Merge branch 'for-linus' of git://one.firstfloor.org/home/andi/git/linux-2.6
[deliverable/linux.git] / arch / i386 / mm / fault.c
1 /*
2 * linux/arch/i386/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 */
6
7 #include <linux/signal.h>
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/mman.h>
15 #include <linux/mm.h>
16 #include <linux/smp.h>
17 #include <linux/smp_lock.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/tty.h>
21 #include <linux/vt_kern.h> /* For unblank_screen() */
22 #include <linux/highmem.h>
23 #include <linux/module.h>
24 #include <linux/kprobes.h>
25 #include <linux/uaccess.h>
26
27 #include <asm/system.h>
28 #include <asm/desc.h>
29 #include <asm/kdebug.h>
30 #include <asm/segment.h>
31
32 extern void die(const char *,struct pt_regs *,long);
33
34 static ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain);
35
36 int register_page_fault_notifier(struct notifier_block *nb)
37 {
38 vmalloc_sync_all();
39 return atomic_notifier_chain_register(&notify_page_fault_chain, nb);
40 }
41 EXPORT_SYMBOL_GPL(register_page_fault_notifier);
42
43 int unregister_page_fault_notifier(struct notifier_block *nb)
44 {
45 return atomic_notifier_chain_unregister(&notify_page_fault_chain, nb);
46 }
47 EXPORT_SYMBOL_GPL(unregister_page_fault_notifier);
48
49 static inline int notify_page_fault(struct pt_regs *regs, long err)
50 {
51 struct die_args args = {
52 .regs = regs,
53 .str = "page fault",
54 .err = err,
55 .trapnr = 14,
56 .signr = SIGSEGV
57 };
58 return atomic_notifier_call_chain(&notify_page_fault_chain,
59 DIE_PAGE_FAULT, &args);
60 }
61
62 /*
63 * Return EIP plus the CS segment base. The segment limit is also
64 * adjusted, clamped to the kernel/user address space (whichever is
65 * appropriate), and returned in *eip_limit.
66 *
67 * The segment is checked, because it might have been changed by another
68 * task between the original faulting instruction and here.
69 *
70 * If CS is no longer a valid code segment, or if EIP is beyond the
71 * limit, or if it is a kernel address when CS is not a kernel segment,
72 * then the returned value will be greater than *eip_limit.
73 *
74 * This is slow, but is very rarely executed.
75 */
76 static inline unsigned long get_segment_eip(struct pt_regs *regs,
77 unsigned long *eip_limit)
78 {
79 unsigned long eip = regs->eip;
80 unsigned seg = regs->xcs & 0xffff;
81 u32 seg_ar, seg_limit, base, *desc;
82
83 /* Unlikely, but must come before segment checks. */
84 if (unlikely(regs->eflags & VM_MASK)) {
85 base = seg << 4;
86 *eip_limit = base + 0xffff;
87 return base + (eip & 0xffff);
88 }
89
90 /* The standard kernel/user address space limit. */
91 *eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
92
93 /* By far the most common cases. */
94 if (likely(SEGMENT_IS_FLAT_CODE(seg)))
95 return eip;
96
97 /* Check the segment exists, is within the current LDT/GDT size,
98 that kernel/user (ring 0..3) has the appropriate privilege,
99 that it's a code segment, and get the limit. */
100 __asm__ ("larl %3,%0; lsll %3,%1"
101 : "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
102 if ((~seg_ar & 0x9800) || eip > seg_limit) {
103 *eip_limit = 0;
104 return 1; /* So that returned eip > *eip_limit. */
105 }
106
107 /* Get the GDT/LDT descriptor base.
108 When you look for races in this code remember that
109 LDT and other horrors are only used in user space. */
110 if (seg & (1<<2)) {
111 /* Must lock the LDT while reading it. */
112 down(&current->mm->context.sem);
113 desc = current->mm->context.ldt;
114 desc = (void *)desc + (seg & ~7);
115 } else {
116 /* Must disable preemption while reading the GDT. */
117 desc = (u32 *)get_cpu_gdt_table(get_cpu());
118 desc = (void *)desc + (seg & ~7);
119 }
120
121 /* Decode the code segment base from the descriptor */
122 base = get_desc_base((unsigned long *)desc);
123
124 if (seg & (1<<2)) {
125 up(&current->mm->context.sem);
126 } else
127 put_cpu();
128
129 /* Adjust EIP and segment limit, and clamp at the kernel limit.
