Merge branch 'for-linus-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / arch / mips / include / asm / io.h
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994, 1995 Waldorf GmbH
7 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
10 * Author: Maciej W. Rozycki <macro@mips.com>
11 */
12 #ifndef _ASM_IO_H
13 #define _ASM_IO_H
14
15 #include <linux/compiler.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/irqflags.h>
19
20 #include <asm/addrspace.h>
21 #include <asm/bug.h>
22 #include <asm/byteorder.h>
23 #include <asm/cpu.h>
24 #include <asm/cpu-features.h>
25 #include <asm-generic/iomap.h>
26 #include <asm/page.h>
27 #include <asm/pgtable-bits.h>
28 #include <asm/processor.h>
29 #include <asm/string.h>
30
31 #include <ioremap.h>
32 #include <mangle-port.h>
33
34 /*
35 * Slowdown I/O port space accesses for antique hardware.
36 */
37 #undef CONF_SLOWDOWN_IO
38
39 /*
40 * Raw operations are never swapped in software. OTOH values that raw
41 * operations are working on may or may not have been swapped by the bus
42 * hardware. An example use would be for flash memory that's used for
43 * execute in place.
44 */
45 # define __raw_ioswabb(a, x) (x)
46 # define __raw_ioswabw(a, x) (x)
47 # define __raw_ioswabl(a, x) (x)
48 # define __raw_ioswabq(a, x) (x)
49 # define ____raw_ioswabq(a, x) (x)
50
51 /* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */
52
53 #define IO_SPACE_LIMIT 0xffff
54
55 /*
56 * On MIPS I/O ports are memory mapped, so we access them using normal
57 * load/store instructions. mips_io_port_base is the virtual address to
58 * which all ports are being mapped. For sake of efficiency some code
59 * assumes that this is an address that can be loaded with a single lui
60 * instruction, so the lower 16 bits must be zero. Should be true on
61 * on any sane architecture; generic code does not use this assumption.
62 */
63 extern const unsigned long mips_io_port_base;
64
65 /*
66 * Gcc will generate code to load the value of mips_io_port_base after each
67 * function call which may be fairly wasteful in some cases. So we don't
68 * play quite by the book. We tell gcc mips_io_port_base is a long variable
69 * which solves the code generation issue. Now we need to violate the
70 * aliasing rules a little to make initialization possible and finally we
71 * will need the barrier() to fight side effects of the aliasing chat.
72 * This trickery will eventually collapse under gcc's optimizer. Oh well.
73 */
74 static inline void set_io_port_base(unsigned long base)
75 {
76 * (unsigned long *) &mips_io_port_base = base;
77 barrier();
78 }
79
80 /*
81 * Thanks to James van Artsdalen for a better timing-fix than
82 * the two short jumps: using outb's to a nonexistent port seems
83 * to guarantee better timings even on fast machines.
84 *
85 * On the other hand, I'd like to be sure of a non-existent port:
86 * I feel a bit unsafe about using 0x80 (should be safe, though)
87 *
88 * Linus
89 *
90 */
91
92 #define __SLOW_DOWN_IO \
93 __asm__ __volatile__( \
94 "sb\t$0,0x80(%0)" \
95 : : "r" (mips_io_port_base));
96
97 #ifdef CONF_SLOWDOWN_IO
98 #ifdef REALLY_SLOW_IO
99 #define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
100 #else
101 #define SLOW_DOWN_IO __SLOW_DOWN_IO
102 #endif
103 #else
104 #define SLOW_DOWN_IO
105 #endif
106
107 /*
108 * virt_to_phys - map virtual addresses to physical
109 * @address: address to remap
110 *
111 * The returned physical address is the physical (CPU) mapping for
112 * the memory address given. It is only valid to use this function on
113 * addresses directly mapped or allocated via kmalloc.
114 *
115 * This function does not give bus mappings for DMA transfers. In
116 * almost all conceivable cases a device driver should not be using
117 * this function
118 */
119 static inline unsigned long virt_to_phys(volatile const void *address)
120 {
121 return __pa(address);
122 }
123
124 /*
125 * phys_to_virt - map physical address to virtual
126 * @address: address to remap
127 *
128 * The returned virtual address is a current CPU mapping for
129 * the memory address given. It is only valid to use this function on
130 * addresses that have a kernel mapping
131 *
132 * This function does not handle bus mappings for DMA transfers. In
133 * almost all conceivable cases a device driver should not be using
134 * this function
135 */
136 static inline void * phys_to_virt(unsigned long address)
137 {
138 return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
139 }
140
141 /*
142 * ISA I/O bus memory addresses are 1:1 with the physical address.
