Merge with temp tree to get David's gdb inferior calls patch
[deliverable/linux.git] / arch / i386 / kernel / cpu / mtrr / main.c
1 /* Generic MTRR (Memory Type Range Register) driver.
2
3 Copyright (C) 1997-2000 Richard Gooch
4 Copyright (c) 2002 Patrick Mochel
5
6 This library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Library General Public
8 License as published by the Free Software Foundation; either
9 version 2 of the License, or (at your option) any later version.
10
11 This library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Library General Public License for more details.
15
16 You should have received a copy of the GNU Library General Public
17 License along with this library; if not, write to the Free
18 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
20 Richard Gooch may be reached by email at rgooch@atnf.csiro.au
21 The postal address is:
22 Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
23
24 Source: "Pentium Pro Family Developer's Manual, Volume 3:
25 Operating System Writer's Guide" (Intel document number 242692),
26 section 11.11.7
27
28 This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
29 on 6-7 March 2002.
30 Source: Intel Architecture Software Developers Manual, Volume 3:
31 System Programming Guide; Section 9.11. (1997 edition - PPro).
32 */
33
34 #include <linux/module.h>
35 #include <linux/init.h>
36 #include <linux/pci.h>
37 #include <linux/smp.h>
38 #include <linux/cpu.h>
39
40 #include <asm/mtrr.h>
41
42 #include <asm/uaccess.h>
43 #include <asm/processor.h>
44 #include <asm/msr.h>
45 #include "mtrr.h"
46
47 #define MTRR_VERSION "2.0 (20020519)"
48
49 u32 num_var_ranges = 0;
50
51 unsigned int *usage_table;
52 static DECLARE_MUTEX(main_lock);
53
54 u32 size_or_mask, size_and_mask;
55
56 static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
57
58 struct mtrr_ops * mtrr_if = NULL;
59
60 static void set_mtrr(unsigned int reg, unsigned long base,
61 unsigned long size, mtrr_type type);
62
63 extern int arr3_protected;
64
65 void set_mtrr_ops(struct mtrr_ops * ops)
66 {
67 if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
68 mtrr_ops[ops->vendor] = ops;
69 }
70
71 /* Returns non-zero if we have the write-combining memory type */
72 static int have_wrcomb(void)
73 {
74 struct pci_dev *dev;
75 u8 rev;
76
77 if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
78 /* ServerWorks LE chipsets < rev 6 have problems with write-combining
79 Don't allow it and leave room for other chipsets to be tagged */
80 if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
81 dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
82 pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
83 if (rev <= 5) {
84 printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
85 pci_dev_put(dev);
86 return 0;
87 }
88 }
89 /* Intel 450NX errata # 23. Non ascending cacheline evictions to
90 write combining memory may resulting in data corruption */
91 if (dev->vendor == PCI_VENDOR_ID_INTEL &&
92 dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
93 printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
94 pci_dev_put(dev);
95 return 0;
96 }
97 pci_dev_put(dev);
98 }
99 return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
100 }
101
102 /* This function returns the number of variable MTRRs */
103 static void __init set_num_var_ranges(void)
104 {
105 unsigned long config = 0, dummy;
106
107 if (use_intel()) {
108 rdmsr(MTRRcap_MSR, config, dummy);
109 } else if (is_cpu(AMD))
110 config = 2;
111 else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
112 config = 8;
113 num_var_ranges = config & 0xff;
114 }
115
116 static void __init init_table(void)
117 {
118 int i, max;
119
120 max = num_var_ranges;
121 if ((usage_table = kmalloc(max * sizeof *usage_table, GFP_KERNEL))
122 == NULL) {
123 printk(KERN_ERR "mtrr: could not allocate\n");
124 return;
125 }
126 for (i = 0; i < max; i++)
127 usage_table[i] = 1;
128 }
129
130 struct set_mtrr_data {
131 atomic_t count;
132 atomic_t gate;
133 unsigned long smp_base;
134 unsigned long smp_size;
135 unsigned int smp_reg;
136 mtrr_type smp_type;
137 };
138
139 #ifdef CONFIG_SMP
140
141 static void ipi_handler(void *info)
142 /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
143 [RETURNS] Nothing.