130 It's legitimate for segments to wrap at 0xffffffff. */
131 seg_limit += base;
132 if (seg_limit < *eip_limit && seg_limit >= base)
133 *eip_limit = seg_limit;
134 return eip + base;
135 }
136
137 /*
138 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
139 * Check that here and ignore it.
140 */
141 static int __is_prefetch(struct pt_regs *regs, unsigned long addr)
142 {
143 unsigned long limit;
144 unsigned char *instr = (unsigned char *)get_segment_eip (regs, &limit);
145 int scan_more = 1;
146 int prefetch = 0;
147 int i;
148
149 for (i = 0; scan_more && i < 15; i++) {
150 unsigned char opcode;
151 unsigned char instr_hi;
152 unsigned char instr_lo;
153
154 if (instr > (unsigned char *)limit)
155 break;
156 if (probe_kernel_address(instr, opcode))
157 break;
158
159 instr_hi = opcode & 0xf0;
160 instr_lo = opcode & 0x0f;
161 instr++;
162
163 switch (instr_hi) {
164 case 0x20:
165 case 0x30:
166 /* Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes. */
167 scan_more = ((instr_lo & 7) == 0x6);
168 break;
169
170 case 0x60:
171 /* 0x64 thru 0x67 are valid prefixes in all modes. */
172 scan_more = (instr_lo & 0xC) == 0x4;
173 break;
174 case 0xF0:
175 /* 0xF0, 0xF2, and 0xF3 are valid prefixes */
176 scan_more = !instr_lo || (instr_lo>>1) == 1;
177 break;
178 case 0x00:
179 /* Prefetch instruction is 0x0F0D or 0x0F18 */
180 scan_more = 0;
181 if (instr > (unsigned char *)limit)
182 break;
183 if (probe_kernel_address(instr, opcode))
184 break;
185 prefetch = (instr_lo == 0xF) &&
186 (opcode == 0x0D || opcode == 0x18);
187 break;
188 default:
189 scan_more = 0;
190 break;
191 }
192 }
193 return prefetch;
194 }
195
196 static inline int is_prefetch(struct pt_regs *regs, unsigned long addr,
197 unsigned long error_code)
198 {
199 if (unlikely(boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
200 boot_cpu_data.x86 >= 6)) {
201 /* Catch an obscure case of prefetch inside an NX page. */
202 if (nx_enabled && (error_code & 16))
203 return 0;
204 return __is_prefetch(regs, addr);
205 }
206 return 0;
207 }
208
209 static noinline void force_sig_info_fault(int si_signo, int si_code,
210 unsigned long address, struct task_struct *tsk)
211 {
212 siginfo_t info;
213
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
218 force_sig_info(si_signo, &info, tsk);
219 }
220
221 fastcall void do_invalid_op(struct pt_regs *, unsigned long);
222
223 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
224 {
225 unsigned index = pgd_index(address);
226 pgd_t *pgd_k;
227 pud_t *pud, *pud_k;
228 pmd_t *pmd, *pmd_k;
229
230 pgd += index;
231 pgd_k = init_mm.pgd + index;
232
233 if (!pgd_present(*pgd_k))
234 return NULL;
235
236 /*
237 * set_pgd(pgd, *pgd_k); here would be useless on PAE
238 * and redundant with the set_pmd() on non-PAE. As would
239 * set_pud.
240 */
241
242 pud = pud_offset(pgd, address);
243 pud_k = pud_offset(pgd_k, address);
244 if (!pud_present(*pud_k))
245 return NULL;
246
247 pmd = pmd_offset(pud, address);
248 pmd_k = pmd_offset(pud_k, address);
249 if (!pmd_present(*pmd_k))
250 return NULL;
251 if (!pmd_present(*pmd))
252 set_pmd(pmd, *pmd_k);
253 else
254 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
255 return pmd_k;
256 }
257
258 /*
259 * Handle a fault on the vmalloc or module mapping area
260 *
261 * This assumes no large pages in there.