143 */
144 static inline unsigned long isa_virt_to_bus(volatile void * address)
145 {
146 return (unsigned long)address - PAGE_OFFSET;
147 }
148
149 static inline void * isa_bus_to_virt(unsigned long address)
150 {
151 return (void *)(address + PAGE_OFFSET);
152 }
153
154 #define isa_page_to_bus page_to_phys
155
156 /*
157 * However PCI ones are not necessarily 1:1 and therefore these interfaces
158 * are forbidden in portable PCI drivers.
159 *
160 * Allow them for x86 for legacy drivers, though.
161 */
162 #define virt_to_bus virt_to_phys
163 #define bus_to_virt phys_to_virt
164
165 /*
166 * Change "struct page" to physical address.
167 */
168 #define page_to_phys(page) ((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)
169
170 extern void __iomem * __ioremap(phys_addr_t offset, phys_addr_t size, unsigned long flags);
171 extern void __iounmap(const volatile void __iomem *addr);
172
173 #ifndef CONFIG_PCI
174 struct pci_dev;
175 static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
176 #endif
177
178 static inline void __iomem * __ioremap_mode(phys_addr_t offset, unsigned long size,
179 unsigned long flags)
180 {
181 void __iomem *addr = plat_ioremap(offset, size, flags);
182
183 if (addr)
184 return addr;
185
186 #define __IS_LOW512(addr) (!((phys_addr_t)(addr) & (phys_addr_t) ~0x1fffffffULL))
187
188 if (cpu_has_64bit_addresses) {
189 u64 base = UNCAC_BASE;
190
191 /*
192 * R10000 supports a 2 bit uncached attribute therefore
193 * UNCAC_BASE may not equal IO_BASE.
194 */
195 if (flags == _CACHE_UNCACHED)
196 base = (u64) IO_BASE;
197 return (void __iomem *) (unsigned long) (base + offset);
198 } else if (__builtin_constant_p(offset) &&
199 __builtin_constant_p(size) && __builtin_constant_p(flags)) {
200 phys_addr_t phys_addr, last_addr;
201
202 phys_addr = fixup_bigphys_addr(offset, size);
203
204 /* Don't allow wraparound or zero size. */
205 last_addr = phys_addr + size - 1;
206 if (!size || last_addr < phys_addr)
207 return NULL;
208
209 /*
210 * Map uncached objects in the low 512MB of address
211 * space using KSEG1.
212 */
213 if (__IS_LOW512(phys_addr) && __IS_LOW512(last_addr) &&
214 flags == _CACHE_UNCACHED)
215 return (void __iomem *)
216 (unsigned long)CKSEG1ADDR(phys_addr);
217 }
218
219 return __ioremap(offset, size, flags);
220
221 #undef __IS_LOW512
222 }
223
224 /*
225 * ioremap - map bus memory into CPU space
226 * @offset: bus address of the memory
227 * @size: size of the resource to map
228 *
229 * ioremap performs a platform specific sequence of operations to
230 * make bus memory CPU accessible via the readb/readw/readl/writeb/
231 * writew/writel functions and the other mmio helpers. The returned
232 * address is not guaranteed to be usable directly as a virtual
233 * address.
234 */
235 #define ioremap(offset, size) \
236 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
237
238 /*
239 * ioremap_nocache - map bus memory into CPU space
240 * @offset: bus address of the memory
241 * @size: size of the resource to map
242 *
243 * ioremap_nocache performs a platform specific sequence of operations to
244 * make bus memory CPU accessible via the readb/readw/readl/writeb/
245 * writew/writel functions and the other mmio helpers. The returned
246 * address is not guaranteed to be usable directly as a virtual
247 * address.
