KVM: Clean up vm creation and release
[deliverable/linux.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2 * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3 *
4 *
5 * Copyright (C) 2007, Intel Corporation.
6 * Xiantao Zhang (xiantao.zhang@intel.com)
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19 * Place - Suite 330, Boston, MA 02111-1307 USA.
20 *
21 */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68 { NULL }
69 };
70
71 static unsigned long kvm_get_itc(struct kvm_vcpu *vcpu)
72 {
73 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
74 if (vcpu->kvm->arch.is_sn2)
75 return rtc_time();
76 else
77 #endif
78 return ia64_getreg(_IA64_REG_AR_ITC);
79 }
80
81 static void kvm_flush_icache(unsigned long start, unsigned long len)
82 {
83 int l;
84
85 for (l = 0; l < (len + 32); l += 32)
86 ia64_fc((void *)(start + l));
87
88 ia64_sync_i();
89 ia64_srlz_i();
90 }
91
92 static void kvm_flush_tlb_all(void)
93 {
94 unsigned long i, j, count0, count1, stride0, stride1, addr;
95 long flags;
96
97 addr = local_cpu_data->ptce_base;
98 count0 = local_cpu_data->ptce_count[0];
99 count1 = local_cpu_data->ptce_count[1];
100 stride0 = local_cpu_data->ptce_stride[0];
101 stride1 = local_cpu_data->ptce_stride[1];
102
103 local_irq_save(flags);
104 for (i = 0; i < count0; ++i) {
105 for (j = 0; j < count1; ++j) {
106 ia64_ptce(addr);
107 addr += stride1;
108 }
109 addr += stride0;
110 }
111 local_irq_restore(flags);
112 ia64_srlz_i(); /* srlz.i implies srlz.d */
113 }
114
115 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
116 {
117 struct ia64_pal_retval iprv;
118
119 PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
120 (u64)opt_handler);
121
122 return iprv.status;
123 }
124
125 static DEFINE_SPINLOCK(vp_lock);
126
127 int kvm_arch_hardware_enable(void *garbage)
128 {
129 long status;
130 long tmp_base;
131 unsigned long pte;
132 unsigned long saved_psr;
133 int slot;
134
135 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
136 local_irq_save(saved_psr);
137 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
138 local_irq_restore(saved_psr);
139 if (slot < 0)
140 return -EINVAL;
141
142 spin_lock(&vp_lock);
143 status = ia64_pal_vp_init_env(kvm_vsa_base ?
144 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
145 __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
146 if (status != 0) {
147 spin_unlock(&vp_lock);
148 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
149 return -EINVAL;
150 }
151
152 if (!kvm_vsa_base) {
153 kvm_vsa_base = tmp_base;
154 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
155 }
156 spin_unlock(&vp_lock);
157 ia64_ptr_entry(0x3, slot);
158
159 return 0;
160 }
161
162 void kvm_arch_hardware_disable(void *garbage)
163 {
164
165 long status;
166 int slot;
167 unsigned long pte;
168 unsigned long saved_psr;
169 unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
170
171 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
172 PAGE_KERNEL));
173
174 local_irq_save(saved_psr);
175 slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
176 local_irq_restore(saved_psr);
177 if (slot < 0)
178 return;
179
180 status = ia64_pal_vp_exit_env(host_iva);
181 if (status)
182 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
183 status);
184 ia64_ptr_entry(0x3, slot);
185 }
186
187 void kvm_arch_check_processor_compat(void *rtn)
188 {
189 *(int *)rtn = 0;
190 }
191
192 int kvm_dev_ioctl_check_extension(long ext)
193 {
194
195 int r;
196
197 switch (ext) {
198 case KVM_CAP_IRQCHIP:
199 case KVM_CAP_MP_STATE:
200 case KVM_CAP_IRQ_INJECT_STATUS:
201 r = 1;
202 break;
203 case KVM_CAP_COALESCED_MMIO:
204 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
205 break;
206 case KVM_CAP_IOMMU:
207 r = iommu_found();
208 break;
209 default:
210 r = 0;
211 }
212 return r;
213
214 }
215
216 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
217 {
218 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
219 kvm_run->hw.hardware_exit_reason = 1;
220 return 0;
221 }
222
223 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
224 {
225 struct kvm_mmio_req *p;
226 struct kvm_io_device *mmio_dev;
227 int r;
228
229 p = kvm_get_vcpu_ioreq(vcpu);
230
231 if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
232 goto mmio;
233 vcpu->mmio_needed = 1;
234 vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
235 vcpu->mmio_size = kvm_run->mmio.len = p->size;
236 vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
237
238 if (vcpu->mmio_is_write)
239 memcpy(vcpu->mmio_data, &p->data, p->size);
240 memcpy(kvm_run->mmio.data, &p->data, p->size);
241 kvm_run->exit_reason = KVM_EXIT_MMIO;
242 return 0;
243 mmio:
244 if (p->dir)
245 r = kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, p->addr,
246 p->size, &p->data);
247 else
248 r = kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, p->addr,
249 p->size, &p->data);
250 if (r)
251 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
252 p->state = STATE_IORESP_READY;
253
254 return 1;
255 }
256
257 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
258 {
259 struct exit_ctl_data *p;
260
261 p = kvm_get_exit_data(vcpu);
262
263 if (p->exit_reason == EXIT_REASON_PAL_CALL)
264 return kvm_pal_emul(vcpu, kvm_run);
265 else {
266 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
267 kvm_run->hw.hardware_exit_reason = 2;
268 return 0;
269 }
270 }
271
272 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
273 {
274 struct exit_ctl_data *p;
275
276 p = kvm_get_exit_data(vcpu);
277
278 if (p->exit_reason == EXIT_REASON_SAL_CALL) {
279 kvm_sal_emul(vcpu);
280 return 1;
281 } else {
282 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
283 kvm_run->hw.hardware_exit_reason = 3;
284 return 0;
285 }
286
287 }
288
289 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
290 {
291 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
292
293 if (!test_and_set_bit(vector, &vpd->irr[0])) {
294 vcpu->arch.irq_new_pending = 1;
295 kvm_vcpu_kick(vcpu);
296 return 1;
297 }
298 return 0;
299 }
300
301 /*
302 * offset: address offset to IPI space.
303 * value: deliver value.
