Linux-2.6.12-rc2
[deliverable/linux.git] / arch / ia64 / sn / pci / pcibr / pcibr_dma.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2001-2004 Silicon Graphics, Inc. All rights reserved.
7 */
8
9 #include <linux/types.h>
10 #include <linux/pci.h>
11 #include <asm/sn/sn_sal.h>
12 #include <asm/sn/geo.h>
13 #include "xtalk/xwidgetdev.h"
14 #include "xtalk/hubdev.h"
15 #include "pci/pcibus_provider_defs.h"
16 #include "pci/pcidev.h"
17 #include "pci/tiocp.h"
18 #include "pci/pic.h"
19 #include "pci/pcibr_provider.h"
20 #include "pci/tiocp.h"
21 #include "tio.h"
22 #include <asm/sn/addrs.h>
23
24 extern int sn_ioif_inited;
25
26 /* =====================================================================
27 * DMA MANAGEMENT
28 *
29 * The Bridge ASIC provides three methods of doing DMA: via a "direct map"
30 * register available in 32-bit PCI space (which selects a contiguous 2G
31 * address space on some other widget), via "direct" addressing via 64-bit
32 * PCI space (all destination information comes from the PCI address,
33 * including transfer attributes), and via a "mapped" region that allows
34 * a bunch of different small mappings to be established with the PMU.
35 *
36 * For efficiency, we most prefer to use the 32bit direct mapping facility,
37 * since it requires no resource allocations. The advantage of using the
38 * PMU over the 64-bit direct is that single-cycle PCI addressing can be
39 * used; the advantage of using 64-bit direct over PMU addressing is that
40 * we do not have to allocate entries in the PMU.
41 */
42
43 static uint64_t
44 pcibr_dmamap_ate32(struct pcidev_info *info,
45 uint64_t paddr, size_t req_size, uint64_t flags)
46 {
47
48 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
49 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
50 pdi_pcibus_info;
51 uint8_t internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
52 pdi_linux_pcidev->devfn)) - 1;
53 int ate_count;
54 int ate_index;
55 uint64_t ate_flags = flags | PCI32_ATE_V;
56 uint64_t ate;
57 uint64_t pci_addr;
58 uint64_t xio_addr;
59 uint64_t offset;
60
61 /* PIC in PCI-X mode does not supports 32bit PageMap mode */
62 if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
63 return 0;
64 }
65
66 /* Calculate the number of ATEs needed. */
67 if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
68 ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
69 +req_size /* max mapping bytes */
70 - 1) + 1; /* round UP */
71 } else { /* assume requested target is page aligned */
72 ate_count = IOPG(req_size /* max mapping bytes */
73 - 1) + 1; /* round UP */
74 }
75
76 /* Get the number of ATEs required. */
77 ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
78 if (ate_index < 0)
79 return 0;
80
81 /* In PCI-X mode, Prefetch not supported */
82 if (IS_PCIX(pcibus_info))
83 ate_flags &= ~(PCI32_ATE_PREF);
84
85 xio_addr =
86 IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
87 PHYS_TO_TIODMA(paddr);
88 offset = IOPGOFF(xio_addr);
89 ate = ate_flags | (xio_addr - offset);
90
91 /* If PIC, put the targetid in the ATE */
92 if (IS_PIC_SOFT(pcibus_info)) {
93 ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
94 }
95 ate_write(pcibus_info, ate_index, ate_count, ate);
96
97 /*
98 * Set up the DMA mapped Address.
99 */
100 pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
101
102 /*
103 * If swap was set in device in pcibr_endian_set()
104 * we need to turn swapping on.
