Merge branch 'next' into for-linus
[deliverable/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2 * Linux performance counter support for MIPS.
3 *
4 * Copyright (C) 2010 MIPS Technologies, Inc.
5 * Copyright (C) 2011 Cavium Networks, Inc.
6 * Author: Deng-Cheng Zhu
7 *
8 * This code is based on the implementation for ARM, which is in turn
9 * based on the sparc64 perf event code and the x86 code. Performance
10 * counter access is based on the MIPS Oprofile code. And the callchain
11 * support references the code of MIPS stacktrace.c.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33 /* Array of events on this cpu. */
34 struct perf_event *events[MIPS_MAX_HWEVENTS];
35
36 /*
37 * Set the bit (indexed by the counter number) when the counter
38 * is used for an event.
39 */
40 unsigned long used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42 /*
43 * Software copy of the control register for each performance counter.
44 * MIPS CPUs vary in performance counters. They use this differently,
45 * and even may not use it.
46 */
47 unsigned int saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50 .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55 unsigned int event_id;
56 /*
57 * MIPS performance counters are indexed starting from 0.
58 * CNTR_EVEN indicates the indexes of the counters to be used are
59 * even numbers.
60 */
61 unsigned int cntr_mask;
62 #define CNTR_EVEN 0x55555555
63 #define CNTR_ODD 0xaaaaaaaa
64 #define CNTR_ALL 0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66 enum {
67 T = 0,
68 V = 1,
69 P = 2,
70 } range;
71 #else
72 #define T
73 #define V
74 #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define UNSUPPORTED_PERF_EVENT_ID 0xffffffff
82 #define C(x) PERF_COUNT_HW_CACHE_##x
83
84 struct mips_pmu {
85 u64 max_period;
86 u64 valid_count;
87 u64 overflow;
88 const char *name;
89 int irq;
90 u64 (*read_counter)(unsigned int idx);
91 void (*write_counter)(unsigned int idx, u64 val);
92 const struct mips_perf_event *(*map_raw_event)(u64 config);
93 const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
94 const struct mips_perf_event (*cache_event_map)
95 [PERF_COUNT_HW_CACHE_MAX]
96 [PERF_COUNT_HW_CACHE_OP_MAX]
97 [PERF_COUNT_HW_CACHE_RESULT_MAX];
98 unsigned int num_counters;
99 };
100
101 static struct mips_pmu mipspmu;
102
103 #define M_CONFIG1_PC (1 << 4)
104
105 #define M_PERFCTL_EXL (1 << 0)
106 #define M_PERFCTL_KERNEL (1 << 1)
107 #define M_PERFCTL_SUPERVISOR (1 << 2)
108 #define M_PERFCTL_USER (1 << 3)
109 #define M_PERFCTL_INTERRUPT_ENABLE (1 << 4)
110 #define M_PERFCTL_EVENT(event) (((event) & 0x3ff) << 5)
111 #define M_PERFCTL_VPEID(vpe) ((vpe) << 16)
112 #define M_PERFCTL_MT_EN(filter) ((filter) << 20)
113 #define M_TC_EN_ALL M_PERFCTL_MT_EN(0)
114 #define M_TC_EN_VPE M_PERFCTL_MT_EN(1)
115 #define M_TC_EN_TC M_PERFCTL_MT_EN(2)
116 #define M_PERFCTL_TCID(tcid) ((tcid) << 22)
117 #define M_PERFCTL_WIDE (1 << 30)
118 #define M_PERFCTL_MORE (1 << 31)
119
120 #define M_PERFCTL_COUNT_EVENT_WHENEVER (M_PERFCTL_EXL | \
121 M_PERFCTL_KERNEL | \
122 M_PERFCTL_USER | \
123 M_PERFCTL_SUPERVISOR | \
124 M_PERFCTL_INTERRUPT_ENABLE)
125
126 #ifdef CONFIG_MIPS_MT_SMP
127 #define M_PERFCTL_CONFIG_MASK 0x3fff801f
128 #else
129 #define M_PERFCTL_CONFIG_MASK 0x1f
130 #endif
131 #define M_PERFCTL_EVENT_MASK 0xfe0
132
133
134 #ifdef CONFIG_MIPS_MT_SMP
135 static int cpu_has_mipsmt_pertccounters;
136
137 static DEFINE_RWLOCK(pmuint_rwlock);
138
139 /*
140 * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
141 * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
142 */
143 #if defined(CONFIG_HW_PERF_EVENTS)
144 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
