Merge master.kernel.org:/pub/scm/linux/kernel/git/davej/agpgart
[deliverable/linux.git] / arch / i386 / mm / fault.c
1 /*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/interrupt.h>
18 #include <linux/init.h>
19 #include <linux/tty.h>
20 #include <linux/vt_kern.h> /* For unblank_screen() */
21 #include <linux/highmem.h>
22 #include <linux/bootmem.h> /* for max_low_pfn */
23 #include <linux/vmalloc.h>
24 #include <linux/module.h>
25 #include <linux/kprobes.h>
26 #include <linux/uaccess.h>
27 #include <linux/kdebug.h>
28
29 #include <asm/system.h>
30 #include <asm/desc.h>
31 #include <asm/segment.h>
32
33 extern void die(const char *,struct pt_regs *,long);
34
35 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
36
37 int register_page_fault_notifier(struct notifier_block *nb)
38 {
39 vmalloc_sync_all();
40 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
41 }
42 EXPORT_SYMBOL_GPL(register_page_fault_notifier);
43
44 int unregister_page_fault_notifier(struct notifier_block *nb)
45 {
46 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
47 }
48 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
49
50 static inline int notify_page_fault(struct pt_regs *regs, long err)
51 {
52 struct die_args args = {
53 .regs = regs,
54 .str = "page fault",
55 .err = err,
56 .trapnr = 14,
57 .signr = SIGSEGV
58 };
59 return atomic_notifier_call_chain(&notify_page_fault_chain,
60 DIE_PAGE_FAULT, &args);
61 }
62
63 /*
64 * Return EIP plus the CS segment base. The segment limit is also
65 * adjusted, clamped to the kernel/user address space (whichever is
66 * appropriate), and returned in *eip_limit.
67 *
68 * The segment is checked, because it might have been changed by another
69 * task between the original faulting instruction and here.
70 *
71 * If CS is no longer a valid code segment, or if EIP is beyond the
72 * limit, or if it is a kernel address when CS is not a kernel segment,
73 * then the returned value will be greater than *eip_limit.
74 *
75 * This is slow, but is very rarely executed.
76 */
77 static inline unsigned long get_segment_eip(struct pt_regs *regs,
78 unsigned long *eip_limit)
79 {
80 unsigned long eip = regs->eip;
81 unsigned seg = regs->xcs & 0xffff;
82 u32 seg_ar, seg_limit, base, *desc;
83
84 /* Unlikely, but must come before segment checks. */
85 if (unlikely(regs->eflags & VM_MASK)) {
86 base = seg << 4;
87 *eip_limit = base + 0xffff;
88 return base + (eip & 0xffff);
89 }
90
91 /* The standard kernel/user address space limit. */
92 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
93
94 /* By far the most common cases. */
95 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
96 return eip;
97
98 /* Check the segment exists, is within the current LDT/GDT size,
99 that kernel/user (ring 0..3) has the appropriate privilege,
100 that it's a code segment, and get the limit. */
101 __asm__ ("larl %3,%0; lsll %3,%1"
102 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
103 if ((~seg_ar & 0x9800) || eip > seg_limit) {
104 *eip_limit = 0;
105 return 1; /* So that returned eip > *eip_limit. */
106 }
107
108 /* Get the GDT/LDT descriptor base.
109 When you look for races in this code remember that
110 LDT and other horrors are only used in user space. */
111 if (seg & (1<<2)) {
112 /* Must lock the LDT while reading it. */
113 down(&current->mm->context.sem);
114 desc = current->mm->context.ldt;
115 desc = (void *)desc + (seg & ~7);
116 } else {
117 /* Must disable preemption while reading the GDT. */
118 desc = (u32 *)get_cpu_gdt_table(get_cpu());
119 desc = (void *)desc + (seg & ~7);
120 }
121
122 /* Decode the code segment base from the descriptor */
123 base = get_desc_base((unsigned long *)desc);
124
125 if (seg & (1<<2)) {
126 up(&current->mm->context.sem);
127 } else
128 put_cpu();
129
130 /* Adjust EIP and segment limit, and clamp at the kernel limit.