262 */
263 static inline int vmalloc_fault(unsigned long address)
264 {
265 unsigned long pgd_paddr;
266 pmd_t *pmd_k;
267 pte_t *pte_k;
268 /*
269 * Synchronize this task's top level page-table
270 * with the 'reference' page table.
271 *
272 * Do _not_ use "current" here. We might be inside
273 * an interrupt in the middle of a task switch..
274 */
275 pgd_paddr = read_cr3();
276 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
277 if (!pmd_k)
278 return -1;
279 pte_k = pte_offset_kernel(pmd_k, address);
280 if (!pte_present(*pte_k))
281 return -1;
282 return 0;
283 }
284
285 /*
286 * This routine handles page faults. It determines the address,
287 * and the problem, and then passes it off to one of the appropriate
288 * routines.
289 *
290 * error_code:
291 * bit 0 == 0 means no page found, 1 means protection fault
292 * bit 1 == 0 means read, 1 means write
293 * bit 2 == 0 means kernel, 1 means user-mode
294 * bit 3 == 1 means use of reserved bit detected
295 * bit 4 == 1 means fault was an instruction fetch
296 */
297 fastcall void __kprobes do_page_fault(struct pt_regs *regs,
298 unsigned long error_code)
299 {
300 struct task_struct *tsk;
301 struct mm_struct *mm;
302 struct vm_area_struct * vma;
303 unsigned long address;
304 unsigned long page;
305 int write, si_code;
306
307 /* get the address */
308 address = read_cr2();
309
310 tsk = current;
311
312 si_code = SEGV_MAPERR;
313
314 /*
315 * We fault-in kernel-space virtual memory on-demand. The
316 * 'reference' page table is init_mm.pgd.
317 *
318 * NOTE! We MUST NOT take any locks for this case. We may
319 * be in an interrupt or a critical region, and should
320 * only copy the information from the master page table,
321 * nothing more.
322 *
323 * This verifies that the fault happens in kernel space
324 * (error_code & 4) == 0, and that the fault was not a
325 * protection error (error_code & 9) == 0.
326 */
327 if (unlikely(address >= TASK_SIZE)) {
328 if (!(error_code & 0x0000000d) && vmalloc_fault(address) >= 0)
329 return;
330 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
331 return;
332 /*
333 * Don't take the mm semaphore here. If we fixup a prefetch
334 * fault we could otherwise deadlock.
335 */
336 goto bad_area_nosemaphore;
337 }
338
339 if (notify_page_fault(regs, error_code) == NOTIFY_STOP)
340 return;
341
342 /* It's safe to allow irq's after cr2 has been saved and the vmalloc
343 fault has been handled. */
344 if (regs->eflags & (X86_EFLAGS_IF|VM_MASK))
345 local_irq_enable();
346
347 mm = tsk->mm;
348
349 /*
350 * If we're in an interrupt, have no user context or are running in an
351 * atomic region then we must not take the fault..
352 */
353 if (in_atomic() || !mm)
354 goto bad_area_nosemaphore;
355
356 /* When running in the kernel we expect faults to occur only to
357 * addresses in user space. All other faults represent errors in the
358 * kernel and should generate an OOPS. Unfortunatly, in the case of an
359 * erroneous fault occurring in a code path which already holds mmap_sem
360 * we will deadlock attempting to validate the fault against the
361 * address space. Luckily the kernel only validly references user
362 * space from well defined areas of code, which are listed in the
363 * exceptions table.
364 *
365 * As the vast majority of faults will be valid we will only perform
366 * the source reference check when there is a possibilty of a deadlock.
367 * Attempt to lock the address space, if we cannot we then validate the
368 * source. If this is invalid we can skip the address space check,
369 * thus avoiding the deadlock.
