[PATCH] i386: PARAVIRT: add flush_tlb_others paravirt_op
[deliverable/linux.git] / arch / i386 / kernel / smp.c
1 /*
2 * Intel SMP support routines.
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
6 *
7 * This code is released under the GNU General Public License version 2 or
8 * later.
9 */
10
11 #include <linux/init.h>
12
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/spinlock.h>
16 #include <linux/smp_lock.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/mc146818rtc.h>
19 #include <linux/cache.h>
20 #include <linux/interrupt.h>
21 #include <linux/cpu.h>
22 #include <linux/module.h>
23
24 #include <asm/mtrr.h>
25 #include <asm/tlbflush.h>
26 #include <mach_apic.h>
27
28 /*
29 * Some notes on x86 processor bugs affecting SMP operation:
30 *
31 * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
32 * The Linux implications for SMP are handled as follows:
33 *
34 * Pentium III / [Xeon]
35 * None of the E1AP-E3AP errata are visible to the user.
36 *
37 * E1AP. see PII A1AP
38 * E2AP. see PII A2AP
39 * E3AP. see PII A3AP
40 *
41 * Pentium II / [Xeon]
42 * None of the A1AP-A3AP errata are visible to the user.
43 *
44 * A1AP. see PPro 1AP
45 * A2AP. see PPro 2AP
46 * A3AP. see PPro 7AP
47 *
48 * Pentium Pro
49 * None of 1AP-9AP errata are visible to the normal user,
50 * except occasional delivery of 'spurious interrupt' as trap #15.
51 * This is very rare and a non-problem.
52 *
53 * 1AP. Linux maps APIC as non-cacheable
54 * 2AP. worked around in hardware
55 * 3AP. fixed in C0 and above steppings microcode update.
56 * Linux does not use excessive STARTUP_IPIs.
57 * 4AP. worked around in hardware
58 * 5AP. symmetric IO mode (normal Linux operation) not affected.
59 * 'noapic' mode has vector 0xf filled out properly.
60 * 6AP. 'noapic' mode might be affected - fixed in later steppings
61 * 7AP. We do not assume writes to the LVT deassering IRQs
62 * 8AP. We do not enable low power mode (deep sleep) during MP bootup
63 * 9AP. We do not use mixed mode
64 *
65 * Pentium
66 * There is a marginal case where REP MOVS on 100MHz SMP
67 * machines with B stepping processors can fail. XXX should provide
68 * an L1cache=Writethrough or L1cache=off option.
69 *
70 * B stepping CPUs may hang. There are hardware work arounds
71 * for this. We warn about it in case your board doesn't have the work
72 * arounds. Basically thats so I can tell anyone with a B stepping
73 * CPU and SMP problems "tough".
74 *
75 * Specific items [From Pentium Processor Specification Update]
76 *
77 * 1AP. Linux doesn't use remote read
78 * 2AP. Linux doesn't trust APIC errors
79 * 3AP. We work around this
80 * 4AP. Linux never generated 3 interrupts of the same priority
81 * to cause a lost local interrupt.
82 * 5AP. Remote read is never used
83 * 6AP. not affected - worked around in hardware
84 * 7AP. not affected - worked around in hardware
85 * 8AP. worked around in hardware - we get explicit CS errors if not
86 * 9AP. only 'noapic' mode affected. Might generate spurious
87 * interrupts, we log only the first one and count the
88 * rest silently.
89 * 10AP. not affected - worked around in hardware
90 * 11AP. Linux reads the APIC between writes to avoid this, as per
91 * the documentation. Make sure you preserve this as it affects
92 * the C stepping chips too.
93 * 12AP. not affected - worked around in hardware
94 * 13AP. not affected - worked around in hardware
95 * 14AP. we always deassert INIT during bootup
96 * 15AP. not affected - worked around in hardware
97 * 16AP. not affected - worked around in hardware
98 * 17AP. not affected - worked around in hardware
99 * 18AP. not affected - worked around in hardware
100 * 19AP. not affected - worked around in BIOS
101 *
102 * If this sounds worrying believe me these bugs are either ___RARE___,
103 * or are signal timing bugs worked around in hardware and there's
104 * about nothing of note with C stepping upwards.
