bootmem: replace node_boot_start in struct bootmem_data
[deliverable/linux.git] / arch / ia64 / mm / discontig.c
1 /*
2 * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
3 * Copyright (c) 2001 Intel Corp.
4 * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
5 * Copyright (c) 2002 NEC Corp.
6 * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
7 * Copyright (c) 2004 Silicon Graphics, Inc
8 * Russ Anderson <rja@sgi.com>
9 * Jesse Barnes <jbarnes@sgi.com>
10 * Jack Steiner <steiner@sgi.com>
11 */
12
13 /*
14 * Platform initialization for Discontig Memory
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/nmi.h>
20 #include <linux/swap.h>
21 #include <linux/bootmem.h>
22 #include <linux/acpi.h>
23 #include <linux/efi.h>
24 #include <linux/nodemask.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/meminit.h>
28 #include <asm/numa.h>
29 #include <asm/sections.h>
30
31 /*
32 * Track per-node information needed to setup the boot memory allocator, the
33 * per-node areas, and the real VM.
34 */
35 struct early_node_data {
36 struct ia64_node_data *node_data;
37 unsigned long pernode_addr;
38 unsigned long pernode_size;
39 unsigned long num_physpages;
40 #ifdef CONFIG_ZONE_DMA
41 unsigned long num_dma_physpages;
42 #endif
43 unsigned long min_pfn;
44 unsigned long max_pfn;
45 };
46
47 static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
48 static nodemask_t memory_less_mask __initdata;
49
50 pg_data_t *pgdat_list[MAX_NUMNODES];
51
52 /*
53 * To prevent cache aliasing effects, align per-node structures so that they
54 * start at addresses that are strided by node number.
55 */
56 #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
57 #define NODEDATA_ALIGN(addr, node) \
58 ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
59 (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
60
61 /**
62 * build_node_maps - callback to setup bootmem structs for each node
63 * @start: physical start of range
64 * @len: length of range
65 * @node: node where this range resides
66 *
67 * We allocate a struct bootmem_data for each piece of memory that we wish to
68 * treat as a virtually contiguous block (i.e. each node). Each such block
69 * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
70 * if necessary. Any non-existent pages will simply be part of the virtual
71 * memmap. We also update min_low_pfn and max_low_pfn here as we receive
72 * memory ranges from the caller.
73 */
74 static int __init build_node_maps(unsigned long start, unsigned long len,
75 int node)
76 {
77 unsigned long spfn, epfn, end = start + len;
78 struct bootmem_data *bdp = &bootmem_node_data[node];
79
80 epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
81 spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
82
83 if (!bdp->node_low_pfn) {
84 bdp->node_min_pfn = spfn;
85 bdp->node_low_pfn = epfn;
86 } else {
87 bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
88 bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
89 }
90
91 return 0;
92 }
93
94 /**
95 * early_nr_cpus_node - return number of cpus on a given node
96 * @node: node to check
97 *
98 * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
99 * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
100 * called yet. Note that node 0 will also count all non-existent cpus.
101 */
102 static int __meminit early_nr_cpus_node(int node)
103 {
104 int cpu, n = 0;
105
106 for_each_possible_early_cpu(cpu)
107 if (node == node_cpuid[cpu].nid)
108 n++;
109
110 return n;
111 }
112
113 /**
114 * compute_pernodesize - compute size of pernode data
115 * @node: the node id.
116 */
117 static unsigned long __meminit compute_pernodesize(int node)
118 {
119 unsigned long pernodesize = 0, cpus;
120
121 cpus = early_nr_cpus_node(node);
122 pernodesize += PERCPU_PAGE_SIZE * cpus;
123 pernodesize += node * L1_CACHE_BYTES;
124 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
125 pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
126 pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
127 pernodesize = PAGE_ALIGN(pernodesize);
128 return pernodesize;
129 }
130
131 /**
132 * per_cpu_node_setup - setup per-cpu areas on each node
133 * @cpu_data: per-cpu area on this node
134 * @node: node to setup
135 *
136 * Copy the static per-cpu data into the region we just set aside and then
137 * setup __per_cpu_offset for each CPU on this node. Return a pointer to
138 * the end of the area.
139 */
140 static void *per_cpu_node_setup(void *cpu_data, int node)
141 {
142 #ifdef CONFIG_SMP
143 int cpu;
144
145 for_each_possible_early_cpu(cpu) {
146 if (node == node_cpuid[cpu].nid) {
147 memcpy(__va(cpu_data), __phys_per_cpu_start,
148 __per_cpu_end - __per_cpu_start);
149 __per_cpu_offset[cpu] = (char*)__va(cpu_data) -
150 __per_cpu_start;
151 cpu_data += PERCPU_PAGE_SIZE;
152 }
153 }
154 #endif
155 return cpu_data;
156 }
157
158 /**
159 * fill_pernode - initialize pernode data.