145 0 : smp_processor_id())
146 #else
147 #define vpe_id() (cpu_has_mipsmt_pertccounters ? \
148 0 : cpu_data[smp_processor_id()].vpe_id)
149 #endif
150
151 /* Copied from op_model_mipsxx.c */
152 static unsigned int vpe_shift(void)
153 {
154 if (num_possible_cpus() > 1)
155 return 1;
156
157 return 0;
158 }
159
160 static unsigned int counters_total_to_per_cpu(unsigned int counters)
161 {
162 return counters >> vpe_shift();
163 }
164
165 static unsigned int counters_per_cpu_to_total(unsigned int counters)
166 {
167 return counters << vpe_shift();
168 }
169
170 #else /* !CONFIG_MIPS_MT_SMP */
171 #define vpe_id() 0
172
173 #endif /* CONFIG_MIPS_MT_SMP */
174
175 static void resume_local_counters(void);
176 static void pause_local_counters(void);
177 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
178 static int mipsxx_pmu_handle_shared_irq(void);
179
180 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
181 {
182 if (vpe_id() == 1)
183 idx = (idx + 2) & 3;
184 return idx;
185 }
186
187 static u64 mipsxx_pmu_read_counter(unsigned int idx)
188 {
189 idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191 switch (idx) {
192 case 0:
193 /*
194 * The counters are unsigned, we must cast to truncate
195 * off the high bits.
196 */
197 return (u32)read_c0_perfcntr0();
198 case 1:
199 return (u32)read_c0_perfcntr1();
200 case 2:
201 return (u32)read_c0_perfcntr2();
202 case 3:
203 return (u32)read_c0_perfcntr3();
204 default:
205 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
206 return 0;
207 }
208 }
209
210 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
211 {
212 idx = mipsxx_pmu_swizzle_perf_idx(idx);
213
214 switch (idx) {
215 case 0:
216 return read_c0_perfcntr0_64();
217 case 1:
218 return read_c0_perfcntr1_64();
219 case 2:
220 return read_c0_perfcntr2_64();
221 case 3:
222 return read_c0_perfcntr3_64();
223 default:
224 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
225 return 0;
226 }
227 }
228
229 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
230 {
231 idx = mipsxx_pmu_swizzle_perf_idx(idx);
232
233 switch (idx) {
234 case 0:
235 write_c0_perfcntr0(val);
236 return;
237 case 1:
238 write_c0_perfcntr1(val);
239 return;
240 case 2:
241 write_c0_perfcntr2(val);
242 return;
243 case 3:
244 write_c0_perfcntr3(val);
245 return;
246 }
247 }
248
249 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
250 {
251 idx = mipsxx_pmu_swizzle_perf_idx(idx);
252
253 switch (idx) {
254 case 0:
255 write_c0_perfcntr0_64(val);
256 return;
257 case 1:
258 write_c0_perfcntr1_64(val);
259 return;
260 case 2:
261 write_c0_perfcntr2_64(val);
262 return;
263 case 3:
264 write_c0_perfcntr3_64(val);
265 return;
266 }
267 }
268
269 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
270 {
271 idx = mipsxx_pmu_swizzle_perf_idx(idx);
272
273 switch (idx) {
274 case 0:
275 return read_c0_perfctrl0();
276 case 1:
277 return read_c0_perfctrl1();
278 case 2:
279 return read_c0_perfctrl2();
280 case 3:
281 return read_c0_perfctrl3();
282 default:
283 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
284 return 0;
285 }
286 }
287
288 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
289 {
290 idx = mipsxx_pmu_swizzle_perf_idx(idx);
291
292 switch (idx) {
293 case 0:
294 write_c0_perfctrl0(val);
295 return;
296 case 1:
297 write_c0_perfctrl1(val);
298 return;
299 case 2:
300 write_c0_perfctrl2(val);
301 return;
302 case 3:
303 write_c0_perfctrl3(val);
304 return;
305 }
306 }
307
308 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
309 struct hw_perf_event *hwc)
310 {
311 int i;
312
313 /*
314 * We only need to care the counter mask. The range has been
315 * checked definitely.