248 *
249 * This version of ioremap ensures that the memory is marked uncachable
250 * on the CPU as well as honouring existing caching rules from things like
251 * the PCI bus. Note that there are other caches and buffers on many
252 * busses. In particular driver authors should read up on PCI writes
253 *
254 * It's useful if some control registers are in such an area and
255 * write combining or read caching is not desirable:
256 */
257 #define ioremap_nocache(offset, size) \
258 __ioremap_mode((offset), (size), _CACHE_UNCACHED)
259 #define ioremap_uc ioremap_nocache
260
261 /*
262 * ioremap_cachable - map bus memory into CPU space
263 * @offset: bus address of the memory
264 * @size: size of the resource to map
265 *
266 * ioremap_nocache performs a platform specific sequence of operations to
267 * make bus memory CPU accessible via the readb/readw/readl/writeb/
268 * writew/writel functions and the other mmio helpers. The returned
269 * address is not guaranteed to be usable directly as a virtual
270 * address.
271 *
272 * This version of ioremap ensures that the memory is marked cachable by
273 * the CPU. Also enables full write-combining. Useful for some
274 * memory-like regions on I/O busses.
275 */
276 #define ioremap_cachable(offset, size) \
277 __ioremap_mode((offset), (size), _page_cachable_default)
278 #define ioremap_cache ioremap_cachable
279
280 /*
281 * These two are MIPS specific ioremap variant. ioremap_cacheable_cow
282 * requests a cachable mapping, ioremap_uncached_accelerated requests a
283 * mapping using the uncached accelerated mode which isn't supported on
284 * all processors.
285 */
286 #define ioremap_cacheable_cow(offset, size) \
287 __ioremap_mode((offset), (size), _CACHE_CACHABLE_COW)
288 #define ioremap_uncached_accelerated(offset, size) \
289 __ioremap_mode((offset), (size), _CACHE_UNCACHED_ACCELERATED)
290
291 static inline void iounmap(const volatile void __iomem *addr)
292 {
293 if (plat_iounmap(addr))
294 return;
295
296 #define __IS_KSEG1(addr) (((unsigned long)(addr) & ~0x1fffffffUL) == CKSEG1)
297
298 if (cpu_has_64bit_addresses ||
299 (__builtin_constant_p(addr) && __IS_KSEG1(addr)))
300 return;
301
302 __iounmap(addr);
303
304 #undef __IS_KSEG1
305 }
306
307 #if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_LOONGSON3_ENHANCEMENT)
308 #define war_io_reorder_wmb() wmb()
309 #else
310 #define war_io_reorder_wmb() do { } while (0)
311 #endif
312
313 #define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, irq) \
314 \
315 static inline void pfx##write##bwlq(type val, \
316 volatile void __iomem *mem) \
317 { \
318 volatile type *__mem; \
319 type __val; \
320 \
321 war_io_reorder_wmb(); \
322 \
323 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
324 \
325 __val = pfx##ioswab##bwlq(__mem, val); \
326 \
327 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
328 *__mem = __val; \
329 else if (cpu_has_64bits) { \
330 unsigned long __flags; \
331 type __tmp; \
332 \
333 if (irq) \
334 local_irq_save(__flags); \
335 __asm__ __volatile__( \
336 ".set arch=r4000" "\t\t# __writeq""\n\t" \
337 "dsll32 %L0, %L0, 0" "\n\t" \
338 "dsrl32 %L0, %L0, 0" "\n\t" \
339 "dsll32 %M0, %M0, 0" "\n\t" \
340 "or %L0, %L0, %M0" "\n\t" \
341 "sd %L0, %2" "\n\t" \
342 ".set mips0" "\n" \
343 : "=r" (__tmp) \
344 : "0" (__val), "m" (*__mem)); \
345 if (irq) \
346 local_irq_restore(__flags); \
347 } else \
348 BUG(); \
349 } \
350 \
351 static inline type pfx##read##bwlq(const volatile void __iomem *mem) \
352 { \
353 volatile type *__mem; \
354 type __val; \
355 \
356 __mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem)); \
357 \
358 if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
359 __val = *__mem; \
360 else if (cpu_has_64bits) { \
361 unsigned long __flags; \
362 \
363 if (irq) \
364 local_irq_save(__flags); \
365 __asm__ __volatile__( \
366 ".set arch=r4000" "\t\t# __readq" "\n\t" \
367 "ld %L0, %1" "\n\t" \
368 "dsra32 %M0, %L0, 0" "\n\t" \
