[IA64] - SGI SN hwperf enhancements - export_pci_topology
[deliverable/linux.git] / arch / ia64 / sn / kernel / sn2 / sn_hwperf.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2004-2005 Silicon Graphics, Inc. All rights reserved.
7 *
8 * SGI Altix topology and hardware performance monitoring API.
9 * Mark Goodwin <markgw@sgi.com>.
10 *
11 * Creates /proc/sgi_sn/sn_topology (read-only) to export
12 * info about Altix nodes, routers, CPUs and NumaLink
13 * interconnection/topology.
14 *
15 * Also creates a dynamic misc device named "sn_hwperf"
16 * that supports an ioctl interface to call down into SAL
17 * to discover hw objects, topology and to read/write
18 * memory mapped registers, e.g. for performance monitoring.
19 * The "sn_hwperf" device is registered only after the procfs
20 * file is first opened, i.e. only if/when it's needed.
21 *
22 * This API is used by SGI Performance Co-Pilot and other
23 * tools, see http://oss.sgi.com/projects/pcp
24 */
25
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/seq_file.h>
30 #include <linux/miscdevice.h>
31 #include <linux/utsname.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp_lock.h>
34 #include <linux/nodemask.h>
35 #include <asm/processor.h>
36 #include <asm/topology.h>
37 #include <asm/smp.h>
38 #include <asm/semaphore.h>
39 #include <asm/segment.h>
40 #include <asm/uaccess.h>
41 #include <asm/sal.h>
42 #include <asm/sn/io.h>
43 #include <asm/sn/sn_sal.h>
44 #include <asm/sn/module.h>
45 #include <asm/sn/geo.h>
46 #include <asm/sn/sn2/sn_hwperf.h>
47 #include <asm/sn/addrs.h>
48
49 static void *sn_hwperf_salheap = NULL;
50 static int sn_hwperf_obj_cnt = 0;
51 static nasid_t sn_hwperf_master_nasid = INVALID_NASID;
52 static int sn_hwperf_init(void);
53 static DECLARE_MUTEX(sn_hwperf_init_mutex);
54
55 static int sn_hwperf_enum_objects(int *nobj, struct sn_hwperf_object_info **ret)
56 {
57 int e;
58 u64 sz;
59 struct sn_hwperf_object_info *objbuf = NULL;
60
61 if ((e = sn_hwperf_init()) < 0) {
62 printk("sn_hwperf_init failed: err %d\n", e);
63 goto out;
64 }
65
66 sz = sn_hwperf_obj_cnt * sizeof(struct sn_hwperf_object_info);
67 if ((objbuf = (struct sn_hwperf_object_info *) vmalloc(sz)) == NULL) {
68 printk("sn_hwperf_enum_objects: vmalloc(%d) failed\n", (int)sz);
69 e = -ENOMEM;
70 goto out;
71 }
72
73 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid, SN_HWPERF_ENUM_OBJECTS,
74 0, sz, (u64) objbuf, 0, 0, NULL);
75 if (e != SN_HWPERF_OP_OK) {
76 e = -EINVAL;
77 vfree(objbuf);
78 }
79
80 out:
81 *nobj = sn_hwperf_obj_cnt;
82 *ret = objbuf;
83 return e;
84 }
85
86 static int sn_hwperf_location_to_bpos(char *location,
87 int *rack, int *bay, int *slot, int *slab)
88 {
89 char type;
90
91 /* first scan for an old style geoid string */
92 if (sscanf(location, "%03d%c%02d#%d",
93 rack, &type, bay, slab) == 4)
94 *slot = 0;
95 else /* scan for a new bladed geoid string */
96 if (sscanf(location, "%03d%c%02d^%02d#%d",
97 rack, &type, bay, slot, slab) != 5)
98 return -1;
99 /* success */
100 return 0;
101 }
102
103 static int sn_hwperf_geoid_to_cnode(char *location)
104 {
105 int cnode;
106 geoid_t geoid;
107 moduleid_t module_id;
108 int rack, bay, slot, slab;
109 int this_rack, this_bay, this_slot, this_slab;
110