370 */
371 if (!down_read_trylock(&mm->mmap_sem)) {
372 if ((error_code & 4) == 0 &&
373 !search_exception_tables(regs->eip))
374 goto bad_area_nosemaphore;
375 down_read(&mm->mmap_sem);
376 }
377
378 vma = find_vma(mm, address);
379 if (!vma)
380 goto bad_area;
381 if (vma->vm_start <= address)
382 goto good_area;
383 if (!(vma->vm_flags & VM_GROWSDOWN))
384 goto bad_area;
385 if (error_code & 4) {
386 /*
387 * Accessing the stack below %esp is always a bug.
388 * The large cushion allows instructions like enter
389 * and pusha to work. ("enter $65535,$31" pushes
390 * 32 pointers and then decrements %esp by 65535.)
391 */
392 if (address + 65536 + 32 * sizeof(unsigned long) < regs->esp)
393 goto bad_area;
394 }
395 if (expand_stack(vma, address))
396 goto bad_area;
397 /*
398 * Ok, we have a good vm_area for this memory access, so
399 * we can handle it..
400 */
401 good_area:
402 si_code = SEGV_ACCERR;
403 write = 0;
404 switch (error_code & 3) {
405 default: /* 3: write, present */
406 /* fall through */
407 case 2: /* write, not present */
408 if (!(vma->vm_flags & VM_WRITE))
409 goto bad_area;
410 write++;
411 break;
412 case 1: /* read, present */
413 goto bad_area;
414 case 0: /* read, not present */
415 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
416 goto bad_area;
417 }
418
419 survive:
420 /*
421 * If for any reason at all we couldn't handle the fault,
422 * make sure we exit gracefully rather than endlessly redo
423 * the fault.
424 */
425 switch (handle_mm_fault(mm, vma, address, write)) {
426 case VM_FAULT_MINOR:
427 tsk->min_flt++;
428 break;
429 case VM_FAULT_MAJOR:
430 tsk->maj_flt++;
431 break;
432 case VM_FAULT_SIGBUS:
433 goto do_sigbus;
434 case VM_FAULT_OOM:
435 goto out_of_memory;
436 default:
437 BUG();
438 }
439
440 /*
441 * Did it hit the DOS screen memory VA from vm86 mode?
442 */
443 if (regs->eflags & VM_MASK) {
444 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
445 if (bit < 32)
446 tsk->thread.screen_bitmap |= 1 << bit;
447 }
448 up_read(&mm->mmap_sem);
449 return;
450
451 /*
452 * Something tried to access memory that isn't in our memory map..
453 * Fix it, but check if it's kernel or user first..
454 */
455 bad_area:
456 up_read(&mm->mmap_sem);
457
458 bad_area_nosemaphore:
459 /* User mode accesses just cause a SIGSEGV */
460 if (error_code & 4) {
461 /*
462 * Valid to do another page fault here because this one came
463 * from user space.
464 */
465 if (is_prefetch(regs, address, error_code))
466 return;
467
468 tsk->thread.cr2 = address;
469 /* Kernel addresses are always protection faults */
470 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
471 tsk->thread.trap_no = 14;
472 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
473 return;
474 }
475
476 #ifdef CONFIG_X86_F00F_BUG
477 /*
478 * Pentium F0 0F C7 C8 bug workaround.
479 */
480 if (boot_cpu_data.f00f_bug) {
481 unsigned long nr;
482
483 nr = (address - idt_descr.address) >> 3;
484
485 if (nr == 6) {
486 do_invalid_op(regs, 0);
487 return;
488 }
489 }
490 #endif
491
492 no_context:
493 /* Are we prepared to handle this kernel fault? */
494 if (fixup_exception(regs))
495 return;
496
497 /*
498 * Valid to do another page fault here, because if this fault
499 * had been triggered by is_prefetch fixup_exception would have
500 * handled it.
501 */
502 if (is_prefetch(regs, address, error_code))
503 return;
504
505 /*
506 * Oops. The kernel tried to access some bad page. We'll have to
507 * terminate things with extreme prejudice.