160 * @node: the node id.
161 * @pernode: physical address of pernode data
162 * @pernodesize: size of the pernode data
163 */
164 static void __init fill_pernode(int node, unsigned long pernode,
165 unsigned long pernodesize)
166 {
167 void *cpu_data;
168 int cpus = early_nr_cpus_node(node);
169 struct bootmem_data *bdp = &bootmem_node_data[node];
170
171 mem_data[node].pernode_addr = pernode;
172 mem_data[node].pernode_size = pernodesize;
173 memset(__va(pernode), 0, pernodesize);
174
175 cpu_data = (void *)pernode;
176 pernode += PERCPU_PAGE_SIZE * cpus;
177 pernode += node * L1_CACHE_BYTES;
178
179 pgdat_list[node] = __va(pernode);
180 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
181
182 mem_data[node].node_data = __va(pernode);
183 pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
184
185 pgdat_list[node]->bdata = bdp;
186 pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
187
188 cpu_data = per_cpu_node_setup(cpu_data, node);
189
190 return;
191 }
192
193 /**
194 * find_pernode_space - allocate memory for memory map and per-node structures
195 * @start: physical start of range
196 * @len: length of range
197 * @node: node where this range resides
198 *
199 * This routine reserves space for the per-cpu data struct, the list of
200 * pg_data_ts and the per-node data struct. Each node will have something like
201 * the following in the first chunk of addr. space large enough to hold it.
202 *
203 * ________________________
204 * | |
205 * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
206 * | PERCPU_PAGE_SIZE * | start and length big enough
207 * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
208 * |------------------------|
209 * | local pg_data_t * |
210 * |------------------------|
211 * | local ia64_node_data |
212 * |------------------------|
213 * | ??? |
214 * |________________________|
215 *
216 * Once this space has been set aside, the bootmem maps are initialized. We
217 * could probably move the allocation of the per-cpu and ia64_node_data space
218 * outside of this function and use alloc_bootmem_node(), but doing it here
219 * is straightforward and we get the alignments we want so...
220 */
221 static int __init find_pernode_space(unsigned long start, unsigned long len,
222 int node)
223 {
224 unsigned long spfn, epfn;
225 unsigned long pernodesize = 0, pernode, pages, mapsize;
226 struct bootmem_data *bdp = &bootmem_node_data[node];
227
228 spfn = start >> PAGE_SHIFT;
229 epfn = (start + len) >> PAGE_SHIFT;
230
231 pages = bdp->node_low_pfn - bdp->node_min_pfn;
232 mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
233
234 /*
235 * Make sure this memory falls within this node's usable memory
236 * since we may have thrown some away in build_maps().
237 */
238 if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
239 return 0;
240
241 /* Don't setup this node's local space twice... */
242 if (mem_data[node].pernode_addr)
243 return 0;
244
245 /*
246 * Calculate total size needed, incl. what's necessary
247 * for good alignment and alias prevention.
248 */
249 pernodesize = compute_pernodesize(node);
250 pernode = NODEDATA_ALIGN(start, node);
251
252 /* Is this range big enough for what we want to store here? */
253 if (start + len > (pernode + pernodesize + mapsize))
254 fill_pernode(node, pernode, pernodesize);
255
256 return 0;
257 }
258
259 /**
260 * free_node_bootmem - free bootmem allocator memory for use
261 * @start: physical start of range
262 * @len: length of range
263 * @node: node where this range resides
264 *
265 * Simply calls the bootmem allocator to free the specified ranged from
266 * the given pg_data_t's bdata struct. After this function has been called
267 * for all the entries in the EFI memory map, the bootmem allocator will
268 * be ready to service allocation requests.
269 */
270 static int __init free_node_bootmem(unsigned long start, unsigned long len,
271 int node)
272 {
273 free_bootmem_node(pgdat_list[node], start, len);
274
275 return 0;
276 }
277
278 /**
279 * reserve_pernode_space - reserve memory for per-node space
280 *
281 * Reserve the space used by the bootmem maps & per-node space in the boot
282 * allocator so that when we actually create the real mem maps we don't
283 * use their memory.