111 if (sn_hwperf_location_to_bpos(location, &rack, &bay, &slot, &slab))
112 return -1;
113
114 for (cnode = 0; cnode < numionodes; cnode++) {
115 geoid = cnodeid_get_geoid(cnode);
116 module_id = geo_module(geoid);
117 this_rack = MODULE_GET_RACK(module_id);
118 this_bay = MODULE_GET_BPOS(module_id);
119 this_slot = geo_slot(geoid);
120 this_slab = geo_slab(geoid);
121 if (rack == this_rack && bay == this_bay &&
122 slot == this_slot && slab == this_slab) {
123 break;
124 }
125 }
126
127 return cnode < numionodes ? cnode : -1;
128 }
129
130 static int sn_hwperf_obj_to_cnode(struct sn_hwperf_object_info * obj)
131 {
132 if (!obj->sn_hwp_this_part)
133 return -1;
134 return sn_hwperf_geoid_to_cnode(obj->location);
135 }
136
137 static int sn_hwperf_generic_ordinal(struct sn_hwperf_object_info *obj,
138 struct sn_hwperf_object_info *objs)
139 {
140 int ordinal;
141 struct sn_hwperf_object_info *p;
142
143 for (ordinal=0, p=objs; p != obj; p++) {
144 if (SN_HWPERF_FOREIGN(p))
145 continue;
146 if (SN_HWPERF_SAME_OBJTYPE(p, obj))
147 ordinal++;
148 }
149
150 return ordinal;
151 }
152
153 static const char *slabname_node = "node"; /* SHub asic */
154 static const char *slabname_ionode = "ionode"; /* TIO asic */
155 static const char *slabname_router = "router"; /* NL3R or NL4R */
156 static const char *slabname_other = "other"; /* unknown asic */
157
158 static const char *sn_hwperf_get_slabname(struct sn_hwperf_object_info *obj,
159 struct sn_hwperf_object_info *objs, int *ordinal)
160 {
161 int isnode;
162 const char *slabname = slabname_other;
163
164 if ((isnode = SN_HWPERF_IS_NODE(obj)) || SN_HWPERF_IS_IONODE(obj)) {
165 slabname = isnode ? slabname_node : slabname_ionode;
166 *ordinal = sn_hwperf_obj_to_cnode(obj);
167 }
168 else {
169 *ordinal = sn_hwperf_generic_ordinal(obj, objs);
170 if (SN_HWPERF_IS_ROUTER(obj))
171 slabname = slabname_router;
172 }
173
174 return slabname;
175 }
176
177 static void print_pci_topology(struct seq_file *s)
178 {
179 char *p;
180 size_t sz;
181 int e;
182
183 for (sz = PAGE_SIZE; sz < 16 * PAGE_SIZE; sz += PAGE_SIZE) {
184 if (!(p = (char *)kmalloc(sz, GFP_KERNEL)))
185 break;
186 e = ia64_sn_ioif_get_pci_topology(__pa(p), sz);
187 if (e == SALRET_OK)
188 seq_puts(s, p);
189 kfree(p);
190 if (e == SALRET_OK || e == SALRET_NOT_IMPLEMENTED)
191 break;
192 }
193 }
194
195 static int sn_topology_show(struct seq_file *s, void *d)
196 {
197 int sz;
198 int pt;
199 int e = 0;
200 int i;
201 int j;
202 const char *slabname;
203 int ordinal;
204 cpumask_t cpumask;
205 char slice;
206 struct cpuinfo_ia64 *c;
207 struct sn_hwperf_port_info *ptdata;
208 struct sn_hwperf_object_info *p;
209 struct sn_hwperf_object_info *obj = d; /* this object */
210 struct sn_hwperf_object_info *objs = s->private; /* all objects */
211 u8 shubtype;
212 u8 system_size;
213 u8 sharing_size;
214 u8 partid;
215 u8 coher;
216 u8 nasid_shift;
217 u8 region_size;
218 u16 nasid_mask;
219 int nasid_msb;
220
221 if (obj == objs) {
222 seq_printf(s, "# sn_topology version 2\n");
223 seq_printf(s, "# objtype ordinal location partition"
224 " [attribute value [, ...]]\n");
225
226 if (ia64_sn_get_sn_info(0,
227 &shubtype, &nasid_mask, &nasid_shift, &system_size,
228 &sharing_size, &partid, &coher, &region_size))
229 BUG();