369 "sll %L0, %L0, 0" "\n\t" \
370 ".set mips0" "\n" \
371 : "=r" (__val) \
372 : "m" (*__mem)); \
373 if (irq) \
374 local_irq_restore(__flags); \
375 } else { \
376 __val = 0; \
377 BUG(); \
378 } \
379 \
380 return pfx##ioswab##bwlq(__mem, __val); \
381 }
382
383 #define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, p, slow) \
384 \
385 static inline void pfx##out##bwlq##p(type val, unsigned long port) \
386 { \
387 volatile type *__addr; \
388 type __val; \
389 \
390 war_io_reorder_wmb(); \
391 \
392 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
393 \
394 __val = pfx##ioswab##bwlq(__addr, val); \
395 \
396 /* Really, we want this to be atomic */ \
397 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
398 \
399 *__addr = __val; \
400 slow; \
401 } \
402 \
403 static inline type pfx##in##bwlq##p(unsigned long port) \
404 { \
405 volatile type *__addr; \
406 type __val; \
407 \
408 __addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
409 \
410 BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long)); \
411 \
412 __val = *__addr; \
413 slow; \
414 \
415 return pfx##ioswab##bwlq(__addr, __val); \
416 }
417
418 #define __BUILD_MEMORY_PFX(bus, bwlq, type) \
419 \
420 __BUILD_MEMORY_SINGLE(bus, bwlq, type, 1)
421
422 #define BUILDIO_MEM(bwlq, type) \
423 \
424 __BUILD_MEMORY_PFX(__raw_, bwlq, type) \
425 __BUILD_MEMORY_PFX(, bwlq, type) \
426 __BUILD_MEMORY_PFX(__mem_, bwlq, type) \
427
428 BUILDIO_MEM(b, u8)
429 BUILDIO_MEM(w, u16)
430 BUILDIO_MEM(l, u32)
431 BUILDIO_MEM(q, u64)
432
433 #define __BUILD_IOPORT_PFX(bus, bwlq, type) \
434 __BUILD_IOPORT_SINGLE(bus, bwlq, type, ,) \
435 __BUILD_IOPORT_SINGLE(bus, bwlq, type, _p, SLOW_DOWN_IO)
436
437 #define BUILDIO_IOPORT(bwlq, type) \
438 __BUILD_IOPORT_PFX(, bwlq, type) \
439 __BUILD_IOPORT_PFX(__mem_, bwlq, type)
440
441 BUILDIO_IOPORT(b, u8)
442 BUILDIO_IOPORT(w, u16)
443 BUILDIO_IOPORT(l, u32)
444 #ifdef CONFIG_64BIT
445 BUILDIO_IOPORT(q, u64)
446 #endif
447
448 #define __BUILDIO(bwlq, type) \
449 \
450 __BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 0)
451
452 __BUILDIO(q, u64)
453
454 #define readb_relaxed readb
455 #define readw_relaxed readw
456 #define readl_relaxed readl
457 #define readq_relaxed readq
458
459 #define writeb_relaxed writeb
460 #define writew_relaxed writew
461 #define writel_relaxed writel
462 #define writeq_relaxed writeq
463
464 #define readb_be(addr) \
465 __raw_readb((__force unsigned *)(addr))
466 #define readw_be(addr) \
467 be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
468 #define readl_be(addr) \
469 be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
470 #define readq_be(addr) \
471 be64_to_cpu(__raw_readq((__force unsigned *)(addr)))
472
473 #define writeb_be(val, addr) \
474 __raw_writeb((val), (__force unsigned *)(addr))
475 #define writew_be(val, addr) \
476 __raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
477 #define writel_be(val, addr) \
478 __raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
479 #define writeq_be(val, addr) \
480 __raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))
481
482 /*
483 * Some code tests for these symbols
484 */
485 #define readq readq
486 #define writeq writeq
487
488 #define __BUILD_MEMORY_STRING(bwlq, type) \
489 \
490 static inline void writes##bwlq(volatile void __iomem *mem, \
491 const void *addr, unsigned int count) \
492 { \
493 const volatile type *__addr = addr; \
494 \
495 while (count--) { \
496 __mem_write##bwlq(*__addr, mem); \
497 __addr++; \
498 } \
499 } \
500 \
501 static inline void reads##bwlq(volatile void __iomem *mem, void *addr, \
502 unsigned int count) \
503 { \
504 volatile type *__addr = addr; \
505 \
506 while (count--) { \
507 *__addr = __mem_read##bwlq(mem); \
508 __addr++; \
509 } \
510 }
511
512 #define __BUILD_IOPORT_STRING(bwlq, type) \
513 \
514 static inline void outs##bwlq(unsigned long port, const void *addr, \
515 unsigned int count) \