284 */
285 static void __init reserve_pernode_space(void)
286 {
287 unsigned long base, size, pages;
288 struct bootmem_data *bdp;
289 int node;
290
291 for_each_online_node(node) {
292 pg_data_t *pdp = pgdat_list[node];
293
294 if (node_isset(node, memory_less_mask))
295 continue;
296
297 bdp = pdp->bdata;
298
299 /* First the bootmem_map itself */
300 pages = bdp->node_low_pfn - bdp->node_min_pfn;
301 size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
302 base = __pa(bdp->node_bootmem_map);
303 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
304
305 /* Now the per-node space */
306 size = mem_data[node].pernode_size;
307 base = __pa(mem_data[node].pernode_addr);
308 reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
309 }
310 }
311
312 static void __meminit scatter_node_data(void)
313 {
314 pg_data_t **dst;
315 int node;
316
317 /*
318 * for_each_online_node() can't be used at here.
319 * node_online_map is not set for hot-added nodes at this time,
320 * because we are halfway through initialization of the new node's
321 * structures. If for_each_online_node() is used, a new node's
322 * pg_data_ptrs will be not initialized. Instead of using it,
323 * pgdat_list[] is checked.
324 */
325 for_each_node(node) {
326 if (pgdat_list[node]) {
327 dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
328 memcpy(dst, pgdat_list, sizeof(pgdat_list));
329 }
330 }
331 }
332
333 /**
334 * initialize_pernode_data - fixup per-cpu & per-node pointers
335 *
336 * Each node's per-node area has a copy of the global pg_data_t list, so
337 * we copy that to each node here, as well as setting the per-cpu pointer
338 * to the local node data structure. The active_cpus field of the per-node
339 * structure gets setup by the platform_cpu_init() function later.
340 */
341 static void __init initialize_pernode_data(void)
342 {
343 int cpu, node;
344
345 scatter_node_data();
346
347 #ifdef CONFIG_SMP
348 /* Set the node_data pointer for each per-cpu struct */
349 for_each_possible_early_cpu(cpu) {
350 node = node_cpuid[cpu].nid;
351 per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
352 }
353 #else
354 {
355 struct cpuinfo_ia64 *cpu0_cpu_info;
356 cpu = 0;
357 node = node_cpuid[cpu].nid;
358 cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
359 ((char *)&per_cpu__cpu_info - __per_cpu_start));
360 cpu0_cpu_info->node_data = mem_data[node].node_data;
361 }
362 #endif /* CONFIG_SMP */
363 }
364
365 /**
366 * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
367 * node but fall back to any other node when __alloc_bootmem_node fails
368 * for best.
369 * @nid: node id
370 * @pernodesize: size of this node's pernode data
371 */
372 static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
373 {
374 void *ptr = NULL;
375 u8 best = 0xff;
376 int bestnode = -1, node, anynode = 0;
377
378 for_each_online_node(node) {
379 if (node_isset(node, memory_less_mask))
380 continue;
381 else if (node_distance(nid, node) < best) {
382 best = node_distance(nid, node);
383 bestnode = node;
384 }
385 anynode = node;
386 }
387
388 if (bestnode == -1)
389 bestnode = anynode;
390
391 ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
392 PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
393
394 return ptr;
395 }
396
397 /**
398 * memory_less_nodes - allocate and initialize CPU only nodes pernode
399 * information.
400 */
401 static void __init memory_less_nodes(void)
402 {
403 unsigned long pernodesize;
404 void *pernode;
405 int node;
406
407 for_each_node_mask(node, memory_less_mask) {
408 pernodesize = compute_pernodesize(node);
409 pernode = memory_less_node_alloc(node, pernodesize);
410 fill_pernode(node, __pa(pernode), pernodesize);
411 }
412
413 return;
414 }
415
416 /**
417 * find_memory - walk the EFI memory map and setup the bootmem allocator
418 *
419 * Called early in boot to setup the bootmem allocator, and to
420 * allocate the per-cpu and per-node structures.