144 */
145 {
146 struct set_mtrr_data *data = info;
147 unsigned long flags;
148
149 local_irq_save(flags);
150
151 atomic_dec(&data->count);
152 while(!atomic_read(&data->gate))
153 cpu_relax();
154
155 /* The master has cleared me to execute */
156 if (data->smp_reg != ~0U)
157 mtrr_if->set(data->smp_reg, data->smp_base,
158 data->smp_size, data->smp_type);
159 else
160 mtrr_if->set_all();
161
162 atomic_dec(&data->count);
163 while(atomic_read(&data->gate))
164 cpu_relax();
165
166 atomic_dec(&data->count);
167 local_irq_restore(flags);
168 }
169
170 #endif
171
172 /**
173 * set_mtrr - update mtrrs on all processors
174 * @reg: mtrr in question
175 * @base: mtrr base
176 * @size: mtrr size
177 * @type: mtrr type
178 *
179 * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
180 *
181 * 1. Send IPI to do the following:
182 * 2. Disable Interrupts
183 * 3. Wait for all procs to do so
184 * 4. Enter no-fill cache mode
185 * 5. Flush caches
186 * 6. Clear PGE bit
187 * 7. Flush all TLBs
188 * 8. Disable all range registers
189 * 9. Update the MTRRs
190 * 10. Enable all range registers
191 * 11. Flush all TLBs and caches again
192 * 12. Enter normal cache mode and reenable caching
193 * 13. Set PGE
194 * 14. Wait for buddies to catch up
195 * 15. Enable interrupts.
196 *
197 * What does that mean for us? Well, first we set data.count to the number
198 * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
199 * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
200 * Meanwhile, they are waiting for that flag to be set. Once it's set, each
201 * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
202 * differently, so we call mtrr_if->set() callback and let them take care of it.
203 * When they're done, they again decrement data->count and wait for data.gate to
204 * be reset.
205 * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
206 * Everyone then enables interrupts and we all continue on.
207 *
208 * Note that the mechanism is the same for UP systems, too; all the SMP stuff
209 * becomes nops.
210 */
211 static void set_mtrr(unsigned int reg, unsigned long base,
212 unsigned long size, mtrr_type type)
213 {
214 struct set_mtrr_data data;
215 unsigned long flags;
216
217 data.smp_reg = reg;
218 data.smp_base = base;
219 data.smp_size = size;
220 data.smp_type = type;
221 atomic_set(&data.count, num_booting_cpus() - 1);
222 atomic_set(&data.gate,0);
223
224 /* Start the ball rolling on other CPUs */
225 if (smp_call_function(ipi_handler, &data, 1, 0) != 0)
226 panic("mtrr: timed out waiting for other CPUs\n");
227
228 local_irq_save(flags);
229
230 while(atomic_read(&data.count))
231 cpu_relax();
232
233 /* ok, reset count and toggle gate */
234 atomic_set(&data.count, num_booting_cpus() - 1);
235 atomic_set(&data.gate,1);
236
237 /* do our MTRR business */
238
239 /* HACK!
240 * We use this same function to initialize the mtrrs on boot.
241 * The state of the boot cpu's mtrrs has been saved, and we want
242 * to replicate across all the APs.
243 * If we're doing that @reg is set to something special...
244 */
245 if (reg != ~0U)
246 mtrr_if->set(reg,base,size,type);
247
248 /* wait for the others */
249 while(atomic_read(&data.count))
250 cpu_relax();
251
252 atomic_set(&data.count, num_booting_cpus() - 1);
253 atomic_set(&data.gate,0);
254
255 /*
256 * Wait here for everyone to have seen the gate change
257 * So we're the last ones to touch 'data'
258 */
259 while(atomic_read(&data.count))
260 cpu_relax();
261
262 local_irq_restore(flags);
263 }
264
265 /**
266 * mtrr_add_page - Add a memory type region
267 * @base: Physical base address of region in pages (4 KB)
268 * @size: Physical size of region in pages (4 KB)
269 * @type: Type of MTRR desired
270 * @increment: If this is true do usage counting on the region
271 *
272 * Memory type region registers control the caching on newer Intel and
273 * non Intel processors. This function allows drivers to request an
274 * MTRR is added. The details and hardware specifics of each processor's
275 * implementation are hidden from the caller, but nevertheless the
276 * caller should expect to need to provide a power of two size on an
277 * equivalent power of two boundary.