316 */
317 unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
318
319 for (i = mipspmu.num_counters - 1; i >= 0; i--) {
320 /*
321 * Note that some MIPS perf events can be counted by both
322 * even and odd counters, wheresas many other are only by
323 * even _or_ odd counters. This introduces an issue that
324 * when the former kind of event takes the counter the
325 * latter kind of event wants to use, then the "counter
326 * allocation" for the latter event will fail. In fact if
327 * they can be dynamically swapped, they both feel happy.
328 * But here we leave this issue alone for now.
329 */
330 if (test_bit(i, &cntr_mask) &&
331 !test_and_set_bit(i, cpuc->used_mask))
332 return i;
333 }
334
335 return -EAGAIN;
336 }
337
338 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
339 {
340 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
341
342 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
343
344 cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
345 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
346 /* Make sure interrupt enabled. */
347 M_PERFCTL_INTERRUPT_ENABLE;
348 /*
349 * We do not actually let the counter run. Leave it until start().
350 */
351 }
352
353 static void mipsxx_pmu_disable_event(int idx)
354 {
355 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
356 unsigned long flags;
357
358 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
359
360 local_irq_save(flags);
361 cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
362 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
363 mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
364 local_irq_restore(flags);
365 }
366
367 static int mipspmu_event_set_period(struct perf_event *event,
368 struct hw_perf_event *hwc,
369 int idx)
370 {
371 u64 left = local64_read(&hwc->period_left);
372 u64 period = hwc->sample_period;
373 int ret = 0;
374
375 if (unlikely((left + period) & (1ULL << 63))) {
376 /* left underflowed by more than period. */
377 left = period;
378 local64_set(&hwc->period_left, left);
379 hwc->last_period = period;
380 ret = 1;
381 } else if (unlikely((left + period) <= period)) {
382 /* left underflowed by less than period. */
383 left += period;
384 local64_set(&hwc->period_left, left);
385 hwc->last_period = period;
386 ret = 1;
387 }
388
389 if (left > mipspmu.max_period) {
390 left = mipspmu.max_period;
391 local64_set(&hwc->period_left, left);
392 }
393
394 local64_set(&hwc->prev_count, mipspmu.overflow - left);
395
396 mipspmu.write_counter(idx, mipspmu.overflow - left);
397
398 perf_event_update_userpage(event);
399
400 return ret;
401 }
402
403 static void mipspmu_event_update(struct perf_event *event,
404 struct hw_perf_event *hwc,
405 int idx)
406 {
407 u64 prev_raw_count, new_raw_count;
408 u64 delta;
409
410 again:
411 prev_raw_count = local64_read(&hwc->prev_count);
412 new_raw_count = mipspmu.read_counter(idx);
413
414 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
415 new_raw_count) != prev_raw_count)
416 goto again;
417
418 delta = new_raw_count - prev_raw_count;
419
420 local64_add(delta, &event->count);
421 local64_sub(delta, &hwc->period_left);
422 }
423
424 static void mipspmu_start(struct perf_event *event, int flags)
425 {
426 struct hw_perf_event *hwc = &event->hw;
427
428 if (flags & PERF_EF_RELOAD)
429 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
430
431 hwc->state = 0;
432
433 /* Set the period for the event. */
434 mipspmu_event_set_period(event, hwc, hwc->idx);
435
436 /* Enable the event. */
437 mipsxx_pmu_enable_event(hwc, hwc->idx);
438 }
439
440 static void mipspmu_stop(struct perf_event *event, int flags)
441 {
442 struct hw_perf_event *hwc = &event->hw;
443
444 if (!(hwc->state & PERF_HES_STOPPED)) {
445 /* We are working on a local event. */
446 mipsxx_pmu_disable_event(hwc->idx);
447 barrier();
448 mipspmu_event_update(event, hwc, hwc->idx);
449 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
450 }
451 }
452
453 static int mipspmu_add(struct perf_event *event, int flags)
454 {
455 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456 struct hw_perf_event *hwc = &event->hw;
457 int idx;
458 int err = 0;
459
460 perf_pmu_disable(event->pmu);
461
462 /* To look for a free counter for this event. */
463 idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
464 if (idx < 0) {
465 err = idx;
466 goto out;
467 }
468
469 /*
470 * If there is an event in the counter we are going to use then
471 * make sure it is disabled.