105 */
106
107 DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
108
109 /*
110 * the following functions deal with sending IPIs between CPUs.
111 *
112 * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
113 */
114
115 static inline int __prepare_ICR (unsigned int shortcut, int vector)
116 {
117 unsigned int icr = shortcut | APIC_DEST_LOGICAL;
118
119 switch (vector) {
120 default:
121 icr |= APIC_DM_FIXED | vector;
122 break;
123 case NMI_VECTOR:
124 icr |= APIC_DM_NMI;
125 break;
126 }
127 return icr;
128 }
129
130 static inline int __prepare_ICR2 (unsigned int mask)
131 {
132 return SET_APIC_DEST_FIELD(mask);
133 }
134
135 void __send_IPI_shortcut(unsigned int shortcut, int vector)
136 {
137 /*
138 * Subtle. In the case of the 'never do double writes' workaround
139 * we have to lock out interrupts to be safe. As we don't care
140 * of the value read we use an atomic rmw access to avoid costly
141 * cli/sti. Otherwise we use an even cheaper single atomic write
142 * to the APIC.
143 */
144 unsigned int cfg;
145
146 /*
147 * Wait for idle.
148 */
149 apic_wait_icr_idle();
150
151 /*
152 * No need to touch the target chip field
153 */
154 cfg = __prepare_ICR(shortcut, vector);
155
156 /*
157 * Send the IPI. The write to APIC_ICR fires this off.
158 */
159 apic_write_around(APIC_ICR, cfg);
160 }
161
162 void fastcall send_IPI_self(int vector)
163 {
164 __send_IPI_shortcut(APIC_DEST_SELF, vector);
165 }
166
167 /*
168 * This is only used on smaller machines.
169 */
170 void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
171 {
172 unsigned long mask = cpus_addr(cpumask)[0];
173 unsigned long cfg;
174 unsigned long flags;
175
176 local_irq_save(flags);
177 WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
178 /*
179 * Wait for idle.
180 */
181 apic_wait_icr_idle();
182
183 /*
184 * prepare target chip field
185 */
186 cfg = __prepare_ICR2(mask);
187 apic_write_around(APIC_ICR2, cfg);
188
189 /*
190 * program the ICR
191 */
192 cfg = __prepare_ICR(0, vector);
193
194 /*
195 * Send the IPI. The write to APIC_ICR fires this off.
196 */
197 apic_write_around(APIC_ICR, cfg);
198
199 local_irq_restore(flags);
200 }
201
202 void send_IPI_mask_sequence(cpumask_t mask, int vector)
203 {
204 unsigned long cfg, flags;
205 unsigned int query_cpu;
206
207 /*
208 * Hack. The clustered APIC addressing mode doesn't allow us to send
209 * to an arbitrary mask, so I do a unicasts to each CPU instead. This
210 * should be modified to do 1 message per cluster ID - mbligh
211 */
212
213 local_irq_save(flags);
214
215 for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
216 if (cpu_isset(query_cpu, mask)) {
217
218 /*
219 * Wait for idle.
220 */
221 apic_wait_icr_idle();
222
223 /*
224 * prepare target chip field
225 */
226 cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
227 apic_write_around(APIC_ICR2, cfg);
228
229 /*
230 * program the ICR
231 */
232 cfg = __prepare_ICR(0, vector);
233
234 /*
235 * Send the IPI. The write to APIC_ICR fires this off.
236 */
237 apic_write_around(APIC_ICR, cfg);
238 }
239 }
240 local_irq_restore(flags);
241 }
242
243 #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
244
245 /*
246 * Smarter SMP flushing macros.
247 * c/o Linus Torvalds.
248 *
249 * These mean you can really definitely utterly forget about
250 * writing to user space from interrupts. (Its not allowed anyway).
