Merge tag 'spi-v4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[deliverable/linux.git] / arch / mips / kernel / cpu-probe.c
1 /*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/ptrace.h>
17 #include <linux/smp.h>
18 #include <linux/stddef.h>
19 #include <linux/export.h>
20
21 #include <asm/bugs.h>
22 #include <asm/cpu.h>
23 #include <asm/cpu-features.h>
24 #include <asm/cpu-type.h>
25 #include <asm/fpu.h>
26 #include <asm/mipsregs.h>
27 #include <asm/mipsmtregs.h>
28 #include <asm/msa.h>
29 #include <asm/watch.h>
30 #include <asm/elf.h>
31 #include <asm/pgtable-bits.h>
32 #include <asm/spram.h>
33 #include <asm/uaccess.h>
34
35 /* Hardware capabilities */
36 unsigned int elf_hwcap __read_mostly;
37
38 /*
39 * Get the FPU Implementation/Revision.
40 */
41 static inline unsigned long cpu_get_fpu_id(void)
42 {
43 unsigned long tmp, fpu_id;
44
45 tmp = read_c0_status();
46 __enable_fpu(FPU_AS_IS);
47 fpu_id = read_32bit_cp1_register(CP1_REVISION);
48 write_c0_status(tmp);
49 return fpu_id;
50 }
51
52 /*
53 * Check if the CPU has an external FPU.
54 */
55 static inline int __cpu_has_fpu(void)
56 {
57 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
58 }
59
60 static inline unsigned long cpu_get_msa_id(void)
61 {
62 unsigned long status, msa_id;
63
64 status = read_c0_status();
65 __enable_fpu(FPU_64BIT);
66 enable_msa();
67 msa_id = read_msa_ir();
68 disable_msa();
69 write_c0_status(status);
70 return msa_id;
71 }
72
73 /*
74 * Determine the FCSR mask for FPU hardware.
75 */
76 static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
77 {
78 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
79
80 fcsr = c->fpu_csr31;
81 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
82
83 sr = read_c0_status();
84 __enable_fpu(FPU_AS_IS);
85
86 fcsr0 = fcsr & mask;
87 write_32bit_cp1_register(CP1_STATUS, fcsr0);
88 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
89
90 fcsr1 = fcsr | ~mask;
91 write_32bit_cp1_register(CP1_STATUS, fcsr1);
92 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
93
94 write_32bit_cp1_register(CP1_STATUS, fcsr);
95
96 write_c0_status(sr);
97
98 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
99 }
100
101 /*
102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
103 * supported by FPU hardware.
104 */
105 static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
106 {
107 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
108 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
109 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
110 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
111
112 sr = read_c0_status();
113 __enable_fpu(FPU_AS_IS);
114
115 fir = read_32bit_cp1_register(CP1_REVISION);
116 if (fir & MIPS_FPIR_HAS2008) {
117 fcsr = read_32bit_cp1_register(CP1_STATUS);
118
119 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
120 write_32bit_cp1_register(CP1_STATUS, fcsr0);
121 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
122
123 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
124 write_32bit_cp1_register(CP1_STATUS, fcsr1);
125 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
126
127 write_32bit_cp1_register(CP1_STATUS, fcsr);
128
129 if (!(fcsr0 & FPU_CSR_NAN2008))
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 if (fcsr1 & FPU_CSR_NAN2008)
132 c->options |= MIPS_CPU_NAN_2008;
133
134 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
135 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
136 else
137 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
138
139 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
140 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
141 else
142 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
143 } else {
144 c->options |= MIPS_CPU_NAN_LEGACY;
145 }
146
147 write_c0_status(sr);
148 } else {
149 c->options |= MIPS_CPU_NAN_LEGACY;
150 }
151 }
152
153 /*
154 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
155 * ABS.fmt/NEG.fmt execution mode.
156 */
157 static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
158
159 /*
160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
161 * to support by the FPU emulator according to the IEEE 754 conformance
162 * mode selected. Note that "relaxed" straps the emulator so that it
163 * allows 2008-NaN binaries even for legacy processors.
164 */
165 static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
166 {
167 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
168 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
169 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170
171 switch (ieee754) {
172 case STRICT:
173 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
174 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
175 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
176 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
177 } else {
178 c->options |= MIPS_CPU_NAN_LEGACY;
179 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
180 }
181 break;
182 case LEGACY:
183 c->options |= MIPS_CPU_NAN_LEGACY;
184 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
185 break;
186 case STD2008:
187 c->options |= MIPS_CPU_NAN_2008;
188 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 break;
191 case RELAXED:
192 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
193 break;
194 }
195 }
196
197 /*
198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
199 * according to the "ieee754=" parameter.
200 */
201 static void cpu_set_nan_2008(struct cpuinfo_mips *c)
202 {
203 switch (ieee754) {
204 case STRICT:
205 mips_use_nan_legacy = !!cpu_has_nan_legacy;
206 mips_use_nan_2008 = !!cpu_has_nan_2008;
207 break;
208 case LEGACY:
209 mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 mips_use_nan_2008 = !cpu_has_nan_legacy;
211 break;
212 case STD2008:
213 mips_use_nan_legacy = !cpu_has_nan_2008;
214 mips_use_nan_2008 = !!cpu_has_nan_2008;
215 break;
216 case RELAXED:
217 mips_use_nan_legacy = true;
218 mips_use_nan_2008 = true;
219 break;
220 }
221 }
222
223 /*
224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
225 * settings:
226 *
227 * strict: accept binaries that request a NaN encoding supported by the FPU
228 * legacy: only accept legacy-NaN binaries
229 * 2008: only accept 2008-NaN binaries
230 * relaxed: accept any binaries regardless of whether supported by the FPU
231 */
232 static int __init ieee754_setup(char *s)
233 {
234 if (!s)
235 return -1;
236 else if (!strcmp(s, "strict"))
237 ieee754 = STRICT;
238 else if (!strcmp(s, "legacy"))
239 ieee754 = LEGACY;
240 else if (!strcmp(s, "2008"))
241 ieee754 = STD2008;
242 else if (!strcmp(s, "relaxed"))
243 ieee754 = RELAXED;
244 else
245 return -1;
246
247 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
248 cpu_set_nofpu_2008(&boot_cpu_data);
249 cpu_set_nan_2008(&boot_cpu_data);
250
251 return 0;
252 }
253
254 early_param("ieee754", ieee754_setup);
255
256 /*
257 * Set the FIR feature flags for the FPU emulator.
258 */
259 static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
260 {
261 u32 value;
262
263 value = 0;
264 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
265 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
266 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
267 value |= MIPS_FPIR_D | MIPS_FPIR_S;
268 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
269 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
270 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
271 if (c->options & MIPS_CPU_NAN_2008)
272 value |= MIPS_FPIR_HAS2008;
273 c->fpu_id = value;
274 }
275
276 /* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
277 static unsigned int mips_nofpu_msk31;
278
279 /*
280 * Set options for FPU hardware.
281 */
282 static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
283 {
284 c->fpu_id = cpu_get_fpu_id();
285 mips_nofpu_msk31 = c->fpu_msk31;
286
287 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
288 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
289 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
290 if (c->fpu_id & MIPS_FPIR_3D)
291 c->ases |= MIPS_ASE_MIPS3D;
292 if (c->fpu_id & MIPS_FPIR_FREP)
293 c->options |= MIPS_CPU_FRE;
294 }
295
296 cpu_set_fpu_fcsr_mask(c);
297 cpu_set_fpu_2008(c);
298 cpu_set_nan_2008(c);
299 }
300
301 /*
302 * Set options for the FPU emulator.
303 */
304 static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
305 {
306 c->options &= ~MIPS_CPU_FPU;
307 c->fpu_msk31 = mips_nofpu_msk31;
308
309 cpu_set_nofpu_2008(c);
310 cpu_set_nan_2008(c);
311 cpu_set_nofpu_id(c);
312 }
313
314 static int mips_fpu_disabled;
315
316 static int __init fpu_disable(char *s)
317 {
318 cpu_set_nofpu_opts(&boot_cpu_data);
319 mips_fpu_disabled = 1;
320
321 return 1;
322 }
323
324 __setup("nofpu", fpu_disable);
325
326 int mips_dsp_disabled;
327
328 static int __init dsp_disable(char *s)
329 {
330 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
331 mips_dsp_disabled = 1;
332
333 return 1;
334 }
335
336 __setup("nodsp", dsp_disable);
337
338 static int mips_htw_disabled;
339
340 static int __init htw_disable(char *s)
341 {
342 mips_htw_disabled = 1;
343 cpu_data[0].options &= ~MIPS_CPU_HTW;
344 write_c0_pwctl(read_c0_pwctl() &
345 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
346
347 return 1;
348 }
349
350 __setup("nohtw", htw_disable);
351
352 static int mips_ftlb_disabled;
353 static int mips_has_ftlb_configured;
354
355 static int set_ftlb_enable(struct cpuinfo_mips *c, int enable);
356
357 static int __init ftlb_disable(char *s)
358 {
359 unsigned int config4, mmuextdef;
360
361 /*
362 * If the core hasn't done any FTLB configuration, there is nothing
363 * for us to do here.