304 */
305 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
306 uint64_t vector)
307 {
308 switch (dm) {
309 case SAPIC_FIXED:
310 break;
311 case SAPIC_NMI:
312 vector = 2;
313 break;
314 case SAPIC_EXTINT:
315 vector = 0;
316 break;
317 case SAPIC_INIT:
318 case SAPIC_PMI:
319 default:
320 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
321 return;
322 }
323 __apic_accept_irq(vcpu, vector);
324 }
325
326 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
327 unsigned long eid)
328 {
329 union ia64_lid lid;
330 int i;
331 struct kvm_vcpu *vcpu;
332
333 kvm_for_each_vcpu(i, vcpu, kvm) {
334 lid.val = VCPU_LID(vcpu);
335 if (lid.id == id && lid.eid == eid)
336 return vcpu;
337 }
338
339 return NULL;
340 }
341
342 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343 {
344 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345 struct kvm_vcpu *target_vcpu;
346 struct kvm_pt_regs *regs;
347 union ia64_ipi_a addr = p->u.ipi_data.addr;
348 union ia64_ipi_d data = p->u.ipi_data.data;
349
350 target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351 if (!target_vcpu)
352 return handle_vm_error(vcpu, kvm_run);
353
354 if (!target_vcpu->arch.launched) {
355 regs = vcpu_regs(target_vcpu);
356
357 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361 if (waitqueue_active(&target_vcpu->wq))
362 wake_up_interruptible(&target_vcpu->wq);
363 } else {
364 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365 if (target_vcpu != vcpu)
366 kvm_vcpu_kick(target_vcpu);
367 }
368
369 return 1;
370 }
371
372 struct call_data {
373 struct kvm_ptc_g ptc_g_data;
374 struct kvm_vcpu *vcpu;
375 };
376
377 static void vcpu_global_purge(void *info)
378 {
379 struct call_data *p = (struct call_data *)info;
380 struct kvm_vcpu *vcpu = p->vcpu;
381
382 if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383 return;
384
385 set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386 if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388 p->ptc_g_data;
389 } else {
390 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391 vcpu->arch.ptc_g_count = 0;
392 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393 }
394 }
395
396 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397 {
398 struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399 struct kvm *kvm = vcpu->kvm;
400 struct call_data call_data;
401 int i;
402 struct kvm_vcpu *vcpui;
403
404 call_data.ptc_g_data = p->u.ptc_g_data;
405
406 kvm_for_each_vcpu(i, vcpui, kvm) {
407 if (vcpui->arch.mp_state == KVM_MP_STATE_UNINITIALIZED ||
408 vcpu == vcpui)
409 continue;
410
411 if (waitqueue_active(&vcpui->wq))
412 wake_up_interruptible(&vcpui->wq);
413
414 if (vcpui->cpu != -1) {
415 call_data.vcpu = vcpui;
416 smp_call_function_single(vcpui->cpu,
417 vcpu_global_purge, &call_data, 1);
418 } else
419 printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421 }
422 return 1;
423 }
424
425 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426 {
427 return 1;
428 }
429
430 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431 {
432 unsigned long pte, rtc_phys_addr, map_addr;
433 int slot;
434
435 map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436 rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437 pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438 slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439 vcpu->arch.sn_rtc_tr_slot = slot;
440 if (slot < 0) {
441 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442 slot = 0;
443 }
444 return slot;
445 }
446
447 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448 {
449
450 ktime_t kt;
451 long itc_diff;
452 unsigned long vcpu_now_itc;
453 unsigned long expires;
454 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455 unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458 if (irqchip_in_kernel(vcpu->kvm)) {
459
460 vcpu_now_itc = kvm_get_itc(vcpu) + vcpu->arch.itc_offset;
461
462 if (time_after(vcpu_now_itc, vpd->itm)) {
463 vcpu->arch.timer_check = 1;
464 return 1;
465 }
466 itc_diff = vpd->itm - vcpu_now_itc;
467 if (itc_diff < 0)
468 itc_diff = -itc_diff;
469
470 expires = div64_u64(itc_diff, cyc_per_usec);
471 kt = ktime_set(0, 1000 * expires);
472
473 vcpu->arch.ht_active = 1;
474 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477 kvm_vcpu_block(vcpu);
478 hrtimer_cancel(p_ht);
479 vcpu->arch.ht_active = 0;
480
481 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests) ||
482 kvm_cpu_has_pending_timer(vcpu))
483 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
484 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
485
486 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487 return -EINTR;
488 return 1;
489 } else {
490 printk(KERN_ERR"kvm: Unsupported userspace halt!");
491 return 0;
492 }
493 }
494
495 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496 struct kvm_run *kvm_run)
497 {
498 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499 return 0;
500 }
501
502 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503 struct kvm_run *kvm_run)
504 {
505 return 1;
506 }
507
508 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509 struct kvm_run *kvm_run)
510 {
511 printk("VMM: %s", vcpu->arch.log_buf);
512 return 1;
513 }
514
515 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516 struct kvm_run *kvm_run) = {
517 [EXIT_REASON_VM_PANIC] = handle_vm_error,
518 [EXIT_REASON_MMIO_INSTRUCTION] = handle_mmio,
519 [EXIT_REASON_PAL_CALL] = handle_pal_call,
520 [EXIT_REASON_SAL_CALL] = handle_sal_call,
521 [EXIT_REASON_SWITCH_RR6] = handle_switch_rr6,
522 [EXIT_REASON_VM_DESTROY] = handle_vm_shutdown,
523 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
524 [EXIT_REASON_IPI] = handle_ipi,
525 [EXIT_REASON_PTC_G] = handle_global_purge,
526 [EXIT_REASON_DEBUG] = handle_vcpu_debug,
527
528 };
529
530 static const int kvm_vti_max_exit_handlers =
531 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534 {
535 struct exit_ctl_data *p_exit_data;
536
537 p_exit_data = kvm_get_exit_data(vcpu);
538 return p_exit_data->exit_reason;
539 }
540
541 /*
542 * The guest has exited. See if we can fix it or if we need userspace
543 * assistance.