131 It's legitimate for segments to wrap at 0xffffffff. */
132 seg_limit += base;
133 if (seg_limit < *eip_limit && seg_limit >= base)
134 *eip_limit = seg_limit;
135 return eip + base;
136 }
137
138 /*
139 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
140 * Check that here and ignore it.
141 */
142 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
143 {
144 unsigned long limit;
145 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
146 int scan_more = 1;
147 int prefetch = 0;
148 int i;
149
150 for (i = 0; scan_more && i < 15; i++) {
151 unsigned char opcode;
152 unsigned char instr_hi;
153 unsigned char instr_lo;
154
155 if (instr > (unsigned char *)limit)
156 break;
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr_hi = opcode & 0xf0;
161 instr_lo = opcode & 0x0f;
162 instr++;
163
164 switch (instr_hi) {
165 case 0x20:
166 case 0x30:
167 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
168 scan_more = ((instr_lo & 7) == 0x6);
169 break;
170
171 case 0x60:
172 /* 0x64 thru 0x67 are valid prefixes in all modes. */
173 scan_more = (instr_lo & 0xC) == 0x4;
174 break;
175 case 0xF0:
176 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
177 scan_more = !instr_lo || (instr_lo>>1) == 1;
178 break;
179 case 0x00:
180 /* Prefetch instruction is 0x0F0D or 0x0F18 */
181 scan_more = 0;
182 if (instr > (unsigned char *)limit)
183 break;
184 if (probe_kernel_address(instr, opcode))
185 break;
186 prefetch = (instr_lo == 0xF) &&
187 (opcode == 0x0D || opcode == 0x18);
188 break;
189 default:
190 scan_more = 0;
191 break;
192 }
193 }
194 return prefetch;
195 }
196
197 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
198 unsigned long error_code)
199 {
200 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
201 boot_cpu_data.x86 >= 6)) {
202 /* Catch an obscure case of prefetch inside an NX page. */
203 if (nx_enabled && (error_code & 16))
204 return 0;
205 return __is_prefetch(regs, addr);
206 }
207 return 0;
208 }
209
210 static noinline void force_sig_info_fault(int si_signo, int si_code,
211 unsigned long address, struct task_struct *tsk)
212 {
213 siginfo_t info;
214
215 info.si_signo = si_signo;
216 info.si_errno = 0;
217 info.si_code = si_code;
218 info.si_addr = (void __user *)address;
219 force_sig_info(si_signo, &info, tsk);
220 }
221
222 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
223
224 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
225 {
226 unsigned index = pgd_index(address);
227 pgd_t *pgd_k;
228 pud_t *pud, *pud_k;
229 pmd_t *pmd, *pmd_k;
230
231 pgd += index;
232 pgd_k = init_mm.pgd + index;
233
234 if (!pgd_present(*pgd_k))
235 return NULL;
236
237 /*
238 * set_pgd(pgd, *pgd_k); here would be useless on PAE
239 * and redundant with the set_pmd() on non-PAE. As would
240 * set_pud.
241 */
242
243 pud = pud_offset(pgd, address);
244 pud_k = pud_offset(pgd_k, address);
245 if (!pud_present(*pud_k))
246 return NULL;
247
248 pmd = pmd_offset(pud, address);
249 pmd_k = pmd_offset(pud_k, address);
250 if (!pmd_present(*pmd_k))
251 return NULL;
252 if (!pmd_present(*pmd))
253 set_pmd(pmd, *pmd_k);
254 else
255 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
256 return pmd_k;
257 }
258
259 /*
260 * Handle a fault on the vmalloc or module mapping area
261 *
262 * This assumes no large pages in there.