364 */
365 if (!mips_has_ftlb_configured)
366 return 1;
367
368 /* Disable it in the boot cpu */
369 if (set_ftlb_enable(&cpu_data[0], 0)) {
370 pr_warn("Can't turn FTLB off\n");
371 return 1;
372 }
373
374 back_to_back_c0_hazard();
375
376 config4 = read_c0_config4();
377
378 /* Check that FTLB has been disabled */
379 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
380 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
381 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
382 /* This should never happen */
383 pr_warn("FTLB could not be disabled!\n");
384 return 1;
385 }
386
387 mips_ftlb_disabled = 1;
388 mips_has_ftlb_configured = 0;
389
390 /*
391 * noftlb is mainly used for debug purposes so print
392 * an informative message instead of using pr_debug()
393 */
394 pr_info("FTLB has been disabled\n");
395
396 /*
397 * Some of these bits are duplicated in the decode_config4.
398 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
399 * once FTLB has been disabled so undo what decode_config4 did.
400 */
401 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
402 cpu_data[0].tlbsizeftlbsets;
403 cpu_data[0].tlbsizeftlbsets = 0;
404 cpu_data[0].tlbsizeftlbways = 0;
405
406 return 1;
407 }
408
409 __setup("noftlb", ftlb_disable);
410
411
412 static inline void check_errata(void)
413 {
414 struct cpuinfo_mips *c = &current_cpu_data;
415
416 switch (current_cpu_type()) {
417 case CPU_34K:
418 /*
419 * Erratum "RPS May Cause Incorrect Instruction Execution"
420 * This code only handles VPE0, any SMP/RTOS code
421 * making use of VPE1 will be responsable for that VPE.
422 */
423 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
424 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
425 break;
426 default:
427 break;
428 }
429 }
430
431 void __init check_bugs32(void)
432 {
433 check_errata();
434 }
435
436 /*
437 * Probe whether cpu has config register by trying to play with
438 * alternate cache bit and see whether it matters.
439 * It's used by cpu_probe to distinguish between R3000A and R3081.
440 */
441 static inline int cpu_has_confreg(void)
442 {
443 #ifdef CONFIG_CPU_R3000
444 extern unsigned long r3k_cache_size(unsigned long);
445 unsigned long size1, size2;
446 unsigned long cfg = read_c0_conf();
447
448 size1 = r3k_cache_size(ST0_ISC);
449 write_c0_conf(cfg ^ R30XX_CONF_AC);
450 size2 = r3k_cache_size(ST0_ISC);
451 write_c0_conf(cfg);
452 return size1 != size2;
453 #else
454 return 0;
455 #endif
456 }
457
458 static inline void set_elf_platform(int cpu, const char *plat)
459 {
460 if (cpu == 0)
461 __elf_platform = plat;
462 }
463
464 static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
465 {
466 #ifdef __NEED_VMBITS_PROBE
467 write_c0_entryhi(0x3fffffffffffe000ULL);
468 back_to_back_c0_hazard();
469 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
470 #endif
471 }
472
473 static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
474 {
475 switch (isa) {
476 case MIPS_CPU_ISA_M64R2:
477 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
478 case MIPS_CPU_ISA_M64R1:
479 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
480 case MIPS_CPU_ISA_V:
481 c->isa_level |= MIPS_CPU_ISA_V;
482 case MIPS_CPU_ISA_IV:
483 c->isa_level |= MIPS_CPU_ISA_IV;
484 case MIPS_CPU_ISA_III:
485 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
486 break;
487
488 /* R6 incompatible with everything else */
489 case MIPS_CPU_ISA_M64R6:
490 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
491 case MIPS_CPU_ISA_M32R6:
492 c->isa_level |= MIPS_CPU_ISA_M32R6;
493 /* Break here so we don't add incompatible ISAs */
494 break;
495 case MIPS_CPU_ISA_M32R2:
496 c->isa_level |= MIPS_CPU_ISA_M32R2;
497 case MIPS_CPU_ISA_M32R1:
498 c->isa_level |= MIPS_CPU_ISA_M32R1;
499 case MIPS_CPU_ISA_II:
500 c->isa_level |= MIPS_CPU_ISA_II;
501 break;
502 }
503 }
504
505 static char unknown_isa[] = KERN_ERR \
506 "Unsupported ISA type, c0.config0: %d.";
507
508 static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
509 {
510
511 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
512
513 /*
514 * 0 = All TLBWR instructions go to FTLB
515 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
516 * FTLB and 1 goes to the VTLB.
517 * 2 = 7:1: As above with 7:1 ratio.
518 * 3 = 3:1: As above with 3:1 ratio.
519 *
520 * Use the linear midpoint as the probability threshold.
521 */
522 if (probability >= 12)
523 return 1;
524 else if (probability >= 6)
525 return 2;
526 else
527 /*
528 * So FTLB is less than 4 times bigger than VTLB.
529 * A 3:1 ratio can still be useful though.
530 */
531 return 3;
532 }
533
534 static int set_ftlb_enable(struct cpuinfo_mips *c, int enable)
535 {
536 unsigned int config;
537
538 /* It's implementation dependent how the FTLB can be enabled */
539 switch (c->cputype) {
540 case CPU_PROAPTIV:
541 case CPU_P5600:
542 case CPU_P6600:
543 /* proAptiv & related cores use Config6 to enable the FTLB */
544 config = read_c0_config6();
545 /* Clear the old probability value */
546 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
547 if (enable)
548 /* Enable FTLB */
549 write_c0_config6(config |
550 (calculate_ftlb_probability(c)
551 << MIPS_CONF6_FTLBP_SHIFT)
552 | MIPS_CONF6_FTLBEN);
553 else
554 /* Disable FTLB */
555 write_c0_config6(config & ~MIPS_CONF6_FTLBEN);
556 break;
557 case CPU_I6400:
558 /* I6400 & related cores use Config7 to configure FTLB */
559 config = read_c0_config7();
560 /* Clear the old probability value */
561 config &= ~(3 << MIPS_CONF7_FTLBP_SHIFT);
562 write_c0_config7(config | (calculate_ftlb_probability(c)
563 << MIPS_CONF7_FTLBP_SHIFT));
564 break;
565 case CPU_LOONGSON3:
566 /* Flush ITLB, DTLB, VTLB and FTLB */
567 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
568 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
569 /* Loongson-3 cores use Config6 to enable the FTLB */
570 config = read_c0_config6();
571 if (enable)
572 /* Enable FTLB */
573 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
574 else
575 /* Disable FTLB */
576 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
577 break;
578 default:
579 return 1;
580 }
581
582 return 0;
583 }
584
585 static inline unsigned int decode_config0(struct cpuinfo_mips *c)
586 {
587 unsigned int config0;
588 int isa, mt;
589
590 config0 = read_c0_config();
591
592 /*
593 * Look for Standard TLB or Dual VTLB and FTLB
594 */
595 mt = config0 & MIPS_CONF_MT;
596 if (mt == MIPS_CONF_MT_TLB)
597 c->options |= MIPS_CPU_TLB;
598 else if (mt == MIPS_CONF_MT_FTLB)
599 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
600
601 isa = (config0 & MIPS_CONF_AT) >> 13;
602 switch (isa) {
603 case 0:
604 switch ((config0 & MIPS_CONF_AR) >> 10) {
605 case 0:
606 set_isa(c, MIPS_CPU_ISA_M32R1);
607 break;
608 case 1:
609 set_isa(c, MIPS_CPU_ISA_M32R2);
610 break;
611 case 2:
612 set_isa(c, MIPS_CPU_ISA_M32R6);
613 break;
614 default:
615 goto unknown;
616 }
617 break;
618 case 2:
619 switch ((config0 & MIPS_CONF_AR) >> 10) {
620 case 0:
621 set_isa(c, MIPS_CPU_ISA_M64R1);
622 break;
623 case 1:
624 set_isa(c, MIPS_CPU_ISA_M64R2);
625 break;
626 case 2:
627 set_isa(c, MIPS_CPU_ISA_M64R6);
628 break;
629 default:
630 goto unknown;
631 }
632 break;
633 default:
634 goto unknown;
635 }
636
637 return config0 & MIPS_CONF_M;
638
639 unknown:
640 panic(unknown_isa, config0);
641 }
642
643 static inline unsigned int decode_config1(struct cpuinfo_mips *c)
644 {
645 unsigned int config1;
646
647 config1 = read_c0_config1();
648
649 if (config1 & MIPS_CONF1_MD)
650 c->ases |= MIPS_ASE_MDMX;
651 if (config1 & MIPS_CONF1_PC)
652 c->options |= MIPS_CPU_PERF;
653 if (config1 & MIPS_CONF1_WR)
654 c->options |= MIPS_CPU_WATCH;
655 if (config1 & MIPS_CONF1_CA)
656 c->ases |= MIPS_ASE_MIPS16;