105 */
106 if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
107 ATE_SWAP_ON(pci_addr);
108
109 return pci_addr;
110 }
111
112 static uint64_t
113 pcibr_dmatrans_direct64(struct pcidev_info * info, uint64_t paddr,
114 uint64_t dma_attributes)
115 {
116 struct pcibus_info *pcibus_info = (struct pcibus_info *)
117 ((info->pdi_host_pcidev_info)->pdi_pcibus_info);
118 uint64_t pci_addr;
119
120 /* Translate to Crosstalk View of Physical Address */
121 pci_addr = (IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
122 PHYS_TO_TIODMA(paddr)) | dma_attributes;
123
124 /* Handle Bus mode */
125 if (IS_PCIX(pcibus_info))
126 pci_addr &= ~PCI64_ATTR_PREF;
127
128 /* Handle Bridge Chipset differences */
129 if (IS_PIC_SOFT(pcibus_info)) {
130 pci_addr |=
131 ((uint64_t) pcibus_info->
132 pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
133 } else
134 pci_addr |= TIOCP_PCI64_CMDTYPE_MEM;
135
136 /* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
137 if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
138 pci_addr |= PCI64_ATTR_VIRTUAL;
139
140 return pci_addr;
141
142 }
143
144 static uint64_t
145 pcibr_dmatrans_direct32(struct pcidev_info * info,
146 uint64_t paddr, size_t req_size, uint64_t flags)
147 {
148
149 struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
150 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
151 pdi_pcibus_info;
152 uint64_t xio_addr;
153
154 uint64_t xio_base;
155 uint64_t offset;
156 uint64_t endoff;
157
158 if (IS_PCIX(pcibus_info)) {
159 return 0;
160 }
161
162 xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
163 PHYS_TO_TIODMA(paddr);
164
165 xio_base = pcibus_info->pbi_dir_xbase;
166 offset = xio_addr - xio_base;
167 endoff = req_size + offset;
168 if ((req_size > (1ULL << 31)) || /* Too Big */
169 (xio_addr < xio_base) || /* Out of range for mappings */
170 (endoff > (1ULL << 31))) { /* Too Big */
171 return 0;
172 }
173
174 return PCI32_DIRECT_BASE | offset;
175
176 }
177
178 /*
179 * Wrapper routine for free'ing DMA maps
180 * DMA mappings for Direct 64 and 32 do not have any DMA maps.
181 */
182 void
183 pcibr_dma_unmap(struct pcidev_info *pcidev_info, dma_addr_t dma_handle,
184 int direction)
185 {
186 struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
187 pdi_pcibus_info;
188
189 if (IS_PCI32_MAPPED(dma_handle)) {
190 int ate_index;
191
192 ate_index =
193 IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
194 pcibr_ate_free(pcibus_info, ate_index);
195 }
196 }
197
198 /*
199 * On SN systems there is a race condition between a PIO read response and
200 * DMA's. In rare cases, the read response may beat the DMA, causing the
201 * driver to think that data in memory is complete and meaningful. This code
202 * eliminates that race. This routine is called by the PIO read routines
203 * after doing the read. For PIC this routine then forces a fake interrupt
204 * on another line, which is logically associated with the slot that the PIO
205 * is addressed to. It then spins while watching the memory location that
206 * the interrupt is targetted to. When the interrupt response arrives, we
207 * are sure that the DMA has landed in memory and it is safe for the driver
208 * to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
209 * Bridge register since it ensures the data has entered the coherence domain,
210 * unlike the PIC Device(x) Write Request Buffer Flush register.
211 */
212
213 void sn_dma_flush(uint64_t addr)
214 {
215 nasid_t nasid;
216 int is_tio;
217 int wid_num;
218 int i, j;
219 int bwin;
220 uint64_t flags;
221 struct hubdev_info *hubinfo;
222 volatile struct sn_flush_device_list *p;
223 struct sn_flush_nasid_entry *flush_nasid_list;
224
225 if (!sn_ioif_inited)
226 return;
227
228 nasid = NASID_GET(addr);
229 if (-1 == nasid_to_cnodeid(nasid))
230 return;
231
232 hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