544 */
545 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546 {
547 u32 exit_reason = kvm_get_exit_reason(vcpu);
548 vcpu->arch.last_exit = exit_reason;
549
550 if (exit_reason < kvm_vti_max_exit_handlers
551 && kvm_vti_exit_handlers[exit_reason])
552 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553 else {
554 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555 kvm_run->hw.hardware_exit_reason = exit_reason;
556 }
557 return 0;
558 }
559
560 static inline void vti_set_rr6(unsigned long rr6)
561 {
562 ia64_set_rr(RR6, rr6);
563 ia64_srlz_i();
564 }
565
566 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567 {
568 unsigned long pte;
569 struct kvm *kvm = vcpu->kvm;
570 int r;
571
572 /*Insert a pair of tr to map vmm*/
573 pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574 r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575 if (r < 0)
576 goto out;
577 vcpu->arch.vmm_tr_slot = r;
578 /*Insert a pairt of tr to map data of vm*/
579 pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580 r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581 pte, KVM_VM_DATA_SHIFT);
582 if (r < 0)
583 goto out;
584 vcpu->arch.vm_tr_slot = r;
585
586 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587 if (kvm->arch.is_sn2) {
588 r = kvm_sn2_setup_mappings(vcpu);
589 if (r < 0)
590 goto out;
591 }
592 #endif
593
594 r = 0;
595 out:
596 return r;
597 }
598
599 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600 {
601 struct kvm *kvm = vcpu->kvm;
602 ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603 ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605 if (kvm->arch.is_sn2)
606 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607 #endif
608 }
609
610 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611 {
612 unsigned long psr;
613 int r;
614 int cpu = smp_processor_id();
615
616 if (vcpu->arch.last_run_cpu != cpu ||
617 per_cpu(last_vcpu, cpu) != vcpu) {
618 per_cpu(last_vcpu, cpu) = vcpu;
619 vcpu->arch.last_run_cpu = cpu;
620 kvm_flush_tlb_all();
621 }
622
623 vcpu->arch.host_rr6 = ia64_get_rr(RR6);
624 vti_set_rr6(vcpu->arch.vmm_rr);
625 local_irq_save(psr);
626 r = kvm_insert_vmm_mapping(vcpu);
627 local_irq_restore(psr);
628 return r;
629 }
630
631 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
632 {
633 kvm_purge_vmm_mapping(vcpu);
634 vti_set_rr6(vcpu->arch.host_rr6);
635 }
636
637 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
638 {
639 union context *host_ctx, *guest_ctx;
640 int r, idx;
641
642 idx = srcu_read_lock(&vcpu->kvm->srcu);
643
644 again:
645 if (signal_pending(current)) {
646 r = -EINTR;
647 kvm_run->exit_reason = KVM_EXIT_INTR;
648 goto out;
649 }
650
651 preempt_disable();
652 local_irq_disable();
653
654 /*Get host and guest context with guest address space.*/
655 host_ctx = kvm_get_host_context(vcpu);
656 guest_ctx = kvm_get_guest_context(vcpu);
657
658 clear_bit(KVM_REQ_KICK, &vcpu->requests);
659
660 r = kvm_vcpu_pre_transition(vcpu);
661 if (r < 0)
662 goto vcpu_run_fail;
663
664 srcu_read_unlock(&vcpu->kvm->srcu, idx);
665 kvm_guest_enter();
666
667 /*
668 * Transition to the guest
669 */
670 kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
671
672 kvm_vcpu_post_transition(vcpu);
673
674 vcpu->arch.launched = 1;
675 set_bit(KVM_REQ_KICK, &vcpu->requests);
676 local_irq_enable();
677
678 /*
679 * We must have an instruction between local_irq_enable() and
680 * kvm_guest_exit(), so the timer interrupt isn't delayed by
681 * the interrupt shadow. The stat.exits increment will do nicely.
682 * But we need to prevent reordering, hence this barrier():
683 */
684 barrier();
685 kvm_guest_exit();
686 preempt_enable();
687
688 idx = srcu_read_lock(&vcpu->kvm->srcu);
689
690 r = kvm_handle_exit(kvm_run, vcpu);
691
692 if (r > 0) {
693 if (!need_resched())
694 goto again;
695 }
696
697 out:
698 srcu_read_unlock(&vcpu->kvm->srcu, idx);
699 if (r > 0) {
700 kvm_resched(vcpu);
701 idx = srcu_read_lock(&vcpu->kvm->srcu);
702 goto again;
703 }
704
705 return r;
706
707 vcpu_run_fail:
708 local_irq_enable();
709 preempt_enable();
710 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
711 goto out;
712 }
713
714 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
715 {
716 struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
717
718 if (!vcpu->mmio_is_write)
719 memcpy(&p->data, vcpu->mmio_data, 8);
720 p->state = STATE_IORESP_READY;
721 }
722
723 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
724 {
725 int r;
726 sigset_t sigsaved;
727
728 if (vcpu->sigset_active)
729 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
730
731 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
732 kvm_vcpu_block(vcpu);
733 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
734 r = -EAGAIN;
735 goto out;
736 }
737
738 if (vcpu->mmio_needed) {
739 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
740 kvm_set_mmio_data(vcpu);
741 vcpu->mmio_read_completed = 1;
742 vcpu->mmio_needed = 0;
743 }
744 r = __vcpu_run(vcpu, kvm_run);
745 out:
746 if (vcpu->sigset_active)
747 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
748
749 return r;
750 }
751
752 struct kvm *kvm_arch_alloc_vm(void)
753 {
754
755 struct kvm *kvm;
756 uint64_t vm_base;
757
758 BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
759
760 vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
761
762 if (!vm_base)
763 return NULL;
764
765 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
766 kvm = (struct kvm *)(vm_base +
767 offsetof(struct kvm_vm_data, kvm_vm_struct));
768 kvm->arch.vm_base = vm_base;
769 printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
770
771 return kvm;
772 }
773
774 struct kvm_io_range {
775 unsigned long start;
776 unsigned long size;
777 unsigned long type;
778 };
779