251 *
252 * Optimizations Manfred Spraul <manfred@colorfullife.com>
253 */
254
255 static cpumask_t flush_cpumask;
256 static struct mm_struct * flush_mm;
257 static unsigned long flush_va;
258 static DEFINE_SPINLOCK(tlbstate_lock);
259
260 /*
261 * We cannot call mmdrop() because we are in interrupt context,
262 * instead update mm->cpu_vm_mask.
263 *
264 * We need to reload %cr3 since the page tables may be going
265 * away from under us..
266 */
267 static inline void leave_mm (unsigned long cpu)
268 {
269 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
270 BUG();
271 cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
272 load_cr3(swapper_pg_dir);
273 }
274
275 /*
276 *
277 * The flush IPI assumes that a thread switch happens in this order:
278 * [cpu0: the cpu that switches]
279 * 1) switch_mm() either 1a) or 1b)
280 * 1a) thread switch to a different mm
281 * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
282 * Stop ipi delivery for the old mm. This is not synchronized with
283 * the other cpus, but smp_invalidate_interrupt ignore flush ipis
284 * for the wrong mm, and in the worst case we perform a superflous
285 * tlb flush.
286 * 1a2) set cpu_tlbstate to TLBSTATE_OK
287 * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
288 * was in lazy tlb mode.
289 * 1a3) update cpu_tlbstate[].active_mm
290 * Now cpu0 accepts tlb flushes for the new mm.
291 * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
292 * Now the other cpus will send tlb flush ipis.
293 * 1a4) change cr3.
294 * 1b) thread switch without mm change
295 * cpu_tlbstate[].active_mm is correct, cpu0 already handles
296 * flush ipis.
297 * 1b1) set cpu_tlbstate to TLBSTATE_OK
298 * 1b2) test_and_set the cpu bit in cpu_vm_mask.
299 * Atomically set the bit [other cpus will start sending flush ipis],
300 * and test the bit.
301 * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
302 * 2) switch %%esp, ie current
303 *
304 * The interrupt must handle 2 special cases:
305 * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
306 * - the cpu performs speculative tlb reads, i.e. even if the cpu only
307 * runs in kernel space, the cpu could load tlb entries for user space
308 * pages.
309 *
310 * The good news is that cpu_tlbstate is local to each cpu, no
311 * write/read ordering problems.
312 */
313
314 /*
315 * TLB flush IPI:
316 *
317 * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
318 * 2) Leave the mm if we are in the lazy tlb mode.
319 */
320
321 fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
322 {
323 unsigned long cpu;
324
325 cpu = get_cpu();
326
327 if (!cpu_isset(cpu, flush_cpumask))
328 goto out;
329 /*
330 * This was a BUG() but until someone can quote me the
331 * line from the intel manual that guarantees an IPI to
332 * multiple CPUs is retried _only_ on the erroring CPUs
333 * its staying as a return
334 *
335 * BUG();
336 */
337
338 if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
339 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
340 if (flush_va == TLB_FLUSH_ALL)
341 local_flush_tlb();
342 else
343 __flush_tlb_one(flush_va);
344 } else
345 leave_mm(cpu);
346 }
347 ack_APIC_irq();
348 smp_mb__before_clear_bit();
349 cpu_clear(cpu, flush_cpumask);
350 smp_mb__after_clear_bit();
351 out:
352 put_cpu_no_resched();
353 }
354
355 void native_flush_tlb_others(const cpumask_t *cpumaskp, struct mm_struct *mm,
356 unsigned long va)
357 {
358 cpumask_t cpumask = *cpumaskp;
359
360 /*
361 * A couple of (to be removed) sanity checks:
362 *
363 * - current CPU must not be in mask
364 * - mask must exist :)
365 */
366 BUG_ON(cpus_empty(cpumask));
367 BUG_ON(cpu_isset(smp_processor_id(), cpumask));
368 BUG_ON(!mm);
369
370 /* If a CPU which we ran on has gone down, OK. */
371 cpus_and(cpumask, cpumask, cpu_online_map);
372 if (cpus_empty(cpumask))
373 return;
374
375 /*
376 * i'm not happy about this global shared spinlock in the
377 * MM hot path, but we'll see how contended it is.