278 *
279 * If the region cannot be added either because all regions are in use
280 * or the CPU cannot support it a negative value is returned. On success
281 * the register number for this entry is returned, but should be treated
282 * as a cookie only.
283 *
284 * On a multiprocessor machine the changes are made to all processors.
285 * This is required on x86 by the Intel processors.
286 *
287 * The available types are
288 *
289 * %MTRR_TYPE_UNCACHABLE - No caching
290 *
291 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
292 *
293 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
294 *
295 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
296 *
297 * BUGS: Needs a quiet flag for the cases where drivers do not mind
298 * failures and do not wish system log messages to be sent.
299 */
300
301 int mtrr_add_page(unsigned long base, unsigned long size,
302 unsigned int type, char increment)
303 {
304 int i;
305 mtrr_type ltype;
306 unsigned long lbase;
307 unsigned int lsize;
308 int error;
309
310 if (!mtrr_if)
311 return -ENXIO;
312
313 if ((error = mtrr_if->validate_add_page(base,size,type)))
314 return error;
315
316 if (type >= MTRR_NUM_TYPES) {
317 printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
318 return -EINVAL;
319 }
320
321 /* If the type is WC, check that this processor supports it */
322 if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
323 printk(KERN_WARNING
324 "mtrr: your processor doesn't support write-combining\n");
325 return -ENOSYS;
326 }
327
328 if (base & size_or_mask || size & size_or_mask) {
329 printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
330 return -EINVAL;
331 }
332
333 error = -EINVAL;
334
335 /* Search for existing MTRR */
336 down(&main_lock);
337 for (i = 0; i < num_var_ranges; ++i) {
338 mtrr_if->get(i, &lbase, &lsize, &ltype);
339 if (base >= lbase + lsize)
340 continue;
341 if ((base < lbase) && (base + size <= lbase))
342 continue;
343 /* At this point we know there is some kind of overlap/enclosure */
344 if ((base < lbase) || (base + size > lbase + lsize)) {
345 printk(KERN_WARNING
346 "mtrr: 0x%lx000,0x%lx000 overlaps existing"
347 " 0x%lx000,0x%x000\n", base, size, lbase,
348 lsize);
349 goto out;
350 }
351 /* New region is enclosed by an existing region */
352 if (ltype != type) {
353 if (type == MTRR_TYPE_UNCACHABLE)
354 continue;
355 printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
356 base, size, mtrr_attrib_to_str(ltype),
357 mtrr_attrib_to_str(type));
358 goto out;
359 }
360 if (increment)
361 ++usage_table[i];
362 error = i;
363 goto out;
364 }
365 /* Search for an empty MTRR */
366 i = mtrr_if->get_free_region(base, size);
367 if (i >= 0) {
368 set_mtrr(i, base, size, type);
369 usage_table[i] = 1;
370 } else
371 printk(KERN_INFO "mtrr: no more MTRRs available\n");
372 error = i;
373 out:
374 up(&main_lock);
375 return error;
376 }
377
378 /**
379 * mtrr_add - Add a memory type region
380 * @base: Physical base address of region
381 * @size: Physical size of region
382 * @type: Type of MTRR desired
383 * @increment: If this is true do usage counting on the region
384 *
385 * Memory type region registers control the caching on newer Intel and
386 * non Intel processors. This function allows drivers to request an
387 * MTRR is added. The details and hardware specifics of each processor's
388 * implementation are hidden from the caller, but nevertheless the
389 * caller should expect to need to provide a power of two size on an
390 * equivalent power of two boundary.
391 *
392 * If the region cannot be added either because all regions are in use
393 * or the CPU cannot support it a negative value is returned. On success
394 * the register number for this entry is returned, but should be treated
395 * as a cookie only.
396 *
397 * On a multiprocessor machine the changes are made to all processors.
398 * This is required on x86 by the Intel processors.