657 if (config1 & MIPS_CONF1_EP)
658 c->options |= MIPS_CPU_EJTAG;
659 if (config1 & MIPS_CONF1_FP) {
660 c->options |= MIPS_CPU_FPU;
661 c->options |= MIPS_CPU_32FPR;
662 }
663 if (cpu_has_tlb) {
664 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
665 c->tlbsizevtlb = c->tlbsize;
666 c->tlbsizeftlbsets = 0;
667 }
668
669 return config1 & MIPS_CONF_M;
670 }
671
672 static inline unsigned int decode_config2(struct cpuinfo_mips *c)
673 {
674 unsigned int config2;
675
676 config2 = read_c0_config2();
677
678 if (config2 & MIPS_CONF2_SL)
679 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
680
681 return config2 & MIPS_CONF_M;
682 }
683
684 static inline unsigned int decode_config3(struct cpuinfo_mips *c)
685 {
686 unsigned int config3;
687
688 config3 = read_c0_config3();
689
690 if (config3 & MIPS_CONF3_SM) {
691 c->ases |= MIPS_ASE_SMARTMIPS;
692 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
693 }
694 if (config3 & MIPS_CONF3_RXI)
695 c->options |= MIPS_CPU_RIXI;
696 if (config3 & MIPS_CONF3_CTXTC)
697 c->options |= MIPS_CPU_CTXTC;
698 if (config3 & MIPS_CONF3_DSP)
699 c->ases |= MIPS_ASE_DSP;
700 if (config3 & MIPS_CONF3_DSP2P) {
701 c->ases |= MIPS_ASE_DSP2P;
702 if (cpu_has_mips_r6)
703 c->ases |= MIPS_ASE_DSP3;
704 }
705 if (config3 & MIPS_CONF3_VINT)
706 c->options |= MIPS_CPU_VINT;
707 if (config3 & MIPS_CONF3_VEIC)
708 c->options |= MIPS_CPU_VEIC;
709 if (config3 & MIPS_CONF3_LPA)
710 c->options |= MIPS_CPU_LPA;
711 if (config3 & MIPS_CONF3_MT)
712 c->ases |= MIPS_ASE_MIPSMT;
713 if (config3 & MIPS_CONF3_ULRI)
714 c->options |= MIPS_CPU_ULRI;
715 if (config3 & MIPS_CONF3_ISA)
716 c->options |= MIPS_CPU_MICROMIPS;
717 if (config3 & MIPS_CONF3_VZ)
718 c->ases |= MIPS_ASE_VZ;
719 if (config3 & MIPS_CONF3_SC)
720 c->options |= MIPS_CPU_SEGMENTS;
721 if (config3 & MIPS_CONF3_BI)
722 c->options |= MIPS_CPU_BADINSTR;
723 if (config3 & MIPS_CONF3_BP)
724 c->options |= MIPS_CPU_BADINSTRP;
725 if (config3 & MIPS_CONF3_MSA)
726 c->ases |= MIPS_ASE_MSA;
727 if (config3 & MIPS_CONF3_PW) {
728 c->htw_seq = 0;
729 c->options |= MIPS_CPU_HTW;
730 }
731 if (config3 & MIPS_CONF3_CDMM)
732 c->options |= MIPS_CPU_CDMM;
733 if (config3 & MIPS_CONF3_SP)
734 c->options |= MIPS_CPU_SP;
735
736 return config3 & MIPS_CONF_M;
737 }
738
739 static inline unsigned int decode_config4(struct cpuinfo_mips *c)
740 {
741 unsigned int config4;
742 unsigned int newcf4;
743 unsigned int mmuextdef;
744 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
745 unsigned long asid_mask;
746
747 config4 = read_c0_config4();
748
749 if (cpu_has_tlb) {
750 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
751 c->options |= MIPS_CPU_TLBINV;
752
753 /*
754 * R6 has dropped the MMUExtDef field from config4.
755 * On R6 the fields always describe the FTLB, and only if it is
756 * present according to Config.MT.
757 */
758 if (!cpu_has_mips_r6)
759 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
760 else if (cpu_has_ftlb)
761 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
762 else
763 mmuextdef = 0;
764
765 switch (mmuextdef) {
766 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
767 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
768 c->tlbsizevtlb = c->tlbsize;
769 break;
770 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
771 c->tlbsizevtlb +=
772 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
773 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
774 c->tlbsize = c->tlbsizevtlb;
775 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
776 /* fall through */
777 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
778 if (mips_ftlb_disabled)
779 break;
780 newcf4 = (config4 & ~ftlb_page) |
781 (page_size_ftlb(mmuextdef) <<
782 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
783 write_c0_config4(newcf4);
784 back_to_back_c0_hazard();
785 config4 = read_c0_config4();
786 if (config4 != newcf4) {
787 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
788 PAGE_SIZE, config4);
789 /* Switch FTLB off */
790 set_ftlb_enable(c, 0);
791 break;
792 }
793 c->tlbsizeftlbsets = 1 <<
794 ((config4 & MIPS_CONF4_FTLBSETS) >>
795 MIPS_CONF4_FTLBSETS_SHIFT);
796 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
797 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
798 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
799 mips_has_ftlb_configured = 1;
800 break;
801 }
802 }
803
804 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
805 >> MIPS_CONF4_KSCREXIST_SHIFT;
806
807 asid_mask = MIPS_ENTRYHI_ASID;
808 if (config4 & MIPS_CONF4_AE)
809 asid_mask |= MIPS_ENTRYHI_ASIDX;
810 set_cpu_asid_mask(c, asid_mask);
811
812 /*
813 * Warn if the computed ASID mask doesn't match the mask the kernel
814 * is built for. This may indicate either a serious problem or an
815 * easy optimisation opportunity, but either way should be addressed.
816 */
817 WARN_ON(asid_mask != cpu_asid_mask(c));
818
819 return config4 & MIPS_CONF_M;
820 }
821
822 static inline unsigned int decode_config5(struct cpuinfo_mips *c)
823 {
824 unsigned int config5;
825
826 config5 = read_c0_config5();
827 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
828 write_c0_config5(config5);
829
830 if (config5 & MIPS_CONF5_EVA)
831 c->options |= MIPS_CPU_EVA;
832 if (config5 & MIPS_CONF5_MRP)
833 c->options |= MIPS_CPU_MAAR;
834 if (config5 & MIPS_CONF5_LLB)
835 c->options |= MIPS_CPU_RW_LLB;
836 #ifdef CONFIG_XPA
837 if (config5 & MIPS_CONF5_MVH)
838 c->options |= MIPS_CPU_XPA;
839 #endif
840 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
841 c->options |= MIPS_CPU_VP;
842
843 return config5 & MIPS_CONF_M;
844 }
845
846 static void decode_configs(struct cpuinfo_mips *c)
847 {
848 int ok;
849
850 /* MIPS32 or MIPS64 compliant CPU. */
851 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
852 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
853
854 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
855
856 /* Enable FTLB if present and not disabled */
857 set_ftlb_enable(c, !mips_ftlb_disabled);
858
859 ok = decode_config0(c); /* Read Config registers. */
860 BUG_ON(!ok); /* Arch spec violation! */
861 if (ok)
862 ok = decode_config1(c);
863 if (ok)
864 ok = decode_config2(c);
865 if (ok)
866 ok = decode_config3(c);
867 if (ok)
868 ok = decode_config4(c);
869 if (ok)
870 ok = decode_config5(c);
871
872 /* Probe the EBase.WG bit */
873 if (cpu_has_mips_r2_r6) {
874 u64 ebase;
875 unsigned int status;
876
877 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
878 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
879 : (s32)read_c0_ebase();
880 if (ebase & MIPS_EBASE_WG) {
881 /* WG bit already set, we can avoid the clumsy probe */
882 c->options |= MIPS_CPU_EBASE_WG;
883 } else {
884 /* Its UNDEFINED to change EBase while BEV=0 */
885 status = read_c0_status();
886 write_c0_status(status | ST0_BEV);
887 irq_enable_hazard();
888 /*
889 * On pre-r6 cores, this may well clobber the upper bits
890 * of EBase. This is hard to avoid without potentially
891 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
892 */
893 if (cpu_has_mips64r6)
894 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
895 else
896 write_c0_ebase(ebase | MIPS_EBASE_WG);
897 back_to_back_c0_hazard();
898 /* Restore BEV */
899 write_c0_status(status);
900 if (read_c0_ebase() & MIPS_EBASE_WG) {
901 c->options |= MIPS_CPU_EBASE_WG;
902 write_c0_ebase(ebase);
903 }
904 }
905 }
906
907 mips_probe_watch_registers(c);
908
909 #ifndef CONFIG_MIPS_CPS
910 if (cpu_has_mips_r2_r6) {
911 c->core = get_ebase_cpunum();
912 if (cpu_has_mipsmt)
913 c->core >>= fls(core_nvpes()) - 1;
914 }
915 #endif
916 }
917
918 /*
919 * Probe for certain guest capabilities by writing config bits and reading back.