263 */
264 static inline int vmalloc_fault(unsigned long address)
265 {
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269 /*
270 * Synchronize this task's top level page-table
271 * with the 'reference' page table.
272 *
273 * Do _not_ use "current" here. We might be inside
274 * an interrupt in the middle of a task switch..
275 */
276 pgd_paddr = read_cr3();
277 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
278 if (!pmd_k)
279 return -1;
280 pte_k = pte_offset_kernel(pmd_k, address);
281 if (!pte_present(*pte_k))
282 return -1;
283 return 0;
284 }
285
286 /*
287 * This routine handles page faults. It determines the address,
288 * and the problem, and then passes it off to one of the appropriate
289 * routines.
290 *
291 * error_code:
292 * bit 0 == 0 means no page found, 1 means protection fault
293 * bit 1 == 0 means read, 1 means write
294 * bit 2 == 0 means kernel, 1 means user-mode
295 * bit 3 == 1 means use of reserved bit detected
296 * bit 4 == 1 means fault was an instruction fetch
297 */
298 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
299 unsigned long error_code)
300 {
301 struct task_struct *tsk;
302 struct mm_struct *mm;
303 struct vm_area_struct * vma;
304 unsigned long address;
305 int write, si_code;
306
307 /* get the address */
308 address = read_cr2();
309
310 tsk = current;
311
312 si_code = SEGV_MAPERR;
313
314 /*
315 * We fault-in kernel-space virtual memory on-demand. The
316 * 'reference' page table is init_mm.pgd.
317 *
318 * NOTE! We MUST NOT take any locks for this case. We may
319 * be in an interrupt or a critical region, and should
320 * only copy the information from the master page table,
321 * nothing more.
322 *
323 * This verifies that the fault happens in kernel space
324 * (error_code & 4) == 0, and that the fault was not a
325 * protection error (error_code & 9) == 0.
326 */
327 if (unlikely(address >= TASK_SIZE)) {
328 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
329 return;
330 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
331 return;
332 /*
333 * Don't take the mm semaphore here. If we fixup a prefetch
334 * fault we could otherwise deadlock.
335 */
336 goto bad_area_nosemaphore;
337 }
338
339 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
340 return;
341
342 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
343 fault has been handled. */
344 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
345 local_irq_enable();
346
347 mm = tsk->mm;
348
349 /*
350 * If we're in an interrupt, have no user context or are running in an
351 * atomic region then we must not take the fault..
352 */
353 if (in_atomic() || !mm)
354 goto bad_area_nosemaphore;
355
356 /* When running in the kernel we expect faults to occur only to
357 * addresses in user space. All other faults represent errors in the
358 * kernel and should generate an OOPS. Unfortunatly, in the case of an
359 * erroneous fault occurring in a code path which already holds mmap_sem
360 * we will deadlock attempting to validate the fault against the
361 * address space. Luckily the kernel only validly references user
362 * space from well defined areas of code, which are listed in the
363 * exceptions table.
364 *
365 * As the vast majority of faults will be valid we will only perform
366 * the source reference check when there is a possibilty of a deadlock.
367 * Attempt to lock the address space, if we cannot we then validate the
368 * source. If this is invalid we can skip the address space check,
369 * thus avoiding the deadlock.
370 */
371 if (!down_read_trylock(&mm->mmap_sem)) {
372 if ((error_code & 4) == 0 &&
373 !search_exception_tables(regs->eip))
374 goto bad_area_nosemaphore;
375 down_read(&mm->mmap_sem);
376 }
377
378 vma = find_vma(mm, address);
379 if (!vma)
380 goto bad_area;
381 if (vma->vm_start <= address)
382 goto good_area;
383 if (!(vma->vm_flags & VM_GROWSDOWN))
384 goto bad_area;
385 if (error_code & 4) {
386 /*
387 * Accessing the stack below %esp is always a bug.