421 */
422 void __init find_memory(void)
423 {
424 int node;
425
426 reserve_memory();
427
428 if (num_online_nodes() == 0) {
429 printk(KERN_ERR "node info missing!\n");
430 node_set_online(0);
431 }
432
433 nodes_or(memory_less_mask, memory_less_mask, node_online_map);
434 min_low_pfn = -1;
435 max_low_pfn = 0;
436
437 /* These actually end up getting called by call_pernode_memory() */
438 efi_memmap_walk(filter_rsvd_memory, build_node_maps);
439 efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
440 efi_memmap_walk(find_max_min_low_pfn, NULL);
441
442 for_each_online_node(node)
443 if (bootmem_node_data[node].node_low_pfn) {
444 node_clear(node, memory_less_mask);
445 mem_data[node].min_pfn = ~0UL;
446 }
447
448 efi_memmap_walk(filter_memory, register_active_ranges);
449
450 /*
451 * Initialize the boot memory maps in reverse order since that's
452 * what the bootmem allocator expects
453 */
454 for (node = MAX_NUMNODES - 1; node >= 0; node--) {
455 unsigned long pernode, pernodesize, map;
456 struct bootmem_data *bdp;
457
458 if (!node_online(node))
459 continue;
460 else if (node_isset(node, memory_less_mask))
461 continue;
462
463 bdp = &bootmem_node_data[node];
464 pernode = mem_data[node].pernode_addr;
465 pernodesize = mem_data[node].pernode_size;
466 map = pernode + pernodesize;
467
468 init_bootmem_node(pgdat_list[node],
469 map>>PAGE_SHIFT,
470 bdp->node_min_pfn,
471 bdp->node_low_pfn);
472 }
473
474 efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
475
476 reserve_pernode_space();
477 memory_less_nodes();
478 initialize_pernode_data();
479
480 max_pfn = max_low_pfn;
481
482 find_initrd();
483 }
484
485 #ifdef CONFIG_SMP
486 /**
487 * per_cpu_init - setup per-cpu variables
488 *
489 * find_pernode_space() does most of this already, we just need to set
490 * local_per_cpu_offset
491 */
492 void __cpuinit *per_cpu_init(void)
493 {
494 int cpu;
495 static int first_time = 1;
496
497 if (first_time) {
498 first_time = 0;
499 for_each_possible_early_cpu(cpu)
500 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
501 }
502
503 return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
504 }
505 #endif /* CONFIG_SMP */
506
507 /**
508 * show_mem - give short summary of memory stats
509 *
510 * Shows a simple page count of reserved and used pages in the system.
511 * For discontig machines, it does this on a per-pgdat basis.
512 */
513 void show_mem(void)
514 {
515 int i, total_reserved = 0;
516 int total_shared = 0, total_cached = 0;
517 unsigned long total_present = 0;
518 pg_data_t *pgdat;
519
520 printk(KERN_INFO "Mem-info:\n");
521 show_free_areas();
522 printk(KERN_INFO "Node memory in pages:\n");
523 for_each_online_pgdat(pgdat) {
524 unsigned long present;
525 unsigned long flags;
526 int shared = 0, cached = 0, reserved = 0;
527
528 pgdat_resize_lock(pgdat, &flags);
529 present = pgdat->node_present_pages;
530 for(i = 0; i < pgdat->node_spanned_pages; i++) {
531 struct page *page;
532 if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
533 touch_nmi_watchdog();
534 if (pfn_valid(pgdat->node_start_pfn + i))
535 page = pfn_to_page(pgdat->node_start_pfn + i);
536 else {
537 i = vmemmap_find_next_valid_pfn(pgdat->node_id,
538 i) - 1;
539 continue;
540 }
541 if (PageReserved(page))
542 reserved++;
543 else if (PageSwapCache(page))
544 cached++;
545 else if (page_count(page))
546 shared += page_count(page)-1;
547 }
548 pgdat_resize_unlock(pgdat, &flags);
549 total_present += present;
550 total_reserved += reserved;
551 total_cached += cached;
552 total_shared += shared;
553 printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
554 "shrd: %10d, swpd: %10d\n", pgdat->node_id,
555 present, reserved, shared, cached);
556 }
557 printk(KERN_INFO "%ld pages of RAM\n", total_present);
558 printk(KERN_INFO "%d reserved pages\n", total_reserved);
559 printk(KERN_INFO "%d pages shared\n", total_shared);
560 printk(KERN_INFO "%d pages swap cached\n", total_cached);
561 printk(KERN_INFO "Total of %ld pages in page table cache\n",
562 quicklist_total_size());
563 printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
564 }
565
566 /**
567 * call_pernode_memory - use SRAT to call callback functions with node info
568 * @start: physical start of range
569 * @len: length of range
570 * @arg: function to call for each range
571 *
572 * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
573 * out to which node a block of memory belongs. Ignore memory that we cannot
574 * identify, and split blocks that run across multiple nodes.
575 *
576 * Take this opportunity to round the start address up and the end address
577 * down to page boundaries.