472 */
473 event->hw.idx = idx;
474 mipsxx_pmu_disable_event(idx);
475 cpuc->events[idx] = event;
476
477 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
478 if (flags & PERF_EF_START)
479 mipspmu_start(event, PERF_EF_RELOAD);
480
481 /* Propagate our changes to the userspace mapping. */
482 perf_event_update_userpage(event);
483
484 out:
485 perf_pmu_enable(event->pmu);
486 return err;
487 }
488
489 static void mipspmu_del(struct perf_event *event, int flags)
490 {
491 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
492 struct hw_perf_event *hwc = &event->hw;
493 int idx = hwc->idx;
494
495 WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
496
497 mipspmu_stop(event, PERF_EF_UPDATE);
498 cpuc->events[idx] = NULL;
499 clear_bit(idx, cpuc->used_mask);
500
501 perf_event_update_userpage(event);
502 }
503
504 static void mipspmu_read(struct perf_event *event)
505 {
506 struct hw_perf_event *hwc = &event->hw;
507
508 /* Don't read disabled counters! */
509 if (hwc->idx < 0)
510 return;
511
512 mipspmu_event_update(event, hwc, hwc->idx);
513 }
514
515 static void mipspmu_enable(struct pmu *pmu)
516 {
517 #ifdef CONFIG_MIPS_MT_SMP
518 write_unlock(&pmuint_rwlock);
519 #endif
520 resume_local_counters();
521 }
522
523 /*
524 * MIPS performance counters can be per-TC. The control registers can
525 * not be directly accessed accross CPUs. Hence if we want to do global
526 * control, we need cross CPU calls. on_each_cpu() can help us, but we
527 * can not make sure this function is called with interrupts enabled. So
528 * here we pause local counters and then grab a rwlock and leave the
529 * counters on other CPUs alone. If any counter interrupt raises while
530 * we own the write lock, simply pause local counters on that CPU and
531 * spin in the handler. Also we know we won't be switched to another
532 * CPU after pausing local counters and before grabbing the lock.
533 */
534 static void mipspmu_disable(struct pmu *pmu)
535 {
536 pause_local_counters();
537 #ifdef CONFIG_MIPS_MT_SMP
538 write_lock(&pmuint_rwlock);
539 #endif
540 }
541
542 static atomic_t active_events = ATOMIC_INIT(0);
543 static DEFINE_MUTEX(pmu_reserve_mutex);
544 static int (*save_perf_irq)(void);
545
546 static int mipspmu_get_irq(void)
547 {
548 int err;
549
550 if (mipspmu.irq >= 0) {
551 /* Request my own irq handler. */
552 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
553 IRQF_PERCPU | IRQF_NOBALANCING,
554 "mips_perf_pmu", NULL);
555 if (err) {
556 pr_warning("Unable to request IRQ%d for MIPS "
557 "performance counters!\n", mipspmu.irq);
558 }
559 } else if (cp0_perfcount_irq < 0) {
560 /*
561 * We are sharing the irq number with the timer interrupt.
562 */
563 save_perf_irq = perf_irq;
564 perf_irq = mipsxx_pmu_handle_shared_irq;
565 err = 0;
566 } else {
567 pr_warning("The platform hasn't properly defined its "
568 "interrupt controller.\n");
569 err = -ENOENT;
570 }
571
572 return err;
573 }
574
575 static void mipspmu_free_irq(void)
576 {
577 if (mipspmu.irq >= 0)
578 free_irq(mipspmu.irq, NULL);
579 else if (cp0_perfcount_irq < 0)
580 perf_irq = save_perf_irq;
581 }
582
583 /*
584 * mipsxx/rm9000/loongson2 have different performance counters, they have
585 * specific low-level init routines.
586 */
587 static void reset_counters(void *arg);
588 static int __hw_perf_event_init(struct perf_event *event);
589
590 static void hw_perf_event_destroy(struct perf_event *event)
591 {
592 if (atomic_dec_and_mutex_lock(&active_events,
593 &pmu_reserve_mutex)) {
594 /*
595 * We must not call the destroy function with interrupts
596 * disabled.