388 * The large cushion allows instructions like enter
389 * and pusha to work. ("enter $65535,$31" pushes
390 * 32 pointers and then decrements %esp by 65535.)
391 */
392 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
393 goto bad_area;
394 }
395 if (expand_stack(vma, address))
396 goto bad_area;
397 /*
398 * Ok, we have a good vm_area for this memory access, so
399 * we can handle it..
400 */
401 good_area:
402 si_code = SEGV_ACCERR;
403 write = 0;
404 switch (error_code & 3) {
405 default: /* 3: write, present */
406 /* fall through */
407 case 2: /* write, not present */
408 if (!(vma->vm_flags & VM_WRITE))
409 goto bad_area;
410 write++;
411 break;
412 case 1: /* read, present */
413 goto bad_area;
414 case 0: /* read, not present */
415 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
416 goto bad_area;
417 }
418
419 survive:
420 /*
421 * If for any reason at all we couldn't handle the fault,
422 * make sure we exit gracefully rather than endlessly redo
423 * the fault.
424 */
425 switch (handle_mm_fault(mm, vma, address, write)) {
426 case VM_FAULT_MINOR:
427 tsk->min_flt++;
428 break;
429 case VM_FAULT_MAJOR:
430 tsk->maj_flt++;
431 break;
432 case VM_FAULT_SIGBUS:
433 goto do_sigbus;
434 case VM_FAULT_OOM:
435 goto out_of_memory;
436 default:
437 BUG();
438 }
439
440 /*
441 * Did it hit the DOS screen memory VA from vm86 mode?
442 */
443 if (regs->eflags & VM_MASK) {
444 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
445 if (bit < 32)
446 tsk->thread.screen_bitmap |= 1 << bit;
447 }
448 up_read(&mm->mmap_sem);
449 return;
450
451 /*
452 * Something tried to access memory that isn't in our memory map..
453 * Fix it, but check if it's kernel or user first..
454 */
455 bad_area:
456 up_read(&mm->mmap_sem);
457
458 bad_area_nosemaphore:
459 /* User mode accesses just cause a SIGSEGV */
460 if (error_code & 4) {
461 /*
462 * It's possible to have interrupts off here.
463 */
464 local_irq_enable();
465
466 /*
467 * Valid to do another page fault here because this one came
468 * from user space.
469 */
470 if (is_prefetch(regs, address, error_code))
471 return;
472
473 tsk->thread.cr2 = address;
474 /* Kernel addresses are always protection faults */
475 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
476 tsk->thread.trap_no = 14;
477 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
478 return;
479 }
480
481 #ifdef CONFIG_X86_F00F_BUG
482 /*
483 * Pentium F0 0F C7 C8 bug workaround.
484 */
485 if (boot_cpu_data.f00f_bug) {
486 unsigned long nr;
487
488 nr = (address - idt_descr.address) >> 3;
489
490 if (nr == 6) {
491 do_invalid_op(regs, 0);
492 return;
493 }
494 }
495 #endif
496
497 no_context:
498 /* Are we prepared to handle this kernel fault? */
499 if (fixup_exception(regs))
500 return;
501
502 /*
503 * Valid to do another page fault here, because if this fault
504 * had been triggered by is_prefetch fixup_exception would have
505 * handled it.
506 */
507 if (is_prefetch(regs, address, error_code))
508 return;
509
510 /*
511 * Oops. The kernel tried to access some bad page. We'll have to
512 * terminate things with extreme prejudice.