230 for (nasid_msb=63; nasid_msb > 0; nasid_msb--) {
231 if (((u64)nasid_mask << nasid_shift) & (1ULL << nasid_msb))
232 break;
233 }
234 seq_printf(s, "partition %u %s local "
235 "shubtype %s, "
236 "nasid_mask 0x%016lx, "
237 "nasid_bits %d:%d, "
238 "system_size %d, "
239 "sharing_size %d, "
240 "coherency_domain %d, "
241 "region_size %d\n",
242
243 partid, system_utsname.nodename,
244 shubtype ? "shub2" : "shub1",
245 (u64)nasid_mask << nasid_shift, nasid_msb, nasid_shift,
246 system_size, sharing_size, coher, region_size);
247
248 print_pci_topology(s);
249 }
250
251 if (SN_HWPERF_FOREIGN(obj)) {
252 /* private in another partition: not interesting */
253 return 0;
254 }
255
256 for (i = 0; i < SN_HWPERF_MAXSTRING && obj->name[i]; i++) {
257 if (obj->name[i] == ' ')
258 obj->name[i] = '_';
259 }
260
261 slabname = sn_hwperf_get_slabname(obj, objs, &ordinal);
262 seq_printf(s, "%s %d %s %s asic %s", slabname, ordinal, obj->location,
263 obj->sn_hwp_this_part ? "local" : "shared", obj->name);
264
265 if (!SN_HWPERF_IS_NODE(obj) && !SN_HWPERF_IS_IONODE(obj))
266 seq_putc(s, '\n');
267 else {
268 seq_printf(s, ", nasid 0x%x", cnodeid_to_nasid(ordinal));
269 for (i=0; i < numionodes; i++) {
270 seq_printf(s, i ? ":%d" : ", dist %d",
271 node_distance(ordinal, i));
272 }
273 seq_putc(s, '\n');
274
275 /*
276 * CPUs on this node, if any
277 */
278 cpumask = node_to_cpumask(ordinal);
279 for_each_online_cpu(i) {
280 if (cpu_isset(i, cpumask)) {
281 slice = 'a' + cpuid_to_slice(i);
282 c = cpu_data(i);
283 seq_printf(s, "cpu %d %s%c local"
284 " freq %luMHz, arch ia64",
285 i, obj->location, slice,
286 c->proc_freq / 1000000);
287 for_each_online_cpu(j) {
288 seq_printf(s, j ? ":%d" : ", dist %d",
289 node_distance(
290 cpuid_to_cnodeid(i),
291 cpuid_to_cnodeid(j)));
292 }
293 seq_putc(s, '\n');
294 }
295 }
296 }
297
298 if (obj->ports) {
299 /*
300 * numalink ports
301 */
302 sz = obj->ports * sizeof(struct sn_hwperf_port_info);
303 if ((ptdata = vmalloc(sz)) == NULL)
304 return -ENOMEM;
305 e = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
306 SN_HWPERF_ENUM_PORTS, obj->id, sz,
307 (u64) ptdata, 0, 0, NULL);
308 if (e != SN_HWPERF_OP_OK)
309 return -EINVAL;
310 for (ordinal=0, p=objs; p != obj; p++) {
311 if (!SN_HWPERF_FOREIGN(p))
312 ordinal += p->ports;
313 }
314 for (pt = 0; pt < obj->ports; pt++) {
315 for (p = objs, i = 0; i < sn_hwperf_obj_cnt; i++, p++) {
316 if (ptdata[pt].conn_id == p->id) {
317 break;
318 }
319 }
320 seq_printf(s, "numalink %d %s-%d",
321 ordinal+pt, obj->location, ptdata[pt].port);
322
323 if (i >= sn_hwperf_obj_cnt) {
324 /* no connection */
325 seq_puts(s, " local endpoint disconnected"
326 ", protocol unknown\n");
327 continue;
328 }
329
330 if (obj->sn_hwp_this_part && p->sn_hwp_this_part)
331 /* both ends local to this partition */
332 seq_puts(s, " local");
333 else if (!obj->sn_hwp_this_part && !p->sn_hwp_this_part)
334 /* both ends of the link in foreign partiton */
335 seq_puts(s, " foreign");
336 else
337 /* link straddles a partition */
338 seq_puts(s, " shared");
339
340 /*
341 * Unlikely, but strictly should query the LLP config
342 * registers because an NL4R can be configured to run
343 * NL3 protocol, even when not talking to an NL3 router.
344 * Ditto for node-node.