597 */
598 on_each_cpu(reset_counters,
599 (void *)(long)mipspmu.num_counters, 1);
600 mipspmu_free_irq();
601 mutex_unlock(&pmu_reserve_mutex);
602 }
603 }
604
605 static int mipspmu_event_init(struct perf_event *event)
606 {
607 int err = 0;
608
609 switch (event->attr.type) {
610 case PERF_TYPE_RAW:
611 case PERF_TYPE_HARDWARE:
612 case PERF_TYPE_HW_CACHE:
613 break;
614
615 default:
616 return -ENOENT;
617 }
618
619 if (event->cpu >= nr_cpumask_bits ||
620 (event->cpu >= 0 && !cpu_online(event->cpu)))
621 return -ENODEV;
622
623 if (!atomic_inc_not_zero(&active_events)) {
624 if (atomic_read(&active_events) > MIPS_MAX_HWEVENTS) {
625 atomic_dec(&active_events);
626 return -ENOSPC;
627 }
628
629 mutex_lock(&pmu_reserve_mutex);
630 if (atomic_read(&active_events) == 0)
631 err = mipspmu_get_irq();
632
633 if (!err)
634 atomic_inc(&active_events);
635 mutex_unlock(&pmu_reserve_mutex);
636 }
637
638 if (err)
639 return err;
640
641 err = __hw_perf_event_init(event);
642 if (err)
643 hw_perf_event_destroy(event);
644
645 return err;
646 }
647
648 static struct pmu pmu = {
649 .pmu_enable = mipspmu_enable,
650 .pmu_disable = mipspmu_disable,
651 .event_init = mipspmu_event_init,
652 .add = mipspmu_add,
653 .del = mipspmu_del,
654 .start = mipspmu_start,
655 .stop = mipspmu_stop,
656 .read = mipspmu_read,
657 };
658
659 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
660 {
661 /*
662 * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
663 * event_id.
664 */
665 #ifdef CONFIG_MIPS_MT_SMP
666 return ((unsigned int)pev->range << 24) |
667 (pev->cntr_mask & 0xffff00) |
668 (pev->event_id & 0xff);
669 #else
670 return (pev->cntr_mask & 0xffff00) |
671 (pev->event_id & 0xff);
672 #endif
673 }
674
675 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
676 {
677 const struct mips_perf_event *pev;
678
679 pev = ((*mipspmu.general_event_map)[idx].event_id ==
680 UNSUPPORTED_PERF_EVENT_ID ? ERR_PTR(-EOPNOTSUPP) :
681 &(*mipspmu.general_event_map)[idx]);
682
683 return pev;
684 }
685
686 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
687 {
688 unsigned int cache_type, cache_op, cache_result;
689 const struct mips_perf_event *pev;
690
691 cache_type = (config >> 0) & 0xff;
692 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
693 return ERR_PTR(-EINVAL);
694
695 cache_op = (config >> 8) & 0xff;
696 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
697 return ERR_PTR(-EINVAL);
698
699 cache_result = (config >> 16) & 0xff;
700 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
701 return ERR_PTR(-EINVAL);
702
703 pev = &((*mipspmu.cache_event_map)
704 [cache_type]
705 [cache_op]
706 [cache_result]);
707
708 if (pev->event_id == UNSUPPORTED_PERF_EVENT_ID)
709 return ERR_PTR(-EOPNOTSUPP);
710
711 return pev;
712
713 }
714
715 static int validate_event(struct cpu_hw_events *cpuc,
716 struct perf_event *event)
717 {
718 struct hw_perf_event fake_hwc = event->hw;
719
720 /* Allow mixed event group. So return 1 to pass validation. */
721 if (event->pmu != &pmu || event->state <= PERF_EVENT_STATE_OFF)
722 return 1;
723
724 return mipsxx_pmu_alloc_counter(cpuc, &fake_hwc) >= 0;
725 }
726
727 static int validate_group(struct perf_event *event)
728 {
729 struct perf_event *sibling, *leader = event->group_leader;
730 struct cpu_hw_events fake_cpuc;
731
732 memset(&fake_cpuc, 0, sizeof(fake_cpuc));
733
734 if (!validate_event(&fake_cpuc, leader))
735 return -ENOSPC;
736
737 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
738 if (!validate_event(&fake_cpuc, sibling))
739 return -ENOSPC;
740 }
741
742 if (!validate_event(&fake_cpuc, event))
743 return -ENOSPC;
744
745 return 0;
746 }
747
748 /* This is needed by specific irq handlers in perf_event_*.c */
749 static void handle_associated_event(struct cpu_hw_events *cpuc,
750 int idx, struct perf_sample_data *data,
751 struct pt_regs *regs)
752 {
753 struct perf_event *event = cpuc->events[idx];
754 struct hw_perf_event *hwc = &event->hw;
755
756 mipspmu_event_update(event, hwc, idx);
757 data->period = event->hw.last_period;
758 if (!mipspmu_event_set_period(event, hwc, idx))
759 return;
760
761 if (perf_event_overflow(event, data, regs))
762 mipsxx_pmu_disable_event(idx);