780 static const struct kvm_io_range io_ranges[] = {
781 {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
782 {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
783 {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
784 {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
785 {PIB_START, PIB_SIZE, GPFN_PIB},
786 };
787
788 static void kvm_build_io_pmt(struct kvm *kvm)
789 {
790 unsigned long i, j;
791
792 /* Mark I/O ranges */
793 for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
794 i++) {
795 for (j = io_ranges[i].start;
796 j < io_ranges[i].start + io_ranges[i].size;
797 j += PAGE_SIZE)
798 kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
799 io_ranges[i].type, 0);
800 }
801
802 }
803
804 /*Use unused rids to virtualize guest rid.*/
805 #define GUEST_PHYSICAL_RR0 0x1739
806 #define GUEST_PHYSICAL_RR4 0x2739
807 #define VMM_INIT_RR 0x1660
808
809 int kvm_arch_init_vm(struct kvm *kvm)
810 {
811 BUG_ON(!kvm);
812
813 kvm->arch.is_sn2 = ia64_platform_is("sn2");
814
815 kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
816 kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
817 kvm->arch.vmm_init_rr = VMM_INIT_RR;
818
819 /*
820 *Fill P2M entries for MMIO/IO ranges
821 */
822 kvm_build_io_pmt(kvm);
823
824 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
825
826 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
827 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
828
829 return 0;
830 }
831
832 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
833 struct kvm_irqchip *chip)
834 {
835 int r;
836
837 r = 0;
838 switch (chip->chip_id) {
839 case KVM_IRQCHIP_IOAPIC:
840 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
841 break;
842 default:
843 r = -EINVAL;
844 break;
845 }
846 return r;
847 }
848
849 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
850 {
851 int r;
852
853 r = 0;
854 switch (chip->chip_id) {
855 case KVM_IRQCHIP_IOAPIC:
856 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
857 break;
858 default:
859 r = -EINVAL;
860 break;
861 }
862 return r;
863 }
864
865 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
866
867 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
868 {
869 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
870 int i;
871
872 for (i = 0; i < 16; i++) {
873 vpd->vgr[i] = regs->vpd.vgr[i];
874 vpd->vbgr[i] = regs->vpd.vbgr[i];
875 }
876 for (i = 0; i < 128; i++)
877 vpd->vcr[i] = regs->vpd.vcr[i];
878 vpd->vhpi = regs->vpd.vhpi;
879 vpd->vnat = regs->vpd.vnat;
880 vpd->vbnat = regs->vpd.vbnat;
881 vpd->vpsr = regs->vpd.vpsr;
882
883 vpd->vpr = regs->vpd.vpr;
884
885 memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
886
887 RESTORE_REGS(mp_state);
888 RESTORE_REGS(vmm_rr);
889 memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
890 memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
891 RESTORE_REGS(itr_regions);
892 RESTORE_REGS(dtr_regions);
893 RESTORE_REGS(tc_regions);
894 RESTORE_REGS(irq_check);
895 RESTORE_REGS(itc_check);
896 RESTORE_REGS(timer_check);
897 RESTORE_REGS(timer_pending);
898 RESTORE_REGS(last_itc);
899 for (i = 0; i < 8; i++) {
900 vcpu->arch.vrr[i] = regs->vrr[i];
901 vcpu->arch.ibr[i] = regs->ibr[i];
902 vcpu->arch.dbr[i] = regs->dbr[i];
903 }
904 for (i = 0; i < 4; i++)
905 vcpu->arch.insvc[i] = regs->insvc[i];
906 RESTORE_REGS(xtp);
907 RESTORE_REGS(metaphysical_rr0);
908 RESTORE_REGS(metaphysical_rr4);
909 RESTORE_REGS(metaphysical_saved_rr0);
910 RESTORE_REGS(metaphysical_saved_rr4);
911 RESTORE_REGS(fp_psr);
912 RESTORE_REGS(saved_gp);
913
914 vcpu->arch.irq_new_pending = 1;
915 vcpu->arch.itc_offset = regs->saved_itc - kvm_get_itc(vcpu);
916 set_bit(KVM_REQ_RESUME, &vcpu->requests);
917
918 return 0;
919 }
920
921 long kvm_arch_vm_ioctl(struct file *filp,
922 unsigned int ioctl, unsigned long arg)
923 {
924 struct kvm *kvm = filp->private_data;
925 void __user *argp = (void __user *)arg;
926 int r = -ENOTTY;
927
928 switch (ioctl) {
929 case KVM_SET_MEMORY_REGION: {
930 struct kvm_memory_region kvm_mem;
931 struct kvm_userspace_memory_region kvm_userspace_mem;
932
933 r = -EFAULT;
934 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
935 goto out;
936 kvm_userspace_mem.slot = kvm_mem.slot;
937 kvm_userspace_mem.flags = kvm_mem.flags;
938 kvm_userspace_mem.guest_phys_addr =
939 kvm_mem.guest_phys_addr;
940 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
941 r = kvm_vm_ioctl_set_memory_region(kvm,
942 &kvm_userspace_mem, 0);
943 if (r)
944 goto out;
945 break;
946 }
947 case KVM_CREATE_IRQCHIP:
948 r = -EFAULT;
949 r = kvm_ioapic_init(kvm);
950 if (r)
951 goto out;
952 r = kvm_setup_default_irq_routing(kvm);
953 if (r) {
954 kvm_ioapic_destroy(kvm);
955 goto out;
956 }
957 break;
958 case KVM_IRQ_LINE_STATUS:
959 case KVM_IRQ_LINE: {
960 struct kvm_irq_level irq_event;
961
962 r = -EFAULT;
963 if (copy_from_user(&irq_event, argp, sizeof irq_event))
964 goto out;
965 r = -ENXIO;
966 if (irqchip_in_kernel(kvm)) {
967 __s32 status;
968 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
969 irq_event.irq, irq_event.level);
970 if (ioctl == KVM_IRQ_LINE_STATUS) {
971 r = -EFAULT;
972 irq_event.status = status;
973 if (copy_to_user(argp, &irq_event,
974 sizeof irq_event))
975 goto out;
976 }
977 r = 0;
978 }
979 break;
980 }
981 case KVM_GET_IRQCHIP: {
982 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
983 struct kvm_irqchip chip;
984
985 r = -EFAULT;
986 if (copy_from_user(&chip, argp, sizeof chip))
987 goto out;
988 r = -ENXIO;
989 if (!irqchip_in_kernel(kvm))
990 goto out;
991 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
992 if (r)
993 goto out;
994 r = -EFAULT;
995 if (copy_to_user(argp, &chip, sizeof chip))
996 goto out;
997 r = 0;
998 break;
999 }
1000 case KVM_SET_IRQCHIP: {
