #define WATCHDOG_MIN_FREE_PAGES 8
109
110 /* for reliable NICE_DOGGY behaviour */
111 static int bite_in_progress;
112
113 void reset_watchdog(void)
114 {
115 #if defined(CONFIG_ETRAX_WATCHDOG)
116 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
117
118 #if defined(CONFIG_ETRAX_WATCHDOG_NICE_DOGGY)
119 if (unlikely(bite_in_progress))
120 return;
121 #endif
122 /* Only keep watchdog happy as long as we have memory left! */
123 if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
124 /* Reset the watchdog with the inverse of the old key */
125 /* Invert key, which is 7 bits */
126 watchdog_key ^= ETRAX_WD_KEY_MASK;
127 wd_ctrl.cnt = ETRAX_WD_CNT;
128 wd_ctrl.cmd = regk_timer_start;
129 wd_ctrl.key = watchdog_key;
130 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
131 }
132 #endif
133 }
134
135 /* stop the watchdog - we still need the correct key */
136
137 void stop_watchdog(void)
138 {
139 #if defined(CONFIG_ETRAX_WATCHDOG)
140 reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
141 watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
142 wd_ctrl.cnt = ETRAX_WD_CNT;
143 wd_ctrl.cmd = regk_timer_stop;
144 wd_ctrl.key = watchdog_key;
145 REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
146 #endif
147 }
148
149 extern void show_registers(struct pt_regs *regs);
150
151 void handle_watchdog_bite(struct pt_regs *regs)
152 {
153 #if defined(CONFIG_ETRAX_WATCHDOG)
154 extern int cause_of_death;
155
156 nmi_enter();
157 oops_in_progress = 1;
158 bite_in_progress = 1;
159 printk(KERN_WARNING "Watchdog bite\n");
160
161 /* Check if forced restart or unexpected watchdog */
162 if (cause_of_death == 0xbedead) {
163 #ifdef CONFIG_CRIS_MACH_ARTPEC3
164 /* There is a bug in Artpec-3 (voodoo TR 78) that requires
165 * us to go to lower frequency for the reset to be reliable
166 */
167 reg_clkgen_rw_clk_ctrl ctrl =
168 REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
169 ctrl.pll = 0;
170 REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
171 #endif
172 while(1);
173 }
174
175 /* Unexpected watchdog, stop the watchdog and dump registers. */
176 stop_watchdog();
177 printk(KERN_WARNING "Oops: bitten by watchdog\n");
178 show_registers(regs);
179 oops_in_progress = 0;
180 printk("\n"); /* Flush mtdoops. */
181 #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
182 reset_watchdog();
183 #endif
184 while(1) /* nothing */;
185 #endif
186 }
187
188 /*
189 * timer_interrupt() needs to keep up the real-time clock,
190 * as well as call the "xtime_update()" routine every clocktick.
191 */
192 extern void cris_do_profile(struct pt_regs *regs);
193
194 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
195 {
196 struct pt_regs *regs = get_irq_regs();
197 int cpu = smp_processor_id();
198 reg_timer_r_masked_intr masked_intr;
199 reg_timer_rw_ack_intr ack_intr = { 0 };
200
201 /* Check if the timer interrupt is for us (a tmr0 int) */
202 masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
203 if (!masked_intr.tmr0)
204 return IRQ_NONE;
205
206 /* Acknowledge the timer irq. */
207 ack_intr.tmr0 = 1;
208 REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
209
210 /* Reset watchdog otherwise it resets us! */
211 reset_watchdog();
212
213 /* Update statistics. */
214 update_process_times(user_mode(regs));
215
216 cris_do_profile(regs); /* Save profiling information */
217
218 /* The master CPU is responsible for the time keeping. */
219 if (cpu != 0)
220 return IRQ_HANDLED;
221
222 /* Call the real timer interrupt handler */
223 xtime_update(1);
224 return IRQ_HANDLED;
225 }
226
227 /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain. */
228 static struct irqaction irq_timer = {
229 .handler = timer_interrupt,
230 .flags = IRQF_SHARED,
231 .name = "timer"
232 };
233
234 void __init cris_timer_init(void)
235 {
236 int cpu = smp_processor_id();
237 reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
238 reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
239 reg_timer_rw_intr_mask timer_intr_mask;
240
241 /* Setup the etrax timers.
242 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
243 * We use timer0, so timer1 is free.
244 * The trig timer is used by the fasttimer API if enabled.
245 */
246
247 tmr0_ctrl.op = regk_timer_ld;
248 tmr0_ctrl.freq = regk_timer_f100;
249 REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
250 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
251 tmr0_ctrl.op = regk_timer_run;
252 REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
253
254 /* Enable the timer irq. */
255 timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
256 timer_intr_mask.tmr0 = 1;
257 REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
258 }
259
260 void __init time_init(void)
261 {
262 reg_intr_vect_rw_mask intr_mask;
263
264 /* Probe for the RTC and read it if it exists.
265 * Before the RTC can be probed the loops_per_usec variable needs
266 * to be initialized to make usleep work. A better value for
267 * loops_per_usec is calculated by the kernel later once the
268 * clock has started.
269 */
270 loops_per_usec = 50;
271
272 /* Start CPU local timer. */
273 cris_timer_init();
274
275 /* Enable the timer irq in global config. */
276 intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
277 intr_mask.timer0 = 1;
278 REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
279
280 /* Now actually register the timer irq handler that calls
281 * timer_interrupt(). */
282 setup_irq(TIMER0_INTR_VECT, &irq_timer);
283
284 /* Enable watchdog if we should use one. */
285
286 #if defined(CONFIG_ETRAX_WATCHDOG)
287 printk(KERN_INFO "Enabling watchdog...\n");
288 start_watchdog();
289
290 /* If we use the hardware watchdog, we want to trap it as an NMI
291 * and dump registers before it resets us. For this to happen, we
292 * must set the "m" NMI enable flag (which once set, is unset only
293 * when an NMI is taken). */
294 {
295 unsigned long flags;
296 local_save_flags(flags);
297 flags |= (1<<30); /* NMI M flag is at bit 30 */
298 local_irq_restore(flags);
299 }
300 #endif
301
302 #ifdef CONFIG_CPU_FREQ
303 cpufreq_register_notifier(&cris_time_freq_notifier_block,
304 CPUFREQ_TRANSITION_NOTIFIER);
305 #endif
306 }
307
308 #ifdef CONFIG_CPU_FREQ
309 static int cris_time_freq_notifier(struct notifier_block *nb,
310 unsigned long val, void *data)
311 {
312 struct cpufreq_freqs *freqs = data;
313 if (val == CPUFREQ_POSTCHANGE) {
314 reg_timer_r_tmr0_data data;
315 reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
316 do {
317 data = REG_RD(timer, timer_regs[freqs->cpu],
318 r_tmr0_data);
319 } while (data > 20);
320 REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
321 }
322 return 0;
323 }
324 #endif
This page took 0.04863 seconds and 5 git commands to generate.