378 * AK: x86-64 has a faster method that could be ported.
379 */
380 spin_lock(&tlbstate_lock);
381
382 flush_mm = mm;
383 flush_va = va;
384 #if NR_CPUS <= BITS_PER_LONG
385 atomic_set_mask(cpumask, &flush_cpumask);
386 #else
387 {
388 int k;
389 unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
390 unsigned long *cpu_mask = (unsigned long *)&cpumask;
391 for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
392 atomic_set_mask(cpu_mask[k], &flush_mask[k]);
393 }
394 #endif
395 /*
396 * We have to send the IPI only to
397 * CPUs affected.
398 */
399 send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
400
401 while (!cpus_empty(flush_cpumask))
402 /* nothing. lockup detection does not belong here */
403 cpu_relax();
404
405 flush_mm = NULL;
406 flush_va = 0;
407 spin_unlock(&tlbstate_lock);
408 }
409
410 void flush_tlb_current_task(void)
411 {
412 struct mm_struct *mm = current->mm;
413 cpumask_t cpu_mask;
414
415 preempt_disable();
416 cpu_mask = mm->cpu_vm_mask;
417 cpu_clear(smp_processor_id(), cpu_mask);
418
419 local_flush_tlb();
420 if (!cpus_empty(cpu_mask))
421 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
422 preempt_enable();
423 }
424
425 void flush_tlb_mm (struct mm_struct * mm)
426 {
427 cpumask_t cpu_mask;
428
429 preempt_disable();
430 cpu_mask = mm->cpu_vm_mask;
431 cpu_clear(smp_processor_id(), cpu_mask);
432
433 if (current->active_mm == mm) {
434 if (current->mm)
435 local_flush_tlb();
436 else
437 leave_mm(smp_processor_id());
438 }
439 if (!cpus_empty(cpu_mask))
440 flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
441
442 preempt_enable();
443 }
444
445 void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
446 {
447 struct mm_struct *mm = vma->vm_mm;
448 cpumask_t cpu_mask;
449
450 preempt_disable();
451 cpu_mask = mm->cpu_vm_mask;
452 cpu_clear(smp_processor_id(), cpu_mask);
453
454 if (current->active_mm == mm) {
455 if(current->mm)
456 __flush_tlb_one(va);
457 else
458 leave_mm(smp_processor_id());
459 }
460
461 if (!cpus_empty(cpu_mask))
462 flush_tlb_others(cpu_mask, mm, va);
463
464 preempt_enable();
465 }
466 EXPORT_SYMBOL(flush_tlb_page);
467
468 static void do_flush_tlb_all(void* info)
469 {
470 unsigned long cpu = smp_processor_id();
471
472 __flush_tlb_all();
473 if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
474 leave_mm(cpu);
475 }
476
477 void flush_tlb_all(void)
478 {
479 on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
480 }
481
482 /*
483 * this function sends a 'reschedule' IPI to another CPU.
484 * it goes straight through and wastes no time serializing
485 * anything. Worst case is that we lose a reschedule ...
486 */
487 void native_smp_send_reschedule(int cpu)
488 {
489 WARN_ON(cpu_is_offline(cpu));
490 send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
491 }
492
493 /*
494 * Structure and data for smp_call_function(). This is designed to minimise
495 * static memory requirements. It also looks cleaner.