508 */
509
510 bust_spinlocks(1);
511
512 if (oops_may_print()) {
513 #ifdef CONFIG_X86_PAE
514 if (error_code & 16) {
515 pte_t *pte = lookup_address(address);
516
517 if (pte && pte_present(*pte) && !pte_exec_kernel(*pte))
518 printk(KERN_CRIT "kernel tried to execute "
519 "NX-protected page - exploit attempt? "
520 "(uid: %d)\n", current->uid);
521 }
522 #endif
523 if (address < PAGE_SIZE)
524 printk(KERN_ALERT "BUG: unable to handle kernel NULL "
525 "pointer dereference");
526 else
527 printk(KERN_ALERT "BUG: unable to handle kernel paging"
528 " request");
529 printk(" at virtual address %08lx\n",address);
530 printk(KERN_ALERT " printing eip:\n");
531 printk("%08lx\n", regs->eip);
532 }
533 page = read_cr3();
534 page = ((unsigned long *) __va(page))[address >> 22];
535 if (oops_may_print())
536 printk(KERN_ALERT "*pde = %08lx\n", page);
537 /*
538 * We must not directly access the pte in the highpte
539 * case, the page table might be allocated in highmem.
540 * And lets rather not kmap-atomic the pte, just in case
541 * it's allocated already.
542 */
543 #ifndef CONFIG_HIGHPTE
544 if ((page & 1) && oops_may_print()) {
545 page &= PAGE_MASK;
546 address &= 0x003ff000;
547 page = ((unsigned long *) __va(page))[address >> PAGE_SHIFT];
548 printk(KERN_ALERT "*pte = %08lx\n", page);
549 }
550 #endif
551 tsk->thread.cr2 = address;
552 tsk->thread.trap_no = 14;
553 tsk->thread.error_code = error_code;
554 die("Oops", regs, error_code);
555 bust_spinlocks(0);
556 do_exit(SIGKILL);
557
558 /*
559 * We ran out of memory, or some other thing happened to us that made
560 * us unable to handle the page fault gracefully.
561 */
562 out_of_memory:
563 up_read(&mm->mmap_sem);
564 if (is_init(tsk)) {
565 yield();
566 down_read(&mm->mmap_sem);
567 goto survive;
568 }
569 printk("VM: killing process %s\n", tsk->comm);
570 if (error_code & 4)
571 do_exit(SIGKILL);
572 goto no_context;
573
574 do_sigbus:
575 up_read(&mm->mmap_sem);
576
577 /* Kernel mode? Handle exceptions or die */
578 if (!(error_code & 4))
579 goto no_context;
580
581 /* User space => ok to do another page fault */
582 if (is_prefetch(regs, address, error_code))
583 return;
584
585 tsk->thread.cr2 = address;
586 tsk->thread.error_code = error_code;
587 tsk->thread.trap_no = 14;
588 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
589 }
590
591 #ifndef CONFIG_X86_PAE
592 void vmalloc_sync_all(void)
593 {
594 /*
595 * Note that races in the updates of insync and start aren't
596 * problematic: insync can only get set bits added, and updates to
597 * start are only improving performance (without affecting correctness
598 * if undone).
599 */
600 static DECLARE_BITMAP(insync, PTRS_PER_PGD);
601 static unsigned long start = TASK_SIZE;
602 unsigned long address;
603
604 BUILD_BUG_ON(TASK_SIZE & ~PGDIR_MASK);
605 for (address = start; address >= TASK_SIZE; address += PGDIR_SIZE) {
606 if (!test_bit(pgd_index(address), insync)) {
607 unsigned long flags;
608 struct page *page;
609
610 spin_lock_irqsave(&pgd_lock, flags);
611 for (page = pgd_list; page; page =
612 (struct page *)page->index)
613 if (!vmalloc_sync_one(page_address(page),
614 address)) {
615 BUG_ON(page != pgd_list);
616 break;
617 }
618 spin_unlock_irqrestore(&pgd_lock, flags);
619 if (!page)
620 set_bit(pgd_index(address), insync);
621 }
622 if (address == start && test_bit(pgd_index(address), insync))
623 start = address + PGDIR_SIZE;
624 }
625 }
626 #endif
This page took 0.046776 seconds and 6 git commands to generate.