399 *
400 * The available types are
401 *
402 * %MTRR_TYPE_UNCACHABLE - No caching
403 *
404 * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
405 *
406 * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
407 *
408 * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
409 *
410 * BUGS: Needs a quiet flag for the cases where drivers do not mind
411 * failures and do not wish system log messages to be sent.
412 */
413
414 int
415 mtrr_add(unsigned long base, unsigned long size, unsigned int type,
416 char increment)
417 {
418 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
419 printk(KERN_WARNING "mtrr: size and base must be multiples of 4 kiB\n");
420 printk(KERN_DEBUG "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
421 return -EINVAL;
422 }
423 return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
424 increment);
425 }
426
427 /**
428 * mtrr_del_page - delete a memory type region
429 * @reg: Register returned by mtrr_add
430 * @base: Physical base address
431 * @size: Size of region
432 *
433 * If register is supplied then base and size are ignored. This is
434 * how drivers should call it.
435 *
436 * Releases an MTRR region. If the usage count drops to zero the
437 * register is freed and the region returns to default state.
438 * On success the register is returned, on failure a negative error
439 * code.
440 */
441
442 int mtrr_del_page(int reg, unsigned long base, unsigned long size)
443 {
444 int i, max;
445 mtrr_type ltype;
446 unsigned long lbase;
447 unsigned int lsize;
448 int error = -EINVAL;
449
450 if (!mtrr_if)
451 return -ENXIO;
452
453 max = num_var_ranges;
454 down(&main_lock);
455 if (reg < 0) {
456 /* Search for existing MTRR */
457 for (i = 0; i < max; ++i) {
458 mtrr_if->get(i, &lbase, &lsize, &ltype);
459 if (lbase == base && lsize == size) {
460 reg = i;
461 break;
462 }
463 }
464 if (reg < 0) {
465 printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
466 size);
467 goto out;
468 }
469 }
470 if (reg >= max) {
471 printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
472 goto out;
473 }
474 if (is_cpu(CYRIX) && !use_intel()) {
475 if ((reg == 3) && arr3_protected) {
476 printk(KERN_WARNING "mtrr: ARR3 cannot be changed\n");
477 goto out;
478 }
479 }
480 mtrr_if->get(reg, &lbase, &lsize, &ltype);
481 if (lsize < 1) {
482 printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
483 goto out;
484 }
485 if (usage_table[reg] < 1) {
486 printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
487 goto out;
488 }
489 if (--usage_table[reg] < 1)
490 set_mtrr(reg, 0, 0, 0);
491 error = reg;
492 out:
493 up(&main_lock);
494 return error;
495 }
496 /**
497 * mtrr_del - delete a memory type region
498 * @reg: Register returned by mtrr_add
499 * @base: Physical base address
500 * @size: Size of region
501 *
502 * If register is supplied then base and size are ignored. This is
503 * how drivers should call it.
504 *
505 * Releases an MTRR region. If the usage count drops to zero the
506 * register is freed and the region returns to default state.
507 * On success the register is returned, on failure a negative error
508 * code.
509 */
510
511 int
512 mtrr_del(int reg, unsigned long base, unsigned long size)
513 {
514 if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
515 printk(KERN_INFO "mtrr: size and base must be multiples of 4 kiB\n");
516 printk(KERN_DEBUG "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
517 return -EINVAL;
518 }
519 return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
520 }
521
522 EXPORT_SYMBOL(mtrr_add);
523 EXPORT_SYMBOL(mtrr_del);
524
525 /* HACK ALERT!
526 * These should be called implicitly, but we can't yet until all the initcall
527 * stuff is done...