496 */
497 static DEFINE_SPINLOCK(call_lock);
498
499 struct call_data_struct {
500 void (*func) (void *info);
501 void *info;
502 atomic_t started;
503 atomic_t finished;
504 int wait;
505 };
506
507 void lock_ipi_call_lock(void)
508 {
509 spin_lock_irq(&call_lock);
510 }
511
512 void unlock_ipi_call_lock(void)
513 {
514 spin_unlock_irq(&call_lock);
515 }
516
517 static struct call_data_struct *call_data;
518
519 static void __smp_call_function(void (*func) (void *info), void *info,
520 int nonatomic, int wait)
521 {
522 struct call_data_struct data;
523 int cpus = num_online_cpus() - 1;
524
525 if (!cpus)
526 return;
527
528 data.func = func;
529 data.info = info;
530 atomic_set(&data.started, 0);
531 data.wait = wait;
532 if (wait)
533 atomic_set(&data.finished, 0);
534
535 call_data = &data;
536 mb();
537
538 /* Send a message to all other CPUs and wait for them to respond */
539 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
540
541 /* Wait for response */
542 while (atomic_read(&data.started) != cpus)
543 cpu_relax();
544
545 if (wait)
546 while (atomic_read(&data.finished) != cpus)
547 cpu_relax();
548 }
549
550
551 /**
552 * smp_call_function_mask(): Run a function on a set of other CPUs.
553 * @mask: The set of cpus to run on. Must not include the current cpu.
554 * @func: The function to run. This must be fast and non-blocking.
555 * @info: An arbitrary pointer to pass to the function.
556 * @wait: If true, wait (atomically) until function has completed on other CPUs.
557 *
558 * Returns 0 on success, else a negative status code.
559 *
560 * If @wait is true, then returns once @func has returned; otherwise
561 * it returns just before the target cpu calls @func.
562 *
563 * You must not call this function with disabled interrupts or from a
564 * hardware interrupt handler or from a bottom half handler.
565 */
566 int native_smp_call_function_mask(cpumask_t mask,
567 void (*func)(void *), void *info,
568 int wait)
569 {
570 struct call_data_struct data;
571 cpumask_t allbutself;
572 int cpus;
573
574 /* Can deadlock when called with interrupts disabled */
575 WARN_ON(irqs_disabled());
576
577 /* Holding any lock stops cpus from going down. */
578 spin_lock(&call_lock);
579
580 allbutself = cpu_online_map;
581 cpu_clear(smp_processor_id(), allbutself);
582
583 cpus_and(mask, mask, allbutself);
584 cpus = cpus_weight(mask);
585
586 if (!cpus) {
587 spin_unlock(&call_lock);
588 return 0;
589 }
590
591 data.func = func;
592 data.info = info;
593 atomic_set(&data.started, 0);
594 data.wait = wait;
595 if (wait)
596 atomic_set(&data.finished, 0);
597
598 call_data = &data;
599 mb();
600
601 /* Send a message to other CPUs */
602 if (cpus_equal(mask, allbutself))
603 send_IPI_allbutself(CALL_FUNCTION_VECTOR);
604 else
605 send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
606
607 /* Wait for response */
608 while (atomic_read(&data.started) != cpus)
609 cpu_relax();
610
611 if (wait)
612 while (atomic_read(&data.finished) != cpus)
613 cpu_relax();
614 spin_unlock(&call_lock);
615
616 return 0;
617 }
618
619 /**
620 * smp_call_function(): Run a function on all other CPUs.
621 * @func: The function to run. This must be fast and non-blocking.
622 * @info: An arbitrary pointer to pass to the function.
623 * @nonatomic: Unused.
624 * @wait: If true, wait (atomically) until function has completed on other CPUs.
625 *
626 * Returns 0 on success, else a negative status code.
627 *
628 * If @wait is true, then returns once @func has returned; otherwise
629 * it returns just before the target cpu calls @func.
630 *
631 * You must not call this function with disabled interrupts or from a
632 * hardware interrupt handler or from a bottom half handler.
633 */
634 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
635 int wait)
636 {
637 return smp_call_function_mask(cpu_online_map, func, info, wait);
638 }
639 EXPORT_SYMBOL(smp_call_function);
640
641 /**
642 * smp_call_function_single - Run a function on another CPU
643 * @cpu: The target CPU. Cannot be the calling CPU.