1001 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1002 struct kvm_irqchip chip;
1003
1004 r = -EFAULT;
1005 if (copy_from_user(&chip, argp, sizeof chip))
1006 goto out;
1007 r = -ENXIO;
1008 if (!irqchip_in_kernel(kvm))
1009 goto out;
1010 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1011 if (r)
1012 goto out;
1013 r = 0;
1014 break;
1015 }
1016 default:
1017 ;
1018 }
1019 out:
1020 return r;
1021 }
1022
1023 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1024 struct kvm_sregs *sregs)
1025 {
1026 return -EINVAL;
1027 }
1028
1029 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1030 struct kvm_sregs *sregs)
1031 {
1032 return -EINVAL;
1033
1034 }
1035 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1036 struct kvm_translation *tr)
1037 {
1038
1039 return -EINVAL;
1040 }
1041
1042 static int kvm_alloc_vmm_area(void)
1043 {
1044 if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1045 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1046 get_order(KVM_VMM_SIZE));
1047 if (!kvm_vmm_base)
1048 return -ENOMEM;
1049
1050 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1051 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1052
1053 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1054 kvm_vmm_base, kvm_vm_buffer);
1055 }
1056
1057 return 0;
1058 }
1059
1060 static void kvm_free_vmm_area(void)
1061 {
1062 if (kvm_vmm_base) {
1063 /*Zero this area before free to avoid bits leak!!*/
1064 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1065 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1066 kvm_vmm_base = 0;
1067 kvm_vm_buffer = 0;
1068 kvm_vsa_base = 0;
1069 }
1070 }
1071
1072 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1073 {
1074 int i;
1075 union cpuid3_t cpuid3;
1076 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1077
1078 if (IS_ERR(vpd))
1079 return PTR_ERR(vpd);
1080
1081 /* CPUID init */
1082 for (i = 0; i < 5; i++)
1083 vpd->vcpuid[i] = ia64_get_cpuid(i);
1084
1085 /* Limit the CPUID number to 5 */
1086 cpuid3.value = vpd->vcpuid[3];
1087 cpuid3.number = 4; /* 5 - 1 */
1088 vpd->vcpuid[3] = cpuid3.value;
1089
1090 /*Set vac and vdc fields*/
1091 vpd->vac.a_from_int_cr = 1;
1092 vpd->vac.a_to_int_cr = 1;
1093 vpd->vac.a_from_psr = 1;
1094 vpd->vac.a_from_cpuid = 1;
1095 vpd->vac.a_cover = 1;
1096 vpd->vac.a_bsw = 1;
1097 vpd->vac.a_int = 1;
1098 vpd->vdc.d_vmsw = 1;
1099
1100 /*Set virtual buffer*/
1101 vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1102
1103 return 0;
1104 }
1105
1106 static int vti_create_vp(struct kvm_vcpu *vcpu)
1107 {
1108 long ret;
1109 struct vpd *vpd = vcpu->arch.vpd;
1110 unsigned long vmm_ivt;
1111
1112 vmm_ivt = kvm_vmm_info->vmm_ivt;
1113
1114 printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1115
1116 ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1117
1118 if (ret) {
1119 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1120 return -EINVAL;
1121 }
1122 return 0;
1123 }
1124
1125 static void init_ptce_info(struct kvm_vcpu *vcpu)
1126 {
1127 ia64_ptce_info_t ptce = {0};
1128
1129 ia64_get_ptce(&ptce);
1130 vcpu->arch.ptce_base = ptce.base;
1131 vcpu->arch.ptce_count[0] = ptce.count[0];
1132 vcpu->arch.ptce_count[1] = ptce.count[1];
1133 vcpu->arch.ptce_stride[0] = ptce.stride[0];
1134 vcpu->arch.ptce_stride[1] = ptce.stride[1];
1135 }
1136
1137 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1138 {
1139 struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1140
1141 if (hrtimer_cancel(p_ht))
1142 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1143 }
1144
1145 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1146 {
1147 struct kvm_vcpu *vcpu;
1148 wait_queue_head_t *q;
1149
1150 vcpu = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1151 q = &vcpu->wq;
1152
1153 if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1154 goto out;
1155
1156 if (waitqueue_active(q))
1157 wake_up_interruptible(q);
1158
1159 out:
1160 vcpu->arch.timer_fired = 1;
1161 vcpu->arch.timer_check = 1;
1162 return HRTIMER_NORESTART;
1163 }
1164
1165 #define PALE_RESET_ENTRY 0x80000000ffffffb0UL
1166
1167 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1168 {
1169 struct kvm_vcpu *v;
1170 int r;
1171 int i;
1172 long itc_offset;
1173 struct kvm *kvm = vcpu->kvm;
1174 struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1175
1176 union context *p_ctx = &vcpu->arch.guest;
1177 struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1178
1179 /*Init vcpu context for first run.*/
1180 if (IS_ERR(vmm_vcpu))
1181 return PTR_ERR(vmm_vcpu);
1182
1183 if (kvm_vcpu_is_bsp(vcpu)) {
1184 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1185
1186 /*Set entry address for first run.*/
1187 regs->cr_iip = PALE_RESET_ENTRY;
1188
1189 /*Initialize itc offset for vcpus*/
1190 itc_offset = 0UL - kvm_get_itc(vcpu);
1191 for (i = 0; i < KVM_MAX_VCPUS; i++) {
1192 v = (struct kvm_vcpu *)((char *)vcpu +
1193 sizeof(struct kvm_vcpu_data) * i);
1194 v->arch.itc_offset = itc_offset;
1195 v->arch.last_itc = 0;
1196 }
1197 } else
1198 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1199
1200 r = -ENOMEM;
1201 vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1202 if (!vcpu->arch.apic)
1203 goto out;
1204 vcpu->arch.apic->vcpu = vcpu;
1205
1206 p_ctx->gr[1] = 0;
1207 p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1208 p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1209 p_ctx->psr = 0x1008522000UL;
1210 p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1211 p_ctx->caller_unat = 0;
1212 p_ctx->pr = 0x0;
1213 p_ctx->ar[36] = 0x0; /*unat*/
1214 p_ctx->ar[19] = 0x0; /*rnat*/
1215 p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1216 ((sizeof(struct kvm_vcpu)+15) & ~15);
1217 p_ctx->ar[64] = 0x0; /*pfs*/
1218 p_ctx->cr[0] = 0x7e04UL;
1219 p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1220 p_ctx->cr[8] = 0x3c;