233
234 if (!hubinfo) {
235 BUG();
236 }
237 is_tio = (nasid & 1);
238 if (is_tio) {
239 wid_num = TIO_SWIN_WIDGETNUM(addr);
240 bwin = TIO_BWIN_WINDOWNUM(addr);
241 } else {
242 wid_num = SWIN_WIDGETNUM(addr);
243 bwin = BWIN_WINDOWNUM(addr);
244 }
245
246 flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
247 if (flush_nasid_list->widget_p == NULL)
248 return;
249 if (bwin > 0) {
250 uint64_t itte = flush_nasid_list->iio_itte[bwin];
251
252 if (is_tio) {
253 wid_num = (itte >> TIO_ITTE_WIDGET_SHIFT) &
254 TIO_ITTE_WIDGET_MASK;
255 } else {
256 wid_num = (itte >> IIO_ITTE_WIDGET_SHIFT) &
257 IIO_ITTE_WIDGET_MASK;
258 }
259 }
260 if (flush_nasid_list->widget_p == NULL)
261 return;
262 if (flush_nasid_list->widget_p[wid_num] == NULL)
263 return;
264 p = &flush_nasid_list->widget_p[wid_num][0];
265
266 /* find a matching BAR */
267 for (i = 0; i < DEV_PER_WIDGET; i++) {
268 for (j = 0; j < PCI_ROM_RESOURCE; j++) {
269 if (p->sfdl_bar_list[j].start == 0)
270 break;
271 if (addr >= p->sfdl_bar_list[j].start
272 && addr <= p->sfdl_bar_list[j].end)
273 break;
274 }
275 if (j < PCI_ROM_RESOURCE && p->sfdl_bar_list[j].start != 0)
276 break;
277 p++;
278 }
279
280 /* if no matching BAR, return without doing anything. */
281 if (i == DEV_PER_WIDGET)
282 return;
283
284 /*
285 * For TIOCP use the Device(x) Write Request Buffer Flush Bridge
286 * register since it ensures the data has entered the coherence
287 * domain, unlike PIC
288 */
289 if (is_tio) {
290 uint32_t tio_id = REMOTE_HUB_L(nasid, TIO_NODE_ID);
291 uint32_t revnum = XWIDGET_PART_REV_NUM(tio_id);
292
293 /* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
294 if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
295 return;
296 } else {
297 pcireg_wrb_flush_get(p->sfdl_pcibus_info,
298 (p->sfdl_slot - 1));
299 }
300 } else {
301 spin_lock_irqsave(&((struct sn_flush_device_list *)p)->
302 sfdl_flush_lock, flags);
303
304 p->sfdl_flush_value = 0;
305
306 /* force an interrupt. */
307 *(volatile uint32_t *)(p->sfdl_force_int_addr) = 1;
308
309 /* wait for the interrupt to come back. */
310 while (*(p->sfdl_flush_addr) != 0x10f) ;
311
312 /* okay, everything is synched up. */
313 spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, flags);
314 }
315 return;
316 }
317
318 /*
319 * Wrapper DMA interface. Called from pci_dma.c routines.
320 */
321
322 uint64_t
323 pcibr_dma_map(struct pcidev_info * pcidev_info, unsigned long phys_addr,
324 size_t size, unsigned int flags)
325 {
326 dma_addr_t dma_handle;
327 struct pci_dev *pcidev = pcidev_info->pdi_linux_pcidev;
328
329 if (flags & SN_PCIDMA_CONSISTENT) {
330 /* sn_pci_alloc_consistent interfaces */
331 if (pcidev->dev.coherent_dma_mask == ~0UL) {
332 dma_handle =
333 pcibr_dmatrans_direct64(pcidev_info, phys_addr,
334 PCI64_ATTR_BAR);
335 } else {
336 dma_handle =
337 (dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
338 phys_addr, size,
339 PCI32_ATE_BAR);
340 }
341 } else {
342 /* map_sg/map_single interfaces */
343
344 /* SN cannot support DMA addresses smaller than 32 bits. */
345 if (pcidev->dma_mask < 0x7fffffff) {
346 return 0;
347 }
348
349 if (pcidev->dma_mask == ~0UL) {
350 /*
351 * Handle the most common case: 64 bit cards. This
352 * call should always succeed.
353 */
354
355 dma_handle =
356 pcibr_dmatrans_direct64(pcidev_info, phys_addr,
357 PCI64_ATTR_PREF);
358 } else {
359 /* Handle 32-63 bit cards via direct mapping */
360 dma_handle =
361 pcibr_dmatrans_direct32(pcidev_info, phys_addr,
362 size, 0);
363 if (!dma_handle) {
364 /*
365 * It is a 32 bit card and we cannot do direct mapping,
366 * so we use an ATE.
367 */
368
369 dma_handle =
370 pcibr_dmamap_ate32(pcidev_info, phys_addr,
371 size, PCI32_ATE_PREF);
372 }
373 }
374 }
375
376 return dma_handle;
377 }
378
379 EXPORT_SYMBOL(sn_dma_flush);
This page took 0.063591 seconds and 5 git commands to generate.