644 * @func: The function to run. This must be fast and non-blocking.
645 * @info: An arbitrary pointer to pass to the function.
646 * @nonatomic: Unused.
647 * @wait: If true, wait until function has completed on other CPUs.
648 *
649 * Returns 0 on success, else a negative status code.
650 *
651 * If @wait is true, then returns once @func has returned; otherwise
652 * it returns just before the target cpu calls @func.
653 */
654 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
655 int nonatomic, int wait)
656 {
657 /* prevent preemption and reschedule on another processor */
658 int ret;
659 int me = get_cpu();
660 if (cpu == me) {
661 WARN_ON(1);
662 put_cpu();
663 return -EBUSY;
664 }
665
666 ret = smp_call_function_mask(cpumask_of_cpu(cpu), func, info, wait);
667
668 put_cpu();
669 return ret;
670 }
671 EXPORT_SYMBOL(smp_call_function_single);
672
673 static void stop_this_cpu (void * dummy)
674 {
675 local_irq_disable();
676 /*
677 * Remove this CPU:
678 */
679 cpu_clear(smp_processor_id(), cpu_online_map);
680 disable_local_APIC();
681 if (cpu_data[smp_processor_id()].hlt_works_ok)
682 for(;;) halt();
683 for (;;);
684 }
685
686 /*
687 * this function calls the 'stop' function on all other CPUs in the system.
688 */
689
690 void native_smp_send_stop(void)
691 {
692 /* Don't deadlock on the call lock in panic */
693 int nolock = !spin_trylock(&call_lock);
694 unsigned long flags;
695
696 local_irq_save(flags);
697 __smp_call_function(stop_this_cpu, NULL, 0, 0);
698 if (!nolock)
699 spin_unlock(&call_lock);
700 disable_local_APIC();
701 local_irq_restore(flags);
702 }
703
704 /*
705 * Reschedule call back. Nothing to do,
706 * all the work is done automatically when
707 * we return from the interrupt.
708 */
709 fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
710 {
711 ack_APIC_irq();
712 }
713
714 fastcall void smp_call_function_interrupt(struct pt_regs *regs)
715 {
716 void (*func) (void *info) = call_data->func;
717 void *info = call_data->info;
718 int wait = call_data->wait;
719
720 ack_APIC_irq();
721 /*
722 * Notify initiating CPU that I've grabbed the data and am
723 * about to execute the function
724 */
725 mb();
726 atomic_inc(&call_data->started);
727 /*
728 * At this point the info structure may be out of scope unless wait==1
729 */
730 irq_enter();
731 (*func)(info);
732 irq_exit();
733
734 if (wait) {
735 mb();
736 atomic_inc(&call_data->finished);
737 }
738 }
739
740 static int convert_apicid_to_cpu(int apic_id)
741 {
742 int i;
743
744 for (i = 0; i < NR_CPUS; i++) {
745 if (x86_cpu_to_apicid[i] == apic_id)
746 return i;
747 }
748 return -1;
749 }
750
751 int safe_smp_processor_id(void)
752 {
753 int apicid, cpuid;
754
755 if (!boot_cpu_has(X86_FEATURE_APIC))
756 return 0;
757
758 apicid = hard_smp_processor_id();
759 if (apicid == BAD_APICID)
760 return 0;
761
762 cpuid = convert_apicid_to_cpu(apicid);
763
764 return cpuid >= 0 ? cpuid : 0;
765 }
766
767 struct smp_ops smp_ops = {
768 .smp_prepare_boot_cpu = native_smp_prepare_boot_cpu,
769 .smp_prepare_cpus = native_smp_prepare_cpus,
770 .cpu_up = native_cpu_up,
771 .smp_cpus_done = native_smp_cpus_done,
772
773 .smp_send_stop = native_smp_send_stop,
774 .smp_send_reschedule = native_smp_send_reschedule,
775 .smp_call_function_mask = native_smp_call_function_mask,
776 };
This page took 0.049192 seconds and 5 git commands to generate.