1221
1222 /*Initialize region register*/
1223 p_ctx->rr[0] = 0x30;
1224 p_ctx->rr[1] = 0x30;
1225 p_ctx->rr[2] = 0x30;
1226 p_ctx->rr[3] = 0x30;
1227 p_ctx->rr[4] = 0x30;
1228 p_ctx->rr[5] = 0x30;
1229 p_ctx->rr[7] = 0x30;
1230
1231 /*Initialize branch register 0*/
1232 p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1233
1234 vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1235 vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1236 vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1237
1238 hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1239 vcpu->arch.hlt_timer.function = hlt_timer_fn;
1240
1241 vcpu->arch.last_run_cpu = -1;
1242 vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1243 vcpu->arch.vsa_base = kvm_vsa_base;
1244 vcpu->arch.__gp = kvm_vmm_gp;
1245 vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1246 vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1247 vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1248 init_ptce_info(vcpu);
1249
1250 r = 0;
1251 out:
1252 return r;
1253 }
1254
1255 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1256 {
1257 unsigned long psr;
1258 int r;
1259
1260 local_irq_save(psr);
1261 r = kvm_insert_vmm_mapping(vcpu);
1262 local_irq_restore(psr);
1263 if (r)
1264 goto fail;
1265 r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1266 if (r)
1267 goto fail;
1268
1269 r = vti_init_vpd(vcpu);
1270 if (r) {
1271 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1272 goto uninit;
1273 }
1274
1275 r = vti_create_vp(vcpu);
1276 if (r)
1277 goto uninit;
1278
1279 kvm_purge_vmm_mapping(vcpu);
1280
1281 return 0;
1282 uninit:
1283 kvm_vcpu_uninit(vcpu);
1284 fail:
1285 return r;
1286 }
1287
1288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1289 unsigned int id)
1290 {
1291 struct kvm_vcpu *vcpu;
1292 unsigned long vm_base = kvm->arch.vm_base;
1293 int r;
1294 int cpu;
1295
1296 BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1297
1298 r = -EINVAL;
1299 if (id >= KVM_MAX_VCPUS) {
1300 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1301 KVM_MAX_VCPUS);
1302 goto fail;
1303 }
1304
1305 r = -ENOMEM;
1306 if (!vm_base) {
1307 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1308 goto fail;
1309 }
1310 vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1311 vcpu_data[id].vcpu_struct));
1312 vcpu->kvm = kvm;
1313
1314 cpu = get_cpu();
1315 r = vti_vcpu_setup(vcpu, id);
1316 put_cpu();
1317
1318 if (r) {
1319 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1320 goto fail;
1321 }
1322
1323 return vcpu;
1324 fail:
1325 return ERR_PTR(r);
1326 }
1327
1328 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1329 {
1330 return 0;
1331 }
1332
1333 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1334 {
1335 return -EINVAL;
1336 }
1337
1338 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1339 {
1340 return -EINVAL;
1341 }
1342
1343 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1344 struct kvm_guest_debug *dbg)
1345 {
1346 return -EINVAL;
1347 }
1348
1349 void kvm_arch_free_vm(struct kvm *kvm)
1350 {
1351 unsigned long vm_base = kvm->arch.vm_base;
1352
1353 if (vm_base) {
1354 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1355 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1356 }
1357
1358 }
1359
1360 static void kvm_release_vm_pages(struct kvm *kvm)
1361 {
1362 struct kvm_memslots *slots;
1363 struct kvm_memory_slot *memslot;
1364 int i, j;
1365 unsigned long base_gfn;
1366
1367 slots = kvm_memslots(kvm);
1368 for (i = 0; i < slots->nmemslots; i++) {
1369 memslot = &slots->memslots[i];
1370 base_gfn = memslot->base_gfn;
1371
1372 for (j = 0; j < memslot->npages; j++) {
1373 if (memslot->rmap[j])
1374 put_page((struct page *)memslot->rmap[j]);
1375 }
1376 }
1377 }
1378
1379 void kvm_arch_sync_events(struct kvm *kvm)
1380 {
1381 }
1382
1383 void kvm_arch_destroy_vm(struct kvm *kvm)
1384 {
1385 kvm_iommu_unmap_guest(kvm);
1386 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1387 kvm_free_all_assigned_devices(kvm);
1388 #endif
1389 kfree(kvm->arch.vioapic);
1390 kvm_release_vm_pages(kvm);
1391 }
1392
1393 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1394 {
1395 }
1396
1397 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1398 {
1399 if (cpu != vcpu->cpu) {
1400 vcpu->cpu = cpu;
1401 if (vcpu->arch.ht_active)
1402 kvm_migrate_hlt_timer(vcpu);
1403 }
1404 }
1405
1406 #define SAVE_REGS(_x) regs->_x = vcpu->arch._x
1407
1408 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1409 {
1410 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1411 int i;
1412
1413 vcpu_load(vcpu);
1414
1415 for (i = 0; i < 16; i++) {
1416 regs->vpd.vgr[i] = vpd->vgr[i];
1417 regs->vpd.vbgr[i] = vpd->vbgr[i];
1418 }
1419 for (i = 0; i < 128; i++)
1420 regs->vpd.vcr[i] = vpd->vcr[i];
1421 regs->vpd.vhpi = vpd->vhpi;
1422 regs->vpd.vnat = vpd->vnat;
1423 regs->vpd.vbnat = vpd->vbnat;
1424 regs->vpd.vpsr = vpd->vpsr;
1425 regs->vpd.vpr = vpd->vpr;
1426
1427 memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1428
1429 SAVE_REGS(mp_state);
1430 SAVE_REGS(vmm_rr);
1431 memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1432 memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1433 SAVE_REGS(itr_regions);
1434 SAVE_REGS(dtr_regions);
1435 SAVE_REGS(tc_regions);
1436 SAVE_REGS(irq_check);
1437 SAVE_REGS(itc_check);
1438 SAVE_REGS(timer_check);
1439 SAVE_REGS(timer_pending);
1440 SAVE_REGS(last_itc);
1441 for (i = 0; i < 8; i++) {
1442 regs->vrr[i] = vcpu->arch.vrr[i];
1443 regs->ibr[i] = vcpu->arch.ibr[i];
1444 regs->dbr[i] = vcpu->arch.dbr[i];
1445 }
1446 for (i = 0; i < 4; i++)
1447 regs->insvc[i] = vcpu->arch.insvc[i];
1448 regs->saved_itc = vcpu->arch.itc_offset + kvm_get_itc(vcpu);
1449 SAVE_REGS(xtp);