920 * Finally write back the original value.
921 */
922 #define probe_gc0_config(name, maxconf, bits) \
923 do { \
924 unsigned int tmp; \
925 tmp = read_gc0_##name(); \
926 write_gc0_##name(tmp | (bits)); \
927 back_to_back_c0_hazard(); \
928 maxconf = read_gc0_##name(); \
929 write_gc0_##name(tmp); \
930 } while (0)
931
932 /*
933 * Probe for dynamic guest capabilities by changing certain config bits and
934 * reading back to see if they change. Finally write back the original value.
935 */
936 #define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
937 do { \
938 maxconf = read_gc0_##name(); \
939 write_gc0_##name(maxconf ^ (bits)); \
940 back_to_back_c0_hazard(); \
941 dynconf = maxconf ^ read_gc0_##name(); \
942 write_gc0_##name(maxconf); \
943 maxconf |= dynconf; \
944 } while (0)
945
946 static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
947 {
948 unsigned int config0;
949
950 probe_gc0_config(config, config0, MIPS_CONF_M);
951
952 if (config0 & MIPS_CONF_M)
953 c->guest.conf |= BIT(1);
954 return config0 & MIPS_CONF_M;
955 }
956
957 static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
958 {
959 unsigned int config1, config1_dyn;
960
961 probe_gc0_config_dyn(config1, config1, config1_dyn,
962 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
963 MIPS_CONF1_FP);
964
965 if (config1 & MIPS_CONF1_FP)
966 c->guest.options |= MIPS_CPU_FPU;
967 if (config1_dyn & MIPS_CONF1_FP)
968 c->guest.options_dyn |= MIPS_CPU_FPU;
969
970 if (config1 & MIPS_CONF1_WR)
971 c->guest.options |= MIPS_CPU_WATCH;
972 if (config1_dyn & MIPS_CONF1_WR)
973 c->guest.options_dyn |= MIPS_CPU_WATCH;
974
975 if (config1 & MIPS_CONF1_PC)
976 c->guest.options |= MIPS_CPU_PERF;
977 if (config1_dyn & MIPS_CONF1_PC)
978 c->guest.options_dyn |= MIPS_CPU_PERF;
979
980 if (config1 & MIPS_CONF_M)
981 c->guest.conf |= BIT(2);
982 return config1 & MIPS_CONF_M;
983 }
984
985 static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
986 {
987 unsigned int config2;
988
989 probe_gc0_config(config2, config2, MIPS_CONF_M);
990
991 if (config2 & MIPS_CONF_M)
992 c->guest.conf |= BIT(3);
993 return config2 & MIPS_CONF_M;
994 }
995
996 static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
997 {
998 unsigned int config3, config3_dyn;
999
1000 probe_gc0_config_dyn(config3, config3, config3_dyn,
1001 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_CTXTC);
1002
1003 if (config3 & MIPS_CONF3_CTXTC)
1004 c->guest.options |= MIPS_CPU_CTXTC;
1005 if (config3_dyn & MIPS_CONF3_CTXTC)
1006 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1007
1008 if (config3 & MIPS_CONF3_PW)
1009 c->guest.options |= MIPS_CPU_HTW;
1010
1011 if (config3 & MIPS_CONF3_SC)
1012 c->guest.options |= MIPS_CPU_SEGMENTS;
1013
1014 if (config3 & MIPS_CONF3_BI)
1015 c->guest.options |= MIPS_CPU_BADINSTR;
1016 if (config3 & MIPS_CONF3_BP)
1017 c->guest.options |= MIPS_CPU_BADINSTRP;
1018
1019 if (config3 & MIPS_CONF3_MSA)
1020 c->guest.ases |= MIPS_ASE_MSA;
1021 if (config3_dyn & MIPS_CONF3_MSA)
1022 c->guest.ases_dyn |= MIPS_ASE_MSA;
1023
1024 if (config3 & MIPS_CONF_M)
1025 c->guest.conf |= BIT(4);
1026 return config3 & MIPS_CONF_M;
1027 }
1028
1029 static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1030 {
1031 unsigned int config4;
1032
1033 probe_gc0_config(config4, config4,
1034 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1035
1036 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1037 >> MIPS_CONF4_KSCREXIST_SHIFT;
1038
1039 if (config4 & MIPS_CONF_M)
1040 c->guest.conf |= BIT(5);
1041 return config4 & MIPS_CONF_M;
1042 }
1043
1044 static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1045 {
1046 unsigned int config5, config5_dyn;
1047
1048 probe_gc0_config_dyn(config5, config5, config5_dyn,
1049 MIPS_CONF_M | MIPS_CONF5_MRP);
1050
1051 if (config5 & MIPS_CONF5_MRP)
1052 c->guest.options |= MIPS_CPU_MAAR;
1053 if (config5_dyn & MIPS_CONF5_MRP)
1054 c->guest.options_dyn |= MIPS_CPU_MAAR;
1055
1056 if (config5 & MIPS_CONF5_LLB)
1057 c->guest.options |= MIPS_CPU_RW_LLB;
1058
1059 if (config5 & MIPS_CONF_M)
1060 c->guest.conf |= BIT(6);
1061 return config5 & MIPS_CONF_M;
1062 }
1063
1064 static inline void decode_guest_configs(struct cpuinfo_mips *c)
1065 {
1066 unsigned int ok;
1067
1068 ok = decode_guest_config0(c);
1069 if (ok)
1070 ok = decode_guest_config1(c);
1071 if (ok)
1072 ok = decode_guest_config2(c);
1073 if (ok)
1074 ok = decode_guest_config3(c);
1075 if (ok)
1076 ok = decode_guest_config4(c);
1077 if (ok)
1078 decode_guest_config5(c);
1079 }
1080
1081 static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1082 {
1083 unsigned int guestctl0, temp;
1084
1085 guestctl0 = read_c0_guestctl0();
1086
1087 if (guestctl0 & MIPS_GCTL0_G0E)
1088 c->options |= MIPS_CPU_GUESTCTL0EXT;
1089 if (guestctl0 & MIPS_GCTL0_G1)
1090 c->options |= MIPS_CPU_GUESTCTL1;
1091 if (guestctl0 & MIPS_GCTL0_G2)
1092 c->options |= MIPS_CPU_GUESTCTL2;
1093 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1094 c->options |= MIPS_CPU_GUESTID;
1095
1096 /*
1097 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1098 * first, otherwise all data accesses will be fully virtualised
1099 * as if they were performed by guest mode.