513 */
514
515 bust_spinlocks(1);
516
517 if (oops_may_print()) {
518 __typeof__(pte_val(__pte(0))) page;
519
520 #ifdef CONFIG_X86_PAE
521 if (error_code & 16) {
522 pte_t *pte = lookup_address(address);
523
524 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
525 printk(KERN_CRIT "kernel tried to execute "
526 "NX-protected page - exploit attempt? "
527 "(uid: %d)\n", current->uid);
528 }
529 #endif
530 if (address < PAGE_SIZE)
531 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
532 "pointer dereference");
533 else
534 printk(KERN_ALERT "BUG: unable to handle kernel paging"
535 " request");
536 printk(" at virtual address %08lx\n",address);
537 printk(KERN_ALERT " printing eip:\n");
538 printk("%08lx\n", regs->eip);
539
540 page = read_cr3();
541 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
542 #ifdef CONFIG_X86_PAE
543 printk(KERN_ALERT "*pdpt = %016Lx\n", page);
544 if ((page >> PAGE_SHIFT) < max_low_pfn
545 && page & _PAGE_PRESENT) {
546 page &= PAGE_MASK;
547 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
548 & (PTRS_PER_PMD - 1)];
549 printk(KERN_ALERT "*pde = %016Lx\n", page);
550 page &= ~_PAGE_NX;
551 }
552 #else
553 printk(KERN_ALERT "*pde = %08lx\n", page);
554 #endif
555
556 /*
557 * We must not directly access the pte in the highpte
558 * case if the page table is located in highmem.
559 * And let's rather not kmap-atomic the pte, just in case
560 * it's allocated already.
561 */
562 if ((page >> PAGE_SHIFT) < max_low_pfn
563 && (page & _PAGE_PRESENT)) {
564 page &= PAGE_MASK;
565 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
566 & (PTRS_PER_PTE - 1)];
567 printk(KERN_ALERT "*pte = %0*Lx\n", sizeof(page)*2, (u64)page);
568 }
569 }
570
571 tsk->thread.cr2 = address;
572 tsk->thread.trap_no = 14;
573 tsk->thread.error_code = error_code;
574 die("Oops", regs, error_code);
575 bust_spinlocks(0);
576 do_exit(SIGKILL);
577
578 /*
579 * We ran out of memory, or some other thing happened to us that made
580 * us unable to handle the page fault gracefully.
581 */
582 out_of_memory:
583 up_read(&mm->mmap_sem);
584 if (is_init(tsk)) {
585 yield();
586 down_read(&mm->mmap_sem);
587 goto survive;
588 }
589 printk("VM: killing process %s\n", tsk->comm);
590 if (error_code & 4)
591 do_exit(SIGKILL);
592 goto no_context;
593
594 do_sigbus:
595 up_read(&mm->mmap_sem);
596
597 /* Kernel mode? Handle exceptions or die */
598 if (!(error_code & 4))
599 goto no_context;
600
601 /* User space => ok to do another page fault */
602 if (is_prefetch(regs, address, error_code))
603 return;
604
605 tsk->thread.cr2 = address;
606 tsk->thread.error_code = error_code;
607 tsk->thread.trap_no = 14;
608 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
609 }
610
611 void vmalloc_sync_all(void)
612 {
613 /*
614 * Note that races in the updates of insync and start aren't
615 * problematic: insync can only get set bits added, and updates to
616 * start are only improving performance (without affecting correctness
617 * if undone).
618 */
619 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
620 static unsigned long start = TASK_SIZE;
621 unsigned long address;
622
623 if (SHARED_KERNEL_PMD)
624 return;
625
626 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
627 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
628 if (!test_bit(pgd_index(address), insync)) {
629 unsigned long flags;
630 struct page *page;
631
632 spin_lock_irqsave(&pgd_lock, flags);
633 for (page = pgd_list; page; page =
634 (struct page *)page->index)
635 if (!vmalloc_sync_one(page_address(page),
636 address)) {
637 BUG_ON(page != pgd_list);
638 break;
639 }
640 spin_unlock_irqrestore(&pgd_lock, flags);
641 if (!page)
642 set_bit(pgd_index(address), insync);
643 }
644 if (address == start && test_bit(pgd_index(address), insync))
645 start = address + PGDIR_SIZE;
646 }
647 }
This page took 0.044293 seconds and 6 git commands to generate.