578 */
579 void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
580 {
581 unsigned long rs, re, end = start + len;
582 void (*func)(unsigned long, unsigned long, int);
583 int i;
584
585 start = PAGE_ALIGN(start);
586 end &= PAGE_MASK;
587 if (start >= end)
588 return;
589
590 func = arg;
591
592 if (!num_node_memblks) {
593 /* No SRAT table, so assume one node (node 0) */
594 if (start < end)
595 (*func)(start, end - start, 0);
596 return;
597 }
598
599 for (i = 0; i < num_node_memblks; i++) {
600 rs = max(start, node_memblk[i].start_paddr);
601 re = min(end, node_memblk[i].start_paddr +
602 node_memblk[i].size);
603
604 if (rs < re)
605 (*func)(rs, re - rs, node_memblk[i].nid);
606
607 if (re == end)
608 break;
609 }
610 }
611
612 /**
613 * count_node_pages - callback to build per-node memory info structures
614 * @start: physical start of range
615 * @len: length of range
616 * @node: node where this range resides
617 *
618 * Each node has it's own number of physical pages, DMAable pages, start, and
619 * end page frame number. This routine will be called by call_pernode_memory()
620 * for each piece of usable memory and will setup these values for each node.
621 * Very similar to build_maps().
622 */
623 static __init int count_node_pages(unsigned long start, unsigned long len, int node)
624 {
625 unsigned long end = start + len;
626
627 mem_data[node].num_physpages += len >> PAGE_SHIFT;
628 #ifdef CONFIG_ZONE_DMA
629 if (start <= __pa(MAX_DMA_ADDRESS))
630 mem_data[node].num_dma_physpages +=
631 (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
632 #endif
633 start = GRANULEROUNDDOWN(start);
634 start = ORDERROUNDDOWN(start);
635 end = GRANULEROUNDUP(end);
636 mem_data[node].max_pfn = max(mem_data[node].max_pfn,
637 end >> PAGE_SHIFT);
638 mem_data[node].min_pfn = min(mem_data[node].min_pfn,
639 start >> PAGE_SHIFT);
640
641 return 0;
642 }
643
644 /**
645 * paging_init - setup page tables
646 *
647 * paging_init() sets up the page tables for each node of the system and frees
648 * the bootmem allocator memory for general use.
649 */
650 void __init paging_init(void)
651 {
652 unsigned long max_dma;
653 unsigned long pfn_offset = 0;
654 unsigned long max_pfn = 0;
655 int node;
656 unsigned long max_zone_pfns[MAX_NR_ZONES];
657
658 max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
659
660 efi_memmap_walk(filter_rsvd_memory, count_node_pages);
661
662 sparse_memory_present_with_active_regions(MAX_NUMNODES);
663 sparse_init();
664
665 #ifdef CONFIG_VIRTUAL_MEM_MAP
666 vmalloc_end -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
667 sizeof(struct page));
668 vmem_map = (struct page *) vmalloc_end;
669 efi_memmap_walk(create_mem_map_page_table, NULL);
670 printk("Virtual mem_map starts at 0x%p\n", vmem_map);
671 #endif
672
673 for_each_online_node(node) {
674 num_physpages += mem_data[node].num_physpages;
675 pfn_offset = mem_data[node].min_pfn;
676
677 #ifdef CONFIG_VIRTUAL_MEM_MAP
678 NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
679 #endif
680 if (mem_data[node].max_pfn > max_pfn)
681 max_pfn = mem_data[node].max_pfn;
682 }
683
684 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
685 #ifdef CONFIG_ZONE_DMA
686 max_zone_pfns[ZONE_DMA] = max_dma;
687 #endif
688 max_zone_pfns[ZONE_NORMAL] = max_pfn;
689 free_area_init_nodes(max_zone_pfns);
690
691 zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
692 }
693
694 #ifdef CONFIG_MEMORY_HOTPLUG
695 pg_data_t *arch_alloc_nodedata(int nid)
696 {
697 unsigned long size = compute_pernodesize(nid);
698
699 return kzalloc(size, GFP_KERNEL);
700 }
701
702 void arch_free_nodedata(pg_data_t *pgdat)
703 {
704 kfree(pgdat);
705 }
706
707 void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
708 {
709 pgdat_list[update_node] = update_pgdat;
710 scatter_node_data();
711 }
712 #endif
713
714 #ifdef CONFIG_SPARSEMEM_VMEMMAP
715 int __meminit vmemmap_populate(struct page *start_page,
716 unsigned long size, int node)
717 {
718 return vmemmap_populate_basepages(start_page, size, node);
719 }
720 #endif
This page took 0.060674 seconds and 5 git commands to generate.