345 */
346 seq_printf(s, " endpoint %s-%d, protocol %s\n",
347 p->location, ptdata[pt].conn_port,
348 (SN_HWPERF_IS_NL3ROUTER(obj) ||
349 SN_HWPERF_IS_NL3ROUTER(p)) ? "LLP3" : "LLP4");
350 }
351 vfree(ptdata);
352 }
353
354 return 0;
355 }
356
357 static void *sn_topology_start(struct seq_file *s, loff_t * pos)
358 {
359 struct sn_hwperf_object_info *objs = s->private;
360
361 if (*pos < sn_hwperf_obj_cnt)
362 return (void *)(objs + *pos);
363
364 return NULL;
365 }
366
367 static void *sn_topology_next(struct seq_file *s, void *v, loff_t * pos)
368 {
369 ++*pos;
370 return sn_topology_start(s, pos);
371 }
372
373 static void sn_topology_stop(struct seq_file *m, void *v)
374 {
375 return;
376 }
377
378 /*
379 * /proc/sgi_sn/sn_topology, read-only using seq_file
380 */
381 static struct seq_operations sn_topology_seq_ops = {
382 .start = sn_topology_start,
383 .next = sn_topology_next,
384 .stop = sn_topology_stop,
385 .show = sn_topology_show
386 };
387
388 struct sn_hwperf_op_info {
389 u64 op;
390 struct sn_hwperf_ioctl_args *a;
391 void *p;
392 int *v0;
393 int ret;
394 };
395
396 static void sn_hwperf_call_sal(void *info)
397 {
398 struct sn_hwperf_op_info *op_info = info;
399 int r;
400
401 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op_info->op,
402 op_info->a->arg, op_info->a->sz,
403 (u64) op_info->p, 0, 0, op_info->v0);
404 op_info->ret = r;
405 }
406
407 static int sn_hwperf_op_cpu(struct sn_hwperf_op_info *op_info)
408 {
409 u32 cpu;
410 u32 use_ipi;
411 int r = 0;
412 cpumask_t save_allowed;
413
414 cpu = (op_info->a->arg & SN_HWPERF_ARG_CPU_MASK) >> 32;
415 use_ipi = op_info->a->arg & SN_HWPERF_ARG_USE_IPI_MASK;
416 op_info->a->arg &= SN_HWPERF_ARG_OBJID_MASK;
417
418 if (cpu != SN_HWPERF_ARG_ANY_CPU) {
419 if (cpu >= num_online_cpus() || !cpu_online(cpu)) {
420 r = -EINVAL;
421 goto out;
422 }
423 }
424
425 if (cpu == SN_HWPERF_ARG_ANY_CPU || cpu == get_cpu()) {
426 /* don't care, or already on correct cpu */
427 sn_hwperf_call_sal(op_info);
428 }
429 else {
430 if (use_ipi) {
431 /* use an interprocessor interrupt to call SAL */
432 smp_call_function_single(cpu, sn_hwperf_call_sal,
433 op_info, 1, 1);
434 }
435 else {
436 /* migrate the task before calling SAL */
437 save_allowed = current->cpus_allowed;
438 set_cpus_allowed(current, cpumask_of_cpu(cpu));
439 sn_hwperf_call_sal(op_info);
440 set_cpus_allowed(current, save_allowed);
441 }
442 }
443 r = op_info->ret;
444
445 out:
446 return r;
447 }
448
449 /* map SAL hwperf error code to system error code */
450 static int sn_hwperf_map_err(int hwperf_err)
451 {
452 int e;
453
454 switch(hwperf_err) {
455 case SN_HWPERF_OP_OK:
456 e = 0;
457 break;
458
459 case SN_HWPERF_OP_NOMEM:
460 e = -ENOMEM;
461 break;
462
463 case SN_HWPERF_OP_NO_PERM:
464 e = -EPERM;
465 break;
466
467 case SN_HWPERF_OP_IO_ERROR:
468 e = -EIO;
469 break;
470
471 case SN_HWPERF_OP_BUSY:
472 e = -EBUSY;
473 break;
474
475 case SN_HWPERF_OP_RECONFIGURE:
476 e = -EAGAIN;
477 break;
478
479 case SN_HWPERF_OP_INVAL:
480 default:
481 e = -EINVAL;
482 break;
483 }
484
485 return e;
486 }
487
488 /*
489 * ioctl for "sn_hwperf" misc device
490 */
491 static int
492 sn_hwperf_ioctl(struct inode *in, struct file *fp, u32 op, u64 arg)
493 {
494 struct sn_hwperf_ioctl_args a;
495 struct cpuinfo_ia64 *cdata;
496 struct sn_hwperf_object_info *objs;
497 struct sn_hwperf_object_info *cpuobj;
498 struct sn_hwperf_op_info op_info;
499 void *p = NULL;
500 int nobj;
501 char slice;
502 int node;
503 int r;
504 int v0;
505 int i;
506 int j;
507
508 unlock_kernel();
509
510 /* only user requests are allowed here */
511 if ((op & SN_HWPERF_OP_MASK) < 10) {
512 r = -EINVAL;
513 goto error;
514 }
515 r = copy_from_user(&a, (const void __user *)arg,
516 sizeof(struct sn_hwperf_ioctl_args));
517 if (r != 0) {
518 r = -EFAULT;
519 goto error;
520 }
521
522 /*
523 * Allocate memory to hold a kernel copy of the user buffer. The
524 * buffer contents are either copied in or out (or both) of user
525 * space depending on the flags encoded in the requested operation.