1450 SAVE_REGS(metaphysical_rr0);
1451 SAVE_REGS(metaphysical_rr4);
1452 SAVE_REGS(metaphysical_saved_rr0);
1453 SAVE_REGS(metaphysical_saved_rr4);
1454 SAVE_REGS(fp_psr);
1455 SAVE_REGS(saved_gp);
1456
1457 vcpu_put(vcpu);
1458 return 0;
1459 }
1460
1461 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1462 struct kvm_ia64_vcpu_stack *stack)
1463 {
1464 memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1465 return 0;
1466 }
1467
1468 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1469 struct kvm_ia64_vcpu_stack *stack)
1470 {
1471 memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1472 sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1473
1474 vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1475 return 0;
1476 }
1477
1478 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1479 {
1480
1481 hrtimer_cancel(&vcpu->arch.hlt_timer);
1482 kfree(vcpu->arch.apic);
1483 }
1484
1485
1486 long kvm_arch_vcpu_ioctl(struct file *filp,
1487 unsigned int ioctl, unsigned long arg)
1488 {
1489 struct kvm_vcpu *vcpu = filp->private_data;
1490 void __user *argp = (void __user *)arg;
1491 struct kvm_ia64_vcpu_stack *stack = NULL;
1492 long r;
1493
1494 switch (ioctl) {
1495 case KVM_IA64_VCPU_GET_STACK: {
1496 struct kvm_ia64_vcpu_stack __user *user_stack;
1497 void __user *first_p = argp;
1498
1499 r = -EFAULT;
1500 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1501 goto out;
1502
1503 if (!access_ok(VERIFY_WRITE, user_stack,
1504 sizeof(struct kvm_ia64_vcpu_stack))) {
1505 printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1506 "Illegal user destination address for stack\n");
1507 goto out;
1508 }
1509 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1510 if (!stack) {
1511 r = -ENOMEM;
1512 goto out;
1513 }
1514
1515 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1516 if (r)
1517 goto out;
1518
1519 if (copy_to_user(user_stack, stack,
1520 sizeof(struct kvm_ia64_vcpu_stack))) {
1521 r = -EFAULT;
1522 goto out;
1523 }
1524
1525 break;
1526 }
1527 case KVM_IA64_VCPU_SET_STACK: {
1528 struct kvm_ia64_vcpu_stack __user *user_stack;
1529 void __user *first_p = argp;
1530
1531 r = -EFAULT;
1532 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1533 goto out;
1534
1535 if (!access_ok(VERIFY_READ, user_stack,
1536 sizeof(struct kvm_ia64_vcpu_stack))) {
1537 printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1538 "Illegal user address for stack\n");
1539 goto out;
1540 }
1541 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1542 if (!stack) {
1543 r = -ENOMEM;
1544 goto out;
1545 }
1546 if (copy_from_user(stack, user_stack,
1547 sizeof(struct kvm_ia64_vcpu_stack)))
1548 goto out;
1549
1550 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1551 break;
1552 }
1553
1554 default:
1555 r = -EINVAL;
1556 }
1557
1558 out:
1559 kfree(stack);
1560 return r;
1561 }
1562
1563 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1564 struct kvm_memory_slot *memslot,
1565 struct kvm_memory_slot old,
1566 struct kvm_userspace_memory_region *mem,
1567 int user_alloc)
1568 {
1569 unsigned long i;
1570 unsigned long pfn;
1571 int npages = memslot->npages;
1572 unsigned long base_gfn = memslot->base_gfn;
1573
1574 if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1575 return -ENOMEM;
1576
1577 for (i = 0; i < npages; i++) {
1578 pfn = gfn_to_pfn(kvm, base_gfn + i);
1579 if (!kvm_is_mmio_pfn(pfn)) {
1580 kvm_set_pmt_entry(kvm, base_gfn + i,
1581 pfn << PAGE_SHIFT,
1582 _PAGE_AR_RWX | _PAGE_MA_WB);
1583 memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1584 } else {
1585 kvm_set_pmt_entry(kvm, base_gfn + i,
1586 GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1587 _PAGE_MA_UC);
1588 memslot->rmap[i] = 0;
1589 }
1590 }
1591
1592 return 0;
1593 }
1594
1595 void kvm_arch_commit_memory_region(struct kvm *kvm,
1596 struct kvm_userspace_memory_region *mem,
1597 struct kvm_memory_slot old,
1598 int user_alloc)
1599 {
1600 return;
1601 }
1602
1603 void kvm_arch_flush_shadow(struct kvm *kvm)
1604 {
1605 kvm_flush_remote_tlbs(kvm);
1606 }
1607
1608 long kvm_arch_dev_ioctl(struct file *filp,
1609 unsigned int ioctl, unsigned long arg)
1610 {
1611 return -EINVAL;
1612 }
1613
1614 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1615 {
1616 kvm_vcpu_uninit(vcpu);
1617 }
1618
1619 static int vti_cpu_has_kvm_support(void)
1620 {
1621 long avail = 1, status = 1, control = 1;
1622 long ret;
1623
1624 ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1625 if (ret)
1626 goto out;
1627
1628 if (!(avail & PAL_PROC_VM_BIT))
1629 goto out;
1630
1631 printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1632
1633 ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1634 if (ret)
1635 goto out;
1636 printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1637
1638 if (!(vp_env_info & VP_OPCODE)) {
1639 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1640 "vm_env_info:0x%lx\n", vp_env_info);
1641 }
1642
1643 return 1;
1644 out:
1645 return 0;
1646 }
1647
1648
1649 /*
1650 * On SN2, the ITC isn't stable, so copy in fast path code to use the
1651 * SN2 RTC, replacing the ITC based default verion.
1652 */
1653 static void kvm_patch_vmm(struct kvm_vmm_info *vmm_info,
1654 struct module *module)
1655 {
1656 unsigned long new_ar, new_ar_sn2;
1657 unsigned long module_base;
1658
1659 if (!ia64_platform_is("sn2"))
1660 return;
1661
1662 module_base = (unsigned long)module->module_core;
1663
1664 new_ar = kvm_vmm_base + vmm_info->patch_mov_ar - module_base;
1665 new_ar_sn2 = kvm_vmm_base + vmm_info->patch_mov_ar_sn2 - module_base;
1666
1667 printk(KERN_INFO "kvm: Patching ITC emulation to use SGI SN2 RTC "
1668 "as source\n");
1669
1670 /*
1671 * Copy the SN2 version of mov_ar into place. They are both
1672 * the same size, so 6 bundles is sufficient (6 * 0x10).