763 }
764
765
766 static int __n_counters(void)
767 {
768 if (!(read_c0_config1() & M_CONFIG1_PC))
769 return 0;
770 if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
771 return 1;
772 if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
773 return 2;
774 if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
775 return 3;
776
777 return 4;
778 }
779
780 static int n_counters(void)
781 {
782 int counters;
783
784 switch (current_cpu_type()) {
785 case CPU_R10000:
786 counters = 2;
787 break;
788
789 case CPU_R12000:
790 case CPU_R14000:
791 counters = 4;
792 break;
793
794 default:
795 counters = __n_counters();
796 }
797
798 return counters;
799 }
800
801 static void reset_counters(void *arg)
802 {
803 int counters = (int)(long)arg;
804 switch (counters) {
805 case 4:
806 mipsxx_pmu_write_control(3, 0);
807 mipspmu.write_counter(3, 0);
808 case 3:
809 mipsxx_pmu_write_control(2, 0);
810 mipspmu.write_counter(2, 0);
811 case 2:
812 mipsxx_pmu_write_control(1, 0);
813 mipspmu.write_counter(1, 0);
814 case 1:
815 mipsxx_pmu_write_control(0, 0);
816 mipspmu.write_counter(0, 0);
817 }
818 }
819
820 /* 24K/34K/1004K cores can share the same event map. */
821 static const struct mips_perf_event mipsxxcore_event_map
822 [PERF_COUNT_HW_MAX] = {
823 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
824 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
825 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
826 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
827 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
828 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
829 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
830 };
831
832 /* 74K core has different branch event code. */
833 static const struct mips_perf_event mipsxx74Kcore_event_map
834 [PERF_COUNT_HW_MAX] = {
835 [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
836 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
837 [PERF_COUNT_HW_CACHE_REFERENCES] = { UNSUPPORTED_PERF_EVENT_ID },
838 [PERF_COUNT_HW_CACHE_MISSES] = { UNSUPPORTED_PERF_EVENT_ID },
839 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
840 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
841 [PERF_COUNT_HW_BUS_CYCLES] = { UNSUPPORTED_PERF_EVENT_ID },
842 };
843
844 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
845 [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846 [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
847 [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
848 [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL },
849 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
850 [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
851 [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
852 };
853
854 /* 24K/34K/1004K cores can share the same cache event map. */
855 static const struct mips_perf_event mipsxxcore_cache_map
856 [PERF_COUNT_HW_CACHE_MAX]
857 [PERF_COUNT_HW_CACHE_OP_MAX]
858 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
859 [C(L1D)] = {
860 /*
861 * Like some other architectures (e.g. ARM), the performance
862 * counters don't differentiate between read and write
863 * accesses/misses, so this isn't strictly correct, but it's the
864 * best we can do. Writes and reads get combined.
865 */
866 [C(OP_READ)] = {
867 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
868 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
869 },
870 [C(OP_WRITE)] = {
871 [C(RESULT_ACCESS)] = { 0x0a, CNTR_EVEN, T },
872 [C(RESULT_MISS)] = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
873 },
874 [C(OP_PREFETCH)] = {
875 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
876 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
877 },
878 },
879 [C(L1I)] = {
880 [C(OP_READ)] = {
881 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
882 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
883 },
884 [C(OP_WRITE)] = {
885 [C(RESULT_ACCESS)] = { 0x09, CNTR_EVEN, T },
886 [C(RESULT_MISS)] = { 0x09, CNTR_ODD, T },
887 },
888 [C(OP_PREFETCH)] = {
889 [C(RESULT_ACCESS)] = { 0x14, CNTR_EVEN, T },
890 /*
891 * Note that MIPS has only "hit" events countable for
892 * the prefetch operation.