1100 */
1101 write_c0_guestctl1(0);
1102 tlbw_use_hazard();
1103
1104 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1105 back_to_back_c0_hazard();
1106 temp = read_c0_guestctl0();
1107
1108 if (temp & MIPS_GCTL0_DRG) {
1109 write_c0_guestctl0(guestctl0);
1110 c->options |= MIPS_CPU_DRG;
1111 }
1112 }
1113 }
1114
1115 static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1116 {
1117 if (cpu_has_guestid) {
1118 /* determine the number of bits of GuestID available */
1119 write_c0_guestctl1(MIPS_GCTL1_ID);
1120 back_to_back_c0_hazard();
1121 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1122 >> MIPS_GCTL1_ID_SHIFT;
1123 write_c0_guestctl1(0);
1124 }
1125 }
1126
1127 static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1128 {
1129 /* determine the number of bits of GTOffset available */
1130 write_c0_gtoffset(0xffffffff);
1131 back_to_back_c0_hazard();
1132 c->gtoffset_mask = read_c0_gtoffset();
1133 write_c0_gtoffset(0);
1134 }
1135
1136 static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1137 {
1138 cpu_probe_guestctl0(c);
1139 if (cpu_has_guestctl1)
1140 cpu_probe_guestctl1(c);
1141
1142 cpu_probe_gtoffset(c);
1143
1144 decode_guest_configs(c);
1145 }
1146
1147 #define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1148 | MIPS_CPU_COUNTER)
1149
1150 static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1151 {
1152 switch (c->processor_id & PRID_IMP_MASK) {
1153 case PRID_IMP_R2000:
1154 c->cputype = CPU_R2000;
1155 __cpu_name[cpu] = "R2000";
1156 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1157 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1158 MIPS_CPU_NOFPUEX;
1159 if (__cpu_has_fpu())
1160 c->options |= MIPS_CPU_FPU;
1161 c->tlbsize = 64;
1162 break;
1163 case PRID_IMP_R3000:
1164 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1165 if (cpu_has_confreg()) {
1166 c->cputype = CPU_R3081E;
1167 __cpu_name[cpu] = "R3081";
1168 } else {
1169 c->cputype = CPU_R3000A;
1170 __cpu_name[cpu] = "R3000A";
1171 }
1172 } else {
1173 c->cputype = CPU_R3000;
1174 __cpu_name[cpu] = "R3000";
1175 }
1176 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1177 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1178 MIPS_CPU_NOFPUEX;
1179 if (__cpu_has_fpu())
1180 c->options |= MIPS_CPU_FPU;
1181 c->tlbsize = 64;
1182 break;
1183 case PRID_IMP_R4000:
1184 if (read_c0_config() & CONF_SC) {
1185 if ((c->processor_id & PRID_REV_MASK) >=
1186 PRID_REV_R4400) {
1187 c->cputype = CPU_R4400PC;
1188 __cpu_name[cpu] = "R4400PC";
1189 } else {
1190 c->cputype = CPU_R4000PC;
1191 __cpu_name[cpu] = "R4000PC";
1192 }
1193 } else {
1194 int cca = read_c0_config() & CONF_CM_CMASK;
1195 int mc;
1196
1197 /*
1198 * SC and MC versions can't be reliably told apart,
1199 * but only the latter support coherent caching
1200 * modes so assume the firmware has set the KSEG0
1201 * coherency attribute reasonably (if uncached, we
1202 * assume SC).
1203 */
1204 switch (cca) {
1205 case CONF_CM_CACHABLE_CE:
1206 case CONF_CM_CACHABLE_COW:
1207 case CONF_CM_CACHABLE_CUW:
1208 mc = 1;
1209 break;
1210 default:
1211 mc = 0;
1212 break;
1213 }
1214 if ((c->processor_id & PRID_REV_MASK) >=
1215 PRID_REV_R4400) {
1216 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1217 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1218 } else {
1219 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1220 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1221 }
1222 }
1223
1224 set_isa(c, MIPS_CPU_ISA_III);
1225 c->fpu_msk31 |= FPU_CSR_CONDX;
1226 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1227 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1228 MIPS_CPU_LLSC;
1229 c->tlbsize = 48;
1230 break;
1231 case PRID_IMP_VR41XX:
1232 set_isa(c, MIPS_CPU_ISA_III);
1233 c->fpu_msk31 |= FPU_CSR_CONDX;
1234 c->options = R4K_OPTS;
1235 c->tlbsize = 32;
1236 switch (c->processor_id & 0xf0) {
1237 case PRID_REV_VR4111:
1238 c->cputype = CPU_VR4111;
1239 __cpu_name[cpu] = "NEC VR4111";
1240 break;
1241 case PRID_REV_VR4121:
1242 c->cputype = CPU_VR4121;
1243 __cpu_name[cpu] = "NEC VR4121";
1244 break;
1245 case PRID_REV_VR4122:
1246 if ((c->processor_id & 0xf) < 0x3) {
1247 c->cputype = CPU_VR4122;
1248 __cpu_name[cpu] = "NEC VR4122";
1249 } else {
1250 c->cputype = CPU_VR4181A;
1251 __cpu_name[cpu] = "NEC VR4181A";
1252 }
1253 break;
1254 case PRID_REV_VR4130:
1255 if ((c->processor_id & 0xf) < 0x4) {
1256 c->cputype = CPU_VR4131;
1257 __cpu_name[cpu] = "NEC VR4131";
1258 } else {
1259 c->cputype = CPU_VR4133;
1260 c->options |= MIPS_CPU_LLSC;
1261 __cpu_name[cpu] = "NEC VR4133";
1262 }
1263 break;
1264 default:
1265 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1266 c->cputype = CPU_VR41XX;
1267 __cpu_name[cpu] = "NEC Vr41xx";
1268 break;
1269 }
1270 break;
1271 case PRID_IMP_R4300:
1272 c->cputype = CPU_R4300;
1273 __cpu_name[cpu] = "R4300";
1274 set_isa(c, MIPS_CPU_ISA_III);
1275 c->fpu_msk31 |= FPU_CSR_CONDX;
1276 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1277 MIPS_CPU_LLSC;
1278 c->tlbsize = 32;
1279 break;
1280 case PRID_IMP_R4600:
1281 c->cputype = CPU_R4600;
1282 __cpu_name[cpu] = "R4600";
1283 set_isa(c, MIPS_CPU_ISA_III);
1284 c->fpu_msk31 |= FPU_CSR_CONDX;
1285 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1286 MIPS_CPU_LLSC;
1287 c->tlbsize = 48;
1288 break;
1289 #if 0
1290 case PRID_IMP_R4650:
1291 /*
1292 * This processor doesn't have an MMU, so it's not
1293 * "real easy" to run Linux on it. It is left purely
1294 * for documentation. Commented out because it shares
1295 * it's c0_prid id number with the TX3900.
1296 */
1297 c->cputype = CPU_R4650;
1298 __cpu_name[cpu] = "R4650";
1299 set_isa(c, MIPS_CPU_ISA_III);
1300 c->fpu_msk31 |= FPU_CSR_CONDX;
1301 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1302 c->tlbsize = 48;
1303 break;
1304 #endif
1305 case PRID_IMP_TX39:
1306 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1307 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1308
1309 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1310 c->cputype = CPU_TX3927;
1311 __cpu_name[cpu] = "TX3927";
1312 c->tlbsize = 64;
1313 } else {
1314 switch (c->processor_id & PRID_REV_MASK) {
1315 case PRID_REV_TX3912:
1316 c->cputype = CPU_TX3912;
1317 __cpu_name[cpu] = "TX3912";
1318 c->tlbsize = 32;
1319 break;
1320 case PRID_REV_TX3922:
1321 c->cputype = CPU_TX3922;
1322 __cpu_name[cpu] = "TX3922";
1323 c->tlbsize = 64;
1324 break;
1325 }
1326 }
1327 break;
1328 case PRID_IMP_R4700:
1329 c->cputype = CPU_R4700;
1330 __cpu_name[cpu] = "R4700";
1331 set_isa(c, MIPS_CPU_ISA_III);
1332 c->fpu_msk31 |= FPU_CSR_CONDX;
1333 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1334 MIPS_CPU_LLSC;
1335 c->tlbsize = 48;
1336 break;
1337 case PRID_IMP_TX49:
1338 c->cputype = CPU_TX49XX;
1339 __cpu_name[cpu] = "R49XX";
1340 set_isa(c, MIPS_CPU_ISA_III);
1341 c->fpu_msk31 |= FPU_CSR_CONDX;
1342 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1343 if (!(c->processor_id & 0x08))
1344 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1345 c->tlbsize = 48;
1346 break;
1347 case PRID_IMP_R5000:
1348 c->cputype = CPU_R5000;
1349 __cpu_name[cpu] = "R5000";
1350 set_isa(c, MIPS_CPU_ISA_IV);
1351 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1352 MIPS_CPU_LLSC;
1353 c->tlbsize = 48;
1354 break;
1355 case PRID_IMP_R5432:
1356 c->cputype = CPU_R5432;
1357 __cpu_name[cpu] = "R5432";
1358 set_isa(c, MIPS_CPU_ISA_IV);
1359 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1360 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1361 c->tlbsize = 48;
1362 break;
1363 case PRID_IMP_R5500:
1364 c->cputype = CPU_R5500;
1365 __cpu_name[cpu] = "R5500";
1366 set_isa(c, MIPS_CPU_ISA_IV);
1367 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1368 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1369 c->tlbsize = 48;
1370 break;
1371 case PRID_IMP_NEVADA:
1372 c->cputype = CPU_NEVADA;
1373 __cpu_name[cpu] = "Nevada";
1374 set_isa(c, MIPS_CPU_ISA_IV);
1375 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1376 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1377 c->tlbsize = 48;
1378 break;
1379 case PRID_IMP_R6000:
1380 c->cputype = CPU_R6000;
1381 __cpu_name[cpu] = "R6000";
1382 set_isa(c, MIPS_CPU_ISA_II);
1383 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1384 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1385 MIPS_CPU_LLSC;
1386 c->tlbsize = 32;
1387 break;
1388 case PRID_IMP_R6000A:
1389 c->cputype = CPU_R6000A;
1390 __cpu_name[cpu] = "R6000A";
1391 set_isa(c, MIPS_CPU_ISA_II);
1392 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1393 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1394 MIPS_CPU_LLSC;
1395 c->tlbsize = 32;
1396 break;
1397 case PRID_IMP_RM7000:
1398 c->cputype = CPU_RM7000;
1399 __cpu_name[cpu] = "RM7000";
1400 set_isa(c, MIPS_CPU_ISA_IV);
1401 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1402 MIPS_CPU_LLSC;
1403 /*
1404 * Undocumented RM7000: Bit 29 in the info register of
1405 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1406 * entries.