1673 */
1674 memcpy((void *)new_ar, (void *)new_ar_sn2, 0x60);
1675 }
1676
1677 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1678 struct module *module)
1679 {
1680 unsigned long module_base;
1681 unsigned long vmm_size;
1682
1683 unsigned long vmm_offset, func_offset, fdesc_offset;
1684 struct fdesc *p_fdesc;
1685
1686 BUG_ON(!module);
1687
1688 if (!kvm_vmm_base) {
1689 printk("kvm: kvm area hasn't been initialized yet!!\n");
1690 return -EFAULT;
1691 }
1692
1693 /*Calculate new position of relocated vmm module.*/
1694 module_base = (unsigned long)module->module_core;
1695 vmm_size = module->core_size;
1696 if (unlikely(vmm_size > KVM_VMM_SIZE))
1697 return -EFAULT;
1698
1699 memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1700 kvm_patch_vmm(vmm_info, module);
1701 kvm_flush_icache(kvm_vmm_base, vmm_size);
1702
1703 /*Recalculate kvm_vmm_info based on new VMM*/
1704 vmm_offset = vmm_info->vmm_ivt - module_base;
1705 kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1706 printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1707 kvm_vmm_info->vmm_ivt);
1708
1709 fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1710 kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1711 fdesc_offset);
1712 func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1713 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1714 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1715 p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1716
1717 printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1718 KVM_VMM_BASE+func_offset);
1719
1720 fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1721 kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1722 fdesc_offset);
1723 func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1724 p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1725 p_fdesc->ip = KVM_VMM_BASE + func_offset;
1726 p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1727
1728 kvm_vmm_gp = p_fdesc->gp;
1729
1730 printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1731 kvm_vmm_info->vmm_entry);
1732 printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1733 KVM_VMM_BASE + func_offset);
1734
1735 return 0;
1736 }
1737
1738 int kvm_arch_init(void *opaque)
1739 {
1740 int r;
1741 struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1742
1743 if (!vti_cpu_has_kvm_support()) {
1744 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1745 r = -EOPNOTSUPP;
1746 goto out;
1747 }
1748
1749 if (kvm_vmm_info) {
1750 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1751 r = -EEXIST;
1752 goto out;
1753 }
1754
1755 r = -ENOMEM;
1756 kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1757 if (!kvm_vmm_info)
1758 goto out;
1759
1760 if (kvm_alloc_vmm_area())
1761 goto out_free0;
1762
1763 r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1764 if (r)
1765 goto out_free1;
1766
1767 return 0;
1768
1769 out_free1:
1770 kvm_free_vmm_area();
1771 out_free0:
1772 kfree(kvm_vmm_info);
1773 out:
1774 return r;
1775 }
1776
1777 void kvm_arch_exit(void)
1778 {
1779 kvm_free_vmm_area();
1780 kfree(kvm_vmm_info);
1781 kvm_vmm_info = NULL;
1782 }
1783
1784 static void kvm_ia64_sync_dirty_log(struct kvm *kvm,
1785 struct kvm_memory_slot *memslot)
1786 {
1787 int i;
1788 long base;
1789 unsigned long n;
1790 unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1791 offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1792
1793 n = kvm_dirty_bitmap_bytes(memslot);
1794 base = memslot->base_gfn / BITS_PER_LONG;
1795
1796 spin_lock(&kvm->arch.dirty_log_lock);
1797 for (i = 0; i < n/sizeof(long); ++i) {
1798 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1799 dirty_bitmap[base + i] = 0;
1800 }
1801 spin_unlock(&kvm->arch.dirty_log_lock);
1802 }
1803
1804 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1805 struct kvm_dirty_log *log)
1806 {
1807 int r;
1808 unsigned long n;
1809 struct kvm_memory_slot *memslot;
1810 int is_dirty = 0;
1811
1812 mutex_lock(&kvm->slots_lock);
1813
1814 r = -EINVAL;
1815 if (log->slot >= KVM_MEMORY_SLOTS)
1816 goto out;
1817
1818 memslot = &kvm->memslots->memslots[log->slot];
1819 r = -ENOENT;
1820 if (!memslot->dirty_bitmap)
1821 goto out;
1822
1823 kvm_ia64_sync_dirty_log(kvm, memslot);
1824 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1825 if (r)
1826 goto out;
1827
1828 /* If nothing is dirty, don't bother messing with page tables. */
1829 if (is_dirty) {
1830 kvm_flush_remote_tlbs(kvm);
1831 n = kvm_dirty_bitmap_bytes(memslot);
1832 memset(memslot->dirty_bitmap, 0, n);
1833 }
1834 r = 0;
1835 out:
1836 mutex_unlock(&kvm->slots_lock);
1837 return r;
1838 }
1839
1840 int kvm_arch_hardware_setup(void)
1841 {
1842 return 0;
1843 }
1844
1845 void kvm_arch_hardware_unsetup(void)
1846 {
1847 }
1848
1849 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1850 {
1851 int me;
1852 int cpu = vcpu->cpu;
1853
1854 if (waitqueue_active(&vcpu->wq))
1855 wake_up_interruptible(&vcpu->wq);
1856
1857 me = get_cpu();
1858 if (cpu != me && (unsigned) cpu < nr_cpu_ids && cpu_online(cpu))
1859 if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
1860 smp_send_reschedule(cpu);
1861 put_cpu();
1862 }
1863
1864 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1865 {
1866 return __apic_accept_irq(vcpu, irq->vector);
1867 }
1868
1869 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1870 {
1871 return apic->vcpu->vcpu_id == dest;
1872 }
1873
1874 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1875 {
1876 return 0;
1877 }
1878
1879 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1880 {
1881 return vcpu1->arch.xtp - vcpu2->arch.xtp;
1882 }
1883
1884 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1885 int short_hand, int dest, int dest_mode)
1886 {
1887 struct kvm_lapic *target = vcpu->arch.apic;
1888 return (dest_mode == 0) ?
1889 kvm_apic_match_physical_addr(target, dest) :
1890 kvm_apic_match_logical_addr(target, dest);
1891 }
1892
1893 static int find_highest_bits(int *dat)
1894 {
1895 u32 bits, bitnum;
1896 int i;
1897
1898 /* loop for all 256 bits */
1899 for (i = 7; i >= 0 ; i--) {
1900 bits = dat[i];
1901 if (bits) {
1902 bitnum = fls(bits);
1903 return i * 32 + bitnum - 1;
1904 }
1905 }
1906
1907 return -1;
1908 }
1909
1910 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1911 {
1912 struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1913
1914 if (vpd->irr[0] & (1UL << NMI_VECTOR))
1915 return NMI_VECTOR;
1916 if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1917 return ExtINT_VECTOR;
1918
1919 return find_highest_bits((int *)&vpd->irr[0]);
1920 }
1921
1922 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1923 {
1924 return vcpu->arch.timer_fired;
1925 }
1926
1927 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1928 {
1929 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) ||
1930 (kvm_highest_pending_irq(vcpu) != -1);
1931 }
1932
1933 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1934 struct kvm_mp_state *mp_state)
1935 {
1936 mp_state->mp_state = vcpu->arch.mp_state;
1937 return 0;
1938 }
1939
1940 static int vcpu_reset(struct kvm_vcpu *vcpu)
1941 {
1942 int r;
1943 long psr;
1944 local_irq_save(psr);
1945 r = kvm_insert_vmm_mapping(vcpu);
1946 local_irq_restore(psr);
1947 if (r)
1948 goto fail;
1949
1950 vcpu->arch.launched = 0;
1951 kvm_arch_vcpu_uninit(vcpu);
1952 r = kvm_arch_vcpu_init(vcpu);
1953 if (r)
1954 goto fail;
1955
1956 kvm_purge_vmm_mapping(vcpu);
1957 r = 0;
1958 fail:
1959 return r;
1960 }
1961
1962 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1963 struct kvm_mp_state *mp_state)
1964 {
1965 int r = 0;
1966
1967 vcpu->arch.mp_state = mp_state->mp_state;
1968 if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1969 r = vcpu_reset(vcpu);
1970 return r;
1971 }
This page took 0.095704 seconds and 5 git commands to generate.