526 */
527 if (a.ptr) {
528 p = vmalloc(a.sz);
529 if (!p) {
530 r = -ENOMEM;
531 goto error;
532 }
533 }
534
535 if (op & SN_HWPERF_OP_MEM_COPYIN) {
536 r = copy_from_user(p, (const void __user *)a.ptr, a.sz);
537 if (r != 0) {
538 r = -EFAULT;
539 goto error;
540 }
541 }
542
543 switch (op) {
544 case SN_HWPERF_GET_CPU_INFO:
545 if (a.sz == sizeof(u64)) {
546 /* special case to get size needed */
547 *(u64 *) p = (u64) num_online_cpus() *
548 sizeof(struct sn_hwperf_object_info);
549 } else
550 if (a.sz < num_online_cpus() * sizeof(struct sn_hwperf_object_info)) {
551 r = -ENOMEM;
552 goto error;
553 } else
554 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
555 memset(p, 0, a.sz);
556 for (i = 0; i < nobj; i++) {
557 node = sn_hwperf_obj_to_cnode(objs + i);
558 for_each_online_cpu(j) {
559 if (node != cpu_to_node(j))
560 continue;
561 cpuobj = (struct sn_hwperf_object_info *) p + j;
562 slice = 'a' + cpuid_to_slice(j);
563 cdata = cpu_data(j);
564 cpuobj->id = j;
565 snprintf(cpuobj->name,
566 sizeof(cpuobj->name),
567 "CPU %luMHz %s",
568 cdata->proc_freq / 1000000,
569 cdata->vendor);
570 snprintf(cpuobj->location,
571 sizeof(cpuobj->location),
572 "%s%c", objs[i].location,
573 slice);
574 }
575 }
576
577 vfree(objs);
578 }
579 break;
580
581 case SN_HWPERF_GET_NODE_NASID:
582 if (a.sz != sizeof(u64) ||
583 (node = a.arg) < 0 || node >= numionodes) {
584 r = -EINVAL;
585 goto error;
586 }
587 *(u64 *)p = (u64)cnodeid_to_nasid(node);
588 break;
589
590 case SN_HWPERF_GET_OBJ_NODE:
591 if (a.sz != sizeof(u64) || a.arg < 0) {
592 r = -EINVAL;
593 goto error;
594 }
595 if ((r = sn_hwperf_enum_objects(&nobj, &objs)) == 0) {
596 if (a.arg >= nobj) {
597 r = -EINVAL;
598 vfree(objs);
599 goto error;
600 }
601 if (objs[(i = a.arg)].id != a.arg) {
602 for (i = 0; i < nobj; i++) {
603 if (objs[i].id == a.arg)
604 break;
605 }
606 }
607 if (i == nobj) {
608 r = -EINVAL;
609 vfree(objs);
610 goto error;
611 }
612 *(u64 *)p = (u64)sn_hwperf_obj_to_cnode(objs + i);
613 vfree(objs);
614 }
615 break;
616
617 case SN_HWPERF_GET_MMRS:
618 case SN_HWPERF_SET_MMRS:
619 case SN_HWPERF_OBJECT_DISTANCE:
620 op_info.p = p;
621 op_info.a = &a;
622 op_info.v0 = &v0;
623 op_info.op = op;
624 r = sn_hwperf_op_cpu(&op_info);
625 if (r) {
626 r = sn_hwperf_map_err(r);
627 a.v0 = v0;
628 goto error;
629 }
630 break;
631
632 default:
633 /* all other ops are a direct SAL call */
634 r = ia64_sn_hwperf_op(sn_hwperf_master_nasid, op,
635 a.arg, a.sz, (u64) p, 0, 0, &v0);
636 if (r) {
637 r = sn_hwperf_map_err(r);
638 goto error;
639 }
640 a.v0 = v0;
641 break;
642 }
643
644 if (op & SN_HWPERF_OP_MEM_COPYOUT) {
645 r = copy_to_user((void __user *)a.ptr, p, a.sz);
646 if (r != 0) {
647 r = -EFAULT;
648 goto error;
649 }
650 }
651
652 error:
653 vfree(p);
654