516 { \
517 const volatile type *__addr = addr; \
518 \
519 while (count--) { \
520 __mem_out##bwlq(*__addr, port); \
521 __addr++; \
522 } \
523 } \
524 \
525 static inline void ins##bwlq(unsigned long port, void *addr, \
526 unsigned int count) \
527 { \
528 volatile type *__addr = addr; \
529 \
530 while (count--) { \
531 *__addr = __mem_in##bwlq(port); \
532 __addr++; \
533 } \
534 }
535
536 #define BUILDSTRING(bwlq, type) \
537 \
538 __BUILD_MEMORY_STRING(bwlq, type) \
539 __BUILD_IOPORT_STRING(bwlq, type)
540
541 BUILDSTRING(b, u8)
542 BUILDSTRING(w, u16)
543 BUILDSTRING(l, u32)
544 #ifdef CONFIG_64BIT
545 BUILDSTRING(q, u64)
546 #endif
547
548
549 #ifdef CONFIG_CPU_CAVIUM_OCTEON
550 #define mmiowb() wmb()
551 #else
552 /* Depends on MIPS II instruction set */
553 #define mmiowb() asm volatile ("sync" ::: "memory")
554 #endif
555
556 static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
557 {
558 memset((void __force *) addr, val, count);
559 }
560 static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
561 {
562 memcpy(dst, (void __force *) src, count);
563 }
564 static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
565 {
566 memcpy((void __force *) dst, src, count);
567 }
568
569 /*
570 * The caches on some architectures aren't dma-coherent and have need to
571 * handle this in software. There are three types of operations that
572 * can be applied to dma buffers.
573 *
574 * - dma_cache_wback_inv(start, size) makes caches and coherent by
575 * writing the content of the caches back to memory, if necessary.
576 * The function also invalidates the affected part of the caches as
577 * necessary before DMA transfers from outside to memory.
578 * - dma_cache_wback(start, size) makes caches and coherent by
579 * writing the content of the caches back to memory, if necessary.
580 * The function also invalidates the affected part of the caches as
581 * necessary before DMA transfers from outside to memory.
582 * - dma_cache_inv(start, size) invalidates the affected parts of the
583 * caches. Dirty lines of the caches may be written back or simply
584 * be discarded. This operation is necessary before dma operations
585 * to the memory.
586 *
587 * This API used to be exported; it now is for arch code internal use only.
588 */
589 #if defined(CONFIG_DMA_NONCOHERENT) || defined(CONFIG_DMA_MAYBE_COHERENT)
590
591 extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
592 extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
593 extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);
594
595 #define dma_cache_wback_inv(start, size) _dma_cache_wback_inv(start, size)
596 #define dma_cache_wback(start, size) _dma_cache_wback(start, size)
597 #define dma_cache_inv(start, size) _dma_cache_inv(start, size)
598
599 #else /* Sane hardware */
600
601 #define dma_cache_wback_inv(start,size) \
602 do { (void) (start); (void) (size); } while (0)
603 #define dma_cache_wback(start,size) \
604 do { (void) (start); (void) (size); } while (0)
605 #define dma_cache_inv(start,size) \
606 do { (void) (start); (void) (size); } while (0)
607
608 #endif /* CONFIG_DMA_NONCOHERENT || CONFIG_DMA_MAYBE_COHERENT */
609
610 /*
611 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
612 * Avoid interrupt mucking, just adjust the address for 4-byte access.
613 * Assume the addresses are 8-byte aligned.
614 */
615 #ifdef __MIPSEB__
616 #define __CSR_32_ADJUST 4
617 #else
618 #define __CSR_32_ADJUST 0
619 #endif
620
621 #define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
622 #define csr_in32(a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))
623
624 /*
625 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
626 * access
627 */
628 #define xlate_dev_mem_ptr(p) __va(p)
629
630 /*
631 * Convert a virtual cached pointer to an uncached pointer
632 */
633 #define xlate_dev_kmem_ptr(p) p
634
635 #endif /* _ASM_IO_H */
This page took 0.044153 seconds and 6 git commands to generate.