1407 *
1408 * 29 1 => 64 entry JTLB
1409 * 0 => 48 entry JTLB
1410 */
1411 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1412 break;
1413 case PRID_IMP_R8000:
1414 c->cputype = CPU_R8000;
1415 __cpu_name[cpu] = "RM8000";
1416 set_isa(c, MIPS_CPU_ISA_IV);
1417 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1418 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1419 MIPS_CPU_LLSC;
1420 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
1421 break;
1422 case PRID_IMP_R10000:
1423 c->cputype = CPU_R10000;
1424 __cpu_name[cpu] = "R10000";
1425 set_isa(c, MIPS_CPU_ISA_IV);
1426 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1427 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1428 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1429 MIPS_CPU_LLSC;
1430 c->tlbsize = 64;
1431 break;
1432 case PRID_IMP_R12000:
1433 c->cputype = CPU_R12000;
1434 __cpu_name[cpu] = "R12000";
1435 set_isa(c, MIPS_CPU_ISA_IV);
1436 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1437 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1438 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1439 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1440 c->tlbsize = 64;
1441 break;
1442 case PRID_IMP_R14000:
1443 if (((c->processor_id >> 4) & 0x0f) > 2) {
1444 c->cputype = CPU_R16000;
1445 __cpu_name[cpu] = "R16000";
1446 } else {
1447 c->cputype = CPU_R14000;
1448 __cpu_name[cpu] = "R14000";
1449 }
1450 set_isa(c, MIPS_CPU_ISA_IV);
1451 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1452 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1453 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1454 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1455 c->tlbsize = 64;
1456 break;
1457 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1458 switch (c->processor_id & PRID_REV_MASK) {
1459 case PRID_REV_LOONGSON2E:
1460 c->cputype = CPU_LOONGSON2;
1461 __cpu_name[cpu] = "ICT Loongson-2";
1462 set_elf_platform(cpu, "loongson2e");
1463 set_isa(c, MIPS_CPU_ISA_III);
1464 c->fpu_msk31 |= FPU_CSR_CONDX;
1465 break;
1466 case PRID_REV_LOONGSON2F:
1467 c->cputype = CPU_LOONGSON2;
1468 __cpu_name[cpu] = "ICT Loongson-2";
1469 set_elf_platform(cpu, "loongson2f");
1470 set_isa(c, MIPS_CPU_ISA_III);
1471 c->fpu_msk31 |= FPU_CSR_CONDX;
1472 break;
1473 case PRID_REV_LOONGSON3A_R1:
1474 c->cputype = CPU_LOONGSON3;
1475 __cpu_name[cpu] = "ICT Loongson-3";
1476 set_elf_platform(cpu, "loongson3a");
1477 set_isa(c, MIPS_CPU_ISA_M64R1);
1478 break;
1479 case PRID_REV_LOONGSON3B_R1:
1480 case PRID_REV_LOONGSON3B_R2:
1481 c->cputype = CPU_LOONGSON3;
1482 __cpu_name[cpu] = "ICT Loongson-3";
1483 set_elf_platform(cpu, "loongson3b");
1484 set_isa(c, MIPS_CPU_ISA_M64R1);
1485 break;
1486 }
1487
1488 c->options = R4K_OPTS |
1489 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1490 MIPS_CPU_32FPR;
1491 c->tlbsize = 64;
1492 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1493 break;
1494 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1495 decode_configs(c);
1496
1497 c->cputype = CPU_LOONGSON1;
1498
1499 switch (c->processor_id & PRID_REV_MASK) {
1500 case PRID_REV_LOONGSON1B:
1501 __cpu_name[cpu] = "Loongson 1B";
1502 break;
1503 }
1504
1505 break;
1506 }
1507 }
1508
1509 static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1510 {
1511 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1512 switch (c->processor_id & PRID_IMP_MASK) {
1513 case PRID_IMP_QEMU_GENERIC:
1514 c->writecombine = _CACHE_UNCACHED;
1515 c->cputype = CPU_QEMU_GENERIC;
1516 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1517 break;
1518 case PRID_IMP_4KC:
1519 c->cputype = CPU_4KC;
1520 c->writecombine = _CACHE_UNCACHED;
1521 __cpu_name[cpu] = "MIPS 4Kc";
1522 break;
1523 case PRID_IMP_4KEC:
1524 case PRID_IMP_4KECR2:
1525 c->cputype = CPU_4KEC;
1526 c->writecombine = _CACHE_UNCACHED;
1527 __cpu_name[cpu] = "MIPS 4KEc";
1528 break;
1529 case PRID_IMP_4KSC:
1530 case PRID_IMP_4KSD:
1531 c->cputype = CPU_4KSC;
1532 c->writecombine = _CACHE_UNCACHED;
1533 __cpu_name[cpu] = "MIPS 4KSc";
1534 break;
1535 case PRID_IMP_5KC:
1536 c->cputype = CPU_5KC;
1537 c->writecombine = _CACHE_UNCACHED;
1538 __cpu_name[cpu] = "MIPS 5Kc";
1539 break;
1540 case PRID_IMP_5KE:
1541 c->cputype = CPU_5KE;
1542 c->writecombine = _CACHE_UNCACHED;
1543 __cpu_name[cpu] = "MIPS 5KE";
1544 break;
1545 case PRID_IMP_20KC:
1546 c->cputype = CPU_20KC;
1547 c->writecombine = _CACHE_UNCACHED;
1548 __cpu_name[cpu] = "MIPS 20Kc";
1549 break;
1550 case PRID_IMP_24K:
1551 c->cputype = CPU_24K;
1552 c->writecombine = _CACHE_UNCACHED;
1553 __cpu_name[cpu] = "MIPS 24Kc";
1554 break;
1555 case PRID_IMP_24KE:
1556 c->cputype = CPU_24K;
1557 c->writecombine = _CACHE_UNCACHED;
1558 __cpu_name[cpu] = "MIPS 24KEc";
1559 break;
1560 case PRID_IMP_25KF:
1561 c->cputype = CPU_25KF;
1562 c->writecombine = _CACHE_UNCACHED;
1563 __cpu_name[cpu] = "MIPS 25Kc";
1564 break;
1565 case PRID_IMP_34K:
1566 c->cputype = CPU_34K;
1567 c->writecombine = _CACHE_UNCACHED;
1568 __cpu_name[cpu] = "MIPS 34Kc";
1569 break;
1570 case PRID_IMP_74K:
1571 c->cputype = CPU_74K;
1572 c->writecombine = _CACHE_UNCACHED;
1573 __cpu_name[cpu] = "MIPS 74Kc";
1574 break;
1575 case PRID_IMP_M14KC:
1576 c->cputype = CPU_M14KC;
1577 c->writecombine = _CACHE_UNCACHED;
1578 __cpu_name[cpu] = "MIPS M14Kc";
1579 break;
1580 case PRID_IMP_M14KEC:
1581 c->cputype = CPU_M14KEC;
1582 c->writecombine = _CACHE_UNCACHED;
1583 __cpu_name[cpu] = "MIPS M14KEc";
1584 break;
1585 case PRID_IMP_1004K:
1586 c->cputype = CPU_1004K;
1587 c->writecombine = _CACHE_UNCACHED;
1588 __cpu_name[cpu] = "MIPS 1004Kc";
1589 break;
1590 case PRID_IMP_1074K:
1591 c->cputype = CPU_1074K;
1592 c->writecombine = _CACHE_UNCACHED;
1593 __cpu_name[cpu] = "MIPS 1074Kc";
1594 break;
1595 case PRID_IMP_INTERAPTIV_UP:
1596 c->cputype = CPU_INTERAPTIV;
1597 __cpu_name[cpu] = "MIPS interAptiv";
1598 break;
1599 case PRID_IMP_INTERAPTIV_MP:
1600 c->cputype = CPU_INTERAPTIV;
1601 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1602 break;
1603 case PRID_IMP_PROAPTIV_UP:
1604 c->cputype = CPU_PROAPTIV;
1605 __cpu_name[cpu] = "MIPS proAptiv";
1606 break;
1607 case PRID_IMP_PROAPTIV_MP:
1608 c->cputype = CPU_PROAPTIV;
1609 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1610 break;
1611 case PRID_IMP_P5600:
1612 c->cputype = CPU_P5600;