655 lock_kernel();
656 return r;
657 }
658
659 static struct file_operations sn_hwperf_fops = {
660 .ioctl = sn_hwperf_ioctl,
661 };
662
663 static struct miscdevice sn_hwperf_dev = {
664 MISC_DYNAMIC_MINOR,
665 "sn_hwperf",
666 &sn_hwperf_fops
667 };
668
669 static int sn_hwperf_init(void)
670 {
671 u64 v;
672 int salr;
673 int e = 0;
674
675 /* single threaded, once-only initialization */
676 down(&sn_hwperf_init_mutex);
677 if (sn_hwperf_salheap) {
678 up(&sn_hwperf_init_mutex);
679 return e;
680 }
681
682 /*
683 * The PROM code needs a fixed reference node. For convenience the
684 * same node as the console I/O is used.
685 */
686 sn_hwperf_master_nasid = (nasid_t) ia64_sn_get_console_nasid();
687
688 /*
689 * Request the needed size and install the PROM scratch area.
690 * The PROM keeps various tracking bits in this memory area.
691 */
692 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
693 (u64) SN_HWPERF_GET_HEAPSIZE, 0,
694 (u64) sizeof(u64), (u64) &v, 0, 0, NULL);
695 if (salr != SN_HWPERF_OP_OK) {
696 e = -EINVAL;
697 goto out;
698 }
699
700 if ((sn_hwperf_salheap = vmalloc(v)) == NULL) {
701 e = -ENOMEM;
702 goto out;
703 }
704 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
705 SN_HWPERF_INSTALL_HEAP, 0, v,
706 (u64) sn_hwperf_salheap, 0, 0, NULL);
707 if (salr != SN_HWPERF_OP_OK) {
708 e = -EINVAL;
709 goto out;
710 }
711
712 salr = ia64_sn_hwperf_op(sn_hwperf_master_nasid,
713 SN_HWPERF_OBJECT_COUNT, 0,
714 sizeof(u64), (u64) &v, 0, 0, NULL);
715 if (salr != SN_HWPERF_OP_OK) {
716 e = -EINVAL;
717 goto out;
718 }
719 sn_hwperf_obj_cnt = (int)v;
720
721 out:
722 if (e < 0 && sn_hwperf_salheap) {
723 vfree(sn_hwperf_salheap);
724 sn_hwperf_salheap = NULL;
725 sn_hwperf_obj_cnt = 0;
726 }
727
728 if (!e) {
729 /*
730 * Register a dynamic misc device for ioctl. Platforms
731 * supporting hotplug will create /dev/sn_hwperf, else
732 * user can to look up the minor number in /proc/misc.
733 */
734 if ((e = misc_register(&sn_hwperf_dev)) != 0) {
735 printk(KERN_ERR "sn_hwperf_init: misc register "
736 "for \"sn_hwperf\" failed, err %d\n", e);
737 }
738 }
739
740 up(&sn_hwperf_init_mutex);
741 return e;
742 }
743
744 int sn_topology_open(struct inode *inode, struct file *file)
745 {
746 int e;
747 struct seq_file *seq;
748 struct sn_hwperf_object_info *objbuf;
749 int nobj;
750
751 if ((e = sn_hwperf_enum_objects(&nobj, &objbuf)) == 0) {
752 e = seq_open(file, &sn_topology_seq_ops);
753 seq = file->private_data;
754 seq->private = objbuf;
755 }
756
757 return e;
758 }
759
760 int sn_topology_release(struct inode *inode, struct file *file)
761 {
762 struct seq_file *seq = file->private_data;
763
764 vfree(seq->private);
765 return seq_release(inode, file);
766 }
This page took 0.054058 seconds and 5 git commands to generate.