528 */
529 extern void amd_init_mtrr(void);
530 extern void cyrix_init_mtrr(void);
531 extern void centaur_init_mtrr(void);
532
533 static void __init init_ifs(void)
534 {
535 amd_init_mtrr();
536 cyrix_init_mtrr();
537 centaur_init_mtrr();
538 }
539
540 static void __init init_other_cpus(void)
541 {
542 if (use_intel())
543 get_mtrr_state();
544
545 /* bring up the other processors */
546 set_mtrr(~0U,0,0,0);
547
548 if (use_intel()) {
549 finalize_mtrr_state();
550 mtrr_state_warn();
551 }
552 }
553
554
555 struct mtrr_value {
556 mtrr_type ltype;
557 unsigned long lbase;
558 unsigned int lsize;
559 };
560
561 static struct mtrr_value * mtrr_state;
562
563 static int mtrr_save(struct sys_device * sysdev, u32 state)
564 {
565 int i;
566 int size = num_var_ranges * sizeof(struct mtrr_value);
567
568 mtrr_state = kmalloc(size,GFP_ATOMIC);
569 if (mtrr_state)
570 memset(mtrr_state,0,size);
571 else
572 return -ENOMEM;
573
574 for (i = 0; i < num_var_ranges; i++) {
575 mtrr_if->get(i,
576 &mtrr_state[i].lbase,
577 &mtrr_state[i].lsize,
578 &mtrr_state[i].ltype);
579 }
580 return 0;
581 }
582
583 static int mtrr_restore(struct sys_device * sysdev)
584 {
585 int i;
586
587 for (i = 0; i < num_var_ranges; i++) {
588 if (mtrr_state[i].lsize)
589 set_mtrr(i,
590 mtrr_state[i].lbase,
591 mtrr_state[i].lsize,
592 mtrr_state[i].ltype);
593 }
594 kfree(mtrr_state);
595 return 0;
596 }
597
598
599
600 static struct sysdev_driver mtrr_sysdev_driver = {
601 .suspend = mtrr_save,
602 .resume = mtrr_restore,
603 };
604
605
606 /**
607 * mtrr_init - initialize mtrrs on the boot CPU
608 *
609 * This needs to be called early; before any of the other CPUs are
610 * initialized (i.e. before smp_init()).
611 *
612 */
613 static int __init mtrr_init(void)
614 {
615 init_ifs();
616
617 if (cpu_has_mtrr) {
618 mtrr_if = &generic_mtrr_ops;
619 size_or_mask = 0xff000000; /* 36 bits */
620 size_and_mask = 0x00f00000;
621
622 /* This is an AMD specific MSR, but we assume(hope?) that
623 Intel will implement it to when they extend the address
624 bus of the Xeon. */
625 if (cpuid_eax(0x80000000) >= 0x80000008) {
626 u32 phys_addr;
627 phys_addr = cpuid_eax(0x80000008) & 0xff;
628 size_or_mask = ~((1 << (phys_addr - PAGE_SHIFT)) - 1);
629 size_and_mask = ~size_or_mask & 0xfff00000;
630 } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
631 boot_cpu_data.x86 == 6) {
632 /* VIA C* family have Intel style MTRRs, but
633 don't support PAE */
634 size_or_mask = 0xfff00000; /* 32 bits */
635 size_and_mask = 0;
636 }
637 } else {
638 switch (boot_cpu_data.x86_vendor) {
639 case X86_VENDOR_AMD:
640 if (cpu_has_k6_mtrr) {
641 /* Pre-Athlon (K6) AMD CPU MTRRs */
642 mtrr_if = mtrr_ops[X86_VENDOR_AMD];
643 size_or_mask = 0xfff00000; /* 32 bits */
644 size_and_mask = 0;
645 }
646 break;
647 case X86_VENDOR_CENTAUR:
648 if (cpu_has_centaur_mcr) {
649 mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
650 size_or_mask = 0xfff00000; /* 32 bits */
651 size_and_mask = 0;
652 }
653 break;
654 case X86_VENDOR_CYRIX:
655 if (cpu_has_cyrix_arr) {
656 mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
657 size_or_mask = 0xfff00000; /* 32 bits */
658 size_and_mask = 0;
659 }
660 break;
661 default:
662 break;
663 }
664 }
665 printk(KERN_INFO "mtrr: v%s\n",MTRR_VERSION);
666
667 if (mtrr_if) {
668 set_num_var_ranges();
669 init_table();
670 init_other_cpus();
671
672 return sysdev_driver_register(&cpu_sysdev_class,
673 &mtrr_sysdev_driver);
674 }
675 return -ENXIO;
676 }
677
678 subsys_initcall(mtrr_init);
This page took 0.045754 seconds and 6 git commands to generate.