1613 __cpu_name[cpu] = "MIPS P5600";
1614 break;
1615 case PRID_IMP_P6600:
1616 c->cputype = CPU_P6600;
1617 __cpu_name[cpu] = "MIPS P6600";
1618 break;
1619 case PRID_IMP_I6400:
1620 c->cputype = CPU_I6400;
1621 __cpu_name[cpu] = "MIPS I6400";
1622 break;
1623 case PRID_IMP_M5150:
1624 c->cputype = CPU_M5150;
1625 __cpu_name[cpu] = "MIPS M5150";
1626 break;
1627 case PRID_IMP_M6250:
1628 c->cputype = CPU_M6250;
1629 __cpu_name[cpu] = "MIPS M6250";
1630 break;
1631 }
1632
1633 decode_configs(c);
1634
1635 spram_config();
1636 }
1637
1638 static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1639 {
1640 decode_configs(c);
1641 switch (c->processor_id & PRID_IMP_MASK) {
1642 case PRID_IMP_AU1_REV1:
1643 case PRID_IMP_AU1_REV2:
1644 c->cputype = CPU_ALCHEMY;
1645 switch ((c->processor_id >> 24) & 0xff) {
1646 case 0:
1647 __cpu_name[cpu] = "Au1000";
1648 break;
1649 case 1:
1650 __cpu_name[cpu] = "Au1500";
1651 break;
1652 case 2:
1653 __cpu_name[cpu] = "Au1100";
1654 break;
1655 case 3:
1656 __cpu_name[cpu] = "Au1550";
1657 break;
1658 case 4:
1659 __cpu_name[cpu] = "Au1200";
1660 if ((c->processor_id & PRID_REV_MASK) == 2)
1661 __cpu_name[cpu] = "Au1250";
1662 break;
1663 case 5:
1664 __cpu_name[cpu] = "Au1210";
1665 break;
1666 default:
1667 __cpu_name[cpu] = "Au1xxx";
1668 break;
1669 }
1670 break;
1671 }
1672 }
1673
1674 static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1675 {
1676 decode_configs(c);
1677
1678 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1679 switch (c->processor_id & PRID_IMP_MASK) {
1680 case PRID_IMP_SB1:
1681 c->cputype = CPU_SB1;
1682 __cpu_name[cpu] = "SiByte SB1";
1683 /* FPU in pass1 is known to have issues. */
1684 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1685 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1686 break;
1687 case PRID_IMP_SB1A:
1688 c->cputype = CPU_SB1A;
1689 __cpu_name[cpu] = "SiByte SB1A";
1690 break;
1691 }
1692 }
1693
1694 static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1695 {
1696 decode_configs(c);
1697 switch (c->processor_id & PRID_IMP_MASK) {
1698 case PRID_IMP_SR71000:
1699 c->cputype = CPU_SR71000;
1700 __cpu_name[cpu] = "Sandcraft SR71000";
1701 c->scache.ways = 8;
1702 c->tlbsize = 64;
1703 break;
1704 }
1705 }
1706
1707 static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1708 {
1709 decode_configs(c);
1710 switch (c->processor_id & PRID_IMP_MASK) {
1711 case PRID_IMP_PR4450:
1712 c->cputype = CPU_PR4450;
1713 __cpu_name[cpu] = "Philips PR4450";
1714 set_isa(c, MIPS_CPU_ISA_M32R1);
1715 break;
1716 }
1717 }
1718
1719 static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1720 {
1721 decode_configs(c);
1722 switch (c->processor_id & PRID_IMP_MASK) {
1723 case PRID_IMP_BMIPS32_REV4:
1724 case PRID_IMP_BMIPS32_REV8:
1725 c->cputype = CPU_BMIPS32;
1726 __cpu_name[cpu] = "Broadcom BMIPS32";
1727 set_elf_platform(cpu, "bmips32");
1728 break;
1729 case PRID_IMP_BMIPS3300:
1730 case PRID_IMP_BMIPS3300_ALT:
1731 case PRID_IMP_BMIPS3300_BUG:
1732 c->cputype = CPU_BMIPS3300;
1733 __cpu_name[cpu] = "Broadcom BMIPS3300";
1734 set_elf_platform(cpu, "bmips3300");
1735 break;
1736 case PRID_IMP_BMIPS43XX: {
1737 int rev = c->processor_id & PRID_REV_MASK;
1738
1739 if (rev >= PRID_REV_BMIPS4380_LO &&
1740 rev <= PRID_REV_BMIPS4380_HI) {
1741 c->cputype = CPU_BMIPS4380;
1742 __cpu_name[cpu] = "Broadcom BMIPS4380";
1743 set_elf_platform(cpu, "bmips4380");
1744 c->options |= MIPS_CPU_RIXI;
1745 } else {
1746 c->cputype = CPU_BMIPS4350;
1747 __cpu_name[cpu] = "Broadcom BMIPS4350";
1748 set_elf_platform(cpu, "bmips4350");
1749 }
1750 break;
1751 }
1752 case PRID_IMP_BMIPS5000:
1753 case PRID_IMP_BMIPS5200:
1754 c->cputype = CPU_BMIPS5000;
1755 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1756 __cpu_name[cpu] = "Broadcom BMIPS5200";
1757 else
1758 __cpu_name[cpu] = "Broadcom BMIPS5000";
1759 set_elf_platform(cpu, "bmips5000");
1760 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1761 break;
1762 }
1763 }
1764
1765 static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1766 {
1767 decode_configs(c);
1768 switch (c->processor_id & PRID_IMP_MASK) {
1769 case PRID_IMP_CAVIUM_CN38XX:
1770 case PRID_IMP_CAVIUM_CN31XX:
1771 case PRID_IMP_CAVIUM_CN30XX:
1772 c->cputype = CPU_CAVIUM_OCTEON;
1773 __cpu_name[cpu] = "Cavium Octeon";
1774 goto platform;
1775 case PRID_IMP_CAVIUM_CN58XX:
1776 case PRID_IMP_CAVIUM_CN56XX:
1777 case PRID_IMP_CAVIUM_CN50XX:
1778 case PRID_IMP_CAVIUM_CN52XX:
1779 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1780 __cpu_name[cpu] = "Cavium Octeon+";
1781 platform:
1782 set_elf_platform(cpu, "octeon");
1783 break;
1784 case PRID_IMP_CAVIUM_CN61XX:
1785 case PRID_IMP_CAVIUM_CN63XX:
1786 case PRID_IMP_CAVIUM_CN66XX:
1787 case PRID_IMP_CAVIUM_CN68XX:
1788 case PRID_IMP_CAVIUM_CNF71XX:
1789 c->cputype = CPU_CAVIUM_OCTEON2;
1790 __cpu_name[cpu] = "Cavium Octeon II";
1791 set_elf_platform(cpu, "octeon2");
1792 break;
1793 case PRID_IMP_CAVIUM_CN70XX:
1794 case PRID_IMP_CAVIUM_CN73XX:
1795 case PRID_IMP_CAVIUM_CNF75XX:
1796 case PRID_IMP_CAVIUM_CN78XX:
1797 c->cputype = CPU_CAVIUM_OCTEON3;
1798 __cpu_name[cpu] = "Cavium Octeon III";
1799 set_elf_platform(cpu, "octeon3");
1800 break;
1801 default:
1802 printk(KERN_INFO "Unknown Octeon chip!\n");
1803 c->cputype = CPU_UNKNOWN;
1804 break;
1805 }
1806 }
1807
1808 static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1809 {
1810 switch (c->processor_id & PRID_IMP_MASK) {
1811 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1812 switch (c->processor_id & PRID_REV_MASK) {
1813 case PRID_REV_LOONGSON3A_R2:
1814 c->cputype = CPU_LOONGSON3;
1815 __cpu_name[cpu] = "ICT Loongson-3";
1816 set_elf_platform(cpu, "loongson3a");
1817 set_isa(c, MIPS_CPU_ISA_M64R2);
1818 break;
1819 }
1820
1821 decode_configs(c);
1822 c->options |= MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1823 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1824 break;
1825 default:
1826 panic("Unknown Loongson Processor ID!");
1827 break;
1828 }
1829 }
1830
1831 static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1832 {
1833 decode_configs(c);
1834 /* JZRISC does not implement the CP0 counter. */
1835 c->options &= ~MIPS_CPU_COUNTER;
1836 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1837 switch (c->processor_id & PRID_IMP_MASK) {
1838 case PRID_IMP_JZRISC:
1839 c->cputype = CPU_JZRISC;
1840 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1841 __cpu_name[cpu] = "Ingenic JZRISC";
1842 break;
1843 default:
1844 panic("Unknown Ingenic Processor ID!");
1845 break;
1846 }
1847 }
1848
1849 static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1850 {
1851 decode_configs(c);
1852
1853 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1854 c->cputype = CPU_ALCHEMY;
1855 __cpu_name[cpu] = "Au1300";
1856 /* following stuff is not for Alchemy */
1857 return;
1858 }
1859
1860 c->options = (MIPS_CPU_TLB |
1861 MIPS_CPU_4KEX |
1862 MIPS_CPU_COUNTER |
1863 MIPS_CPU_DIVEC |
1864 MIPS_CPU_WATCH |
1865 MIPS_CPU_EJTAG |
1866 MIPS_CPU_LLSC);
1867
1868 switch (c->processor_id & PRID_IMP_MASK) {
1869 case PRID_IMP_NETLOGIC_XLP2XX:
1870 case PRID_IMP_NETLOGIC_XLP9XX:
1871 case PRID_IMP_NETLOGIC_XLP5XX:
1872 c->cputype = CPU_XLP;
1873 __cpu_name[cpu] = "Broadcom XLPII";
1874 break;
1875
1876 case PRID_IMP_NETLOGIC_XLP8XX:
1877 case PRID_IMP_NETLOGIC_XLP3XX:
1878 c->cputype = CPU_XLP;
1879 __cpu_name[cpu] = "Netlogic XLP";
1880 break;
1881
1882 case PRID_IMP_NETLOGIC_XLR732:
1883 case PRID_IMP_NETLOGIC_XLR716:
1884 case PRID_IMP_NETLOGIC_XLR532:
1885 case PRID_IMP_NETLOGIC_XLR308:
1886 case PRID_IMP_NETLOGIC_XLR532C:
1887 case PRID_IMP_NETLOGIC_XLR516C:
1888 case PRID_IMP_NETLOGIC_XLR508C:
1889 case PRID_IMP_NETLOGIC_XLR308C:
1890 c->cputype = CPU_XLR;
1891 __cpu_name[cpu] = "Netlogic XLR";
1892 break;
1893
1894 case PRID_IMP_NETLOGIC_XLS608:
1895 case PRID_IMP_NETLOGIC_XLS408:
1896 case PRID_IMP_NETLOGIC_XLS404:
1897 case PRID_IMP_NETLOGIC_XLS208:
1898 case PRID_IMP_NETLOGIC_XLS204:
1899 case PRID_IMP_NETLOGIC_XLS108:
1900 case PRID_IMP_NETLOGIC_XLS104:
1901 case PRID_IMP_NETLOGIC_XLS616B:
1902 case PRID_IMP_NETLOGIC_XLS608B:
1903 case PRID_IMP_NETLOGIC_XLS416B:
1904 case PRID_IMP_NETLOGIC_XLS412B:
1905 case PRID_IMP_NETLOGIC_XLS408B:
1906 case PRID_IMP_NETLOGIC_XLS404B:
1907 c->cputype = CPU_XLR;
1908 __cpu_name[cpu] = "Netlogic XLS";
1909 break;
1910
1911 default:
1912 pr_info("Unknown Netlogic chip id [%02x]!\n",
1913 c->processor_id);
1914 c->cputype = CPU_XLR;
1915 break;
1916 }
1917
1918 if (c->cputype == CPU_XLP) {
1919 set_isa(c, MIPS_CPU_ISA_M64R2);
1920 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1921 /* This will be updated again after all threads are woken up */
1922 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1923 } else {
1924 set_isa(c, MIPS_CPU_ISA_M64R1);
1925 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1926 }
1927 c->kscratch_mask = 0xf;
1928 }
1929
1930 #ifdef CONFIG_64BIT
1931 /* For use by uaccess.h */
1932 u64 __ua_limit;
1933 EXPORT_SYMBOL(__ua_limit);
1934 #endif
1935
1936 const char *__cpu_name[NR_CPUS];
1937 const char *__elf_platform;
1938
1939 void cpu_probe(void)
1940 {
1941 struct cpuinfo_mips *c = &current_cpu_data;
1942 unsigned int cpu = smp_processor_id();
1943
1944 c->processor_id = PRID_IMP_UNKNOWN;
1945 c->fpu_id = FPIR_IMP_NONE;
1946 c->cputype = CPU_UNKNOWN;
1947 c->writecombine = _CACHE_UNCACHED;
1948
1949 c->fpu_csr31 = FPU_CSR_RN;
1950 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1951
1952 c->processor_id = read_c0_prid();
1953 switch (c->processor_id & PRID_COMP_MASK) {
1954 case PRID_COMP_LEGACY:
1955 cpu_probe_legacy(c, cpu);
1956 break;
1957 case PRID_COMP_MIPS:
1958 cpu_probe_mips(c, cpu);
1959 break;
1960 case PRID_COMP_ALCHEMY:
1961 cpu_probe_alchemy(c, cpu);
1962 break;
1963 case PRID_COMP_SIBYTE:
1964 cpu_probe_sibyte(c, cpu);
1965 break;
1966 case PRID_COMP_BROADCOM:
1967 cpu_probe_broadcom(c, cpu);
1968 break;
1969 case PRID_COMP_SANDCRAFT:
1970 cpu_probe_sandcraft(c, cpu);
1971 break;
1972 case PRID_COMP_NXP:
1973 cpu_probe_nxp(c, cpu);
1974 break;
1975 case PRID_COMP_CAVIUM:
1976 cpu_probe_cavium(c, cpu);
1977 break;
1978 case PRID_COMP_LOONGSON:
1979 cpu_probe_loongson(c, cpu);
1980 break;
1981 case PRID_COMP_INGENIC_D0:
1982 case PRID_COMP_INGENIC_D1:
1983 case PRID_COMP_INGENIC_E1:
1984 cpu_probe_ingenic(c, cpu);
1985 break;
1986 case PRID_COMP_NETLOGIC:
1987 cpu_probe_netlogic(c, cpu);
1988 break;
1989 }
1990
1991 BUG_ON(!__cpu_name[cpu]);
1992 BUG_ON(c->cputype == CPU_UNKNOWN);
1993
1994 /*
1995 * Platform code can force the cpu type to optimize code
1996 * generation. In that case be sure the cpu type is correctly
1997 * manually setup otherwise it could trigger some nasty bugs.
1998 */
1999 BUG_ON(current_cpu_type() != c->cputype);
2000
2001 if (cpu_has_rixi) {
2002 /* Enable the RIXI exceptions */
2003 set_c0_pagegrain(PG_IEC);
2004 back_to_back_c0_hazard();
2005 /* Verify the IEC bit is set */
2006 if (read_c0_pagegrain() & PG_IEC)
2007 c->options |= MIPS_CPU_RIXIEX;
2008 }
2009
2010 if (mips_fpu_disabled)
2011 c->options &= ~MIPS_CPU_FPU;
2012
2013 if (mips_dsp_disabled)
2014 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2015
2016 if (mips_htw_disabled) {
2017 c->options &= ~MIPS_CPU_HTW;
2018 write_c0_pwctl(read_c0_pwctl() &
2019 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2020 }
2021
2022 if (c->options & MIPS_CPU_FPU)
2023 cpu_set_fpu_opts(c);
2024 else
2025 cpu_set_nofpu_opts(c);
2026
2027 if (cpu_has_bp_ghist)
2028 write_c0_r10k_diag(read_c0_r10k_diag() |
2029 R10K_DIAG_E_GHIST);
2030
2031 if (cpu_has_mips_r2_r6) {
2032 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2033 /* R2 has Performance Counter Interrupt indicator */
2034 c->options |= MIPS_CPU_PCI;
2035 }
2036 else
2037 c->srsets = 1;
2038
2039 if (cpu_has_mips_r6)
2040 elf_hwcap |= HWCAP_MIPS_R6;
2041
2042 if (cpu_has_msa) {
2043 c->msa_id = cpu_get_msa_id();
2044 WARN(c->msa_id & MSA_IR_WRPF,
2045 "Vector register partitioning unimplemented!");
2046 elf_hwcap |= HWCAP_MIPS_MSA;
2047 }
2048
2049 if (cpu_has_vz)
2050 cpu_probe_vz(c);
2051
2052 cpu_probe_vmbits(c);
2053
2054 #ifdef CONFIG_64BIT
2055 if (cpu == 0)
2056 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2057 #endif
2058 }
2059
2060 void cpu_report(void)
2061 {
2062 struct cpuinfo_mips *c = &current_cpu_data;
2063
2064 pr_info("CPU%d revision is: %08x (%s)\n",
2065 smp_processor_id(), c->processor_id, cpu_name_string());
2066 if (c->options & MIPS_CPU_FPU)
2067 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2068 if (cpu_has_msa)
2069 pr_info("MSA revision is: %08x\n", c->msa_id);
2070 }
This page took 0.070956 seconds and 6 git commands to generate.