893 */
894 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
895 },
896 },
897 [C(LL)] = {
898 [C(OP_READ)] = {
899 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
900 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
901 },
902 [C(OP_WRITE)] = {
903 [C(RESULT_ACCESS)] = { 0x15, CNTR_ODD, P },
904 [C(RESULT_MISS)] = { 0x16, CNTR_EVEN, P },
905 },
906 [C(OP_PREFETCH)] = {
907 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
908 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
909 },
910 },
911 [C(DTLB)] = {
912 [C(OP_READ)] = {
913 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
914 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
915 },
916 [C(OP_WRITE)] = {
917 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
918 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
919 },
920 [C(OP_PREFETCH)] = {
921 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
922 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
923 },
924 },
925 [C(ITLB)] = {
926 [C(OP_READ)] = {
927 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
928 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
929 },
930 [C(OP_WRITE)] = {
931 [C(RESULT_ACCESS)] = { 0x05, CNTR_EVEN, T },
932 [C(RESULT_MISS)] = { 0x05, CNTR_ODD, T },
933 },
934 [C(OP_PREFETCH)] = {
935 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
936 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
937 },
938 },
939 [C(BPU)] = {
940 /* Using the same code for *HW_BRANCH* */
941 [C(OP_READ)] = {
942 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
943 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
944 },
945 [C(OP_WRITE)] = {
946 [C(RESULT_ACCESS)] = { 0x02, CNTR_EVEN, T },
947 [C(RESULT_MISS)] = { 0x02, CNTR_ODD, T },
948 },
949 [C(OP_PREFETCH)] = {
950 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
951 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
952 },
953 },
954 [C(NODE)] = {
955 [C(OP_READ)] = {
956 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
957 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
958 },
959 [C(OP_WRITE)] = {
960 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
961 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
962 },
963 [C(OP_PREFETCH)] = {
964 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
965 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
966 },
967 },
968 };
969
970 /* 74K core has completely different cache event map. */
971 static const struct mips_perf_event mipsxx74Kcore_cache_map
972 [PERF_COUNT_HW_CACHE_MAX]
973 [PERF_COUNT_HW_CACHE_OP_MAX]
974 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
975 [C(L1D)] = {
976 /*
977 * Like some other architectures (e.g. ARM), the performance
978 * counters don't differentiate between read and write
979 * accesses/misses, so this isn't strictly correct, but it's the
980 * best we can do. Writes and reads get combined.
981 */
982 [C(OP_READ)] = {
983 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
984 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
985 },
986 [C(OP_WRITE)] = {
987 [C(RESULT_ACCESS)] = { 0x17, CNTR_ODD, T },
988 [C(RESULT_MISS)] = { 0x18, CNTR_ODD, T },
989 },
990 [C(OP_PREFETCH)] = {
991 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
992 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
993 },
994 },
995 [C(L1I)] = {
996 [C(OP_READ)] = {
997 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
998 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
999 },
1000 [C(OP_WRITE)] = {
1001 [C(RESULT_ACCESS)] = { 0x06, CNTR_EVEN, T },
1002 [C(RESULT_MISS)] = { 0x06, CNTR_ODD, T },
1003 },
1004 [C(OP_PREFETCH)] = {
1005 [C(RESULT_ACCESS)] = { 0x34, CNTR_EVEN, T },
1006 /*
1007 * Note that MIPS has only "hit" events countable for
1008 * the prefetch operation.
1009 */
1010 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1011 },
1012 },
1013 [C(LL)] = {
1014 [C(OP_READ)] = {
1015 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
1016 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1017 },
1018 [C(OP_WRITE)] = {
1019 [C(RESULT_ACCESS)] = { 0x1c, CNTR_ODD, P },
1020 [C(RESULT_MISS)] = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
1021 },
1022 [C(OP_PREFETCH)] = {
1023 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1024 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1025 },
1026 },
1027 [C(DTLB)] = {
1028 /* 74K core does not have specific DTLB events. */
1029 [C(OP_READ)] = {
1030 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1031 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1032 },
1033 [C(OP_WRITE)] = {
1034 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1035 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1036 },
1037 [C(OP_PREFETCH)] = {
1038 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1039 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1040 },
1041 },
1042 [C(ITLB)] = {
1043 [C(OP_READ)] = {
1044 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1045 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1046 },
1047 [C(OP_WRITE)] = {
1048 [C(RESULT_ACCESS)] = { 0x04, CNTR_EVEN, T },
1049 [C(RESULT_MISS)] = { 0x04, CNTR_ODD, T },
1050 },
1051 [C(OP_PREFETCH)] = {
1052 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1053 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1054 },
1055 },
1056 [C(BPU)] = {
1057 /* Using the same code for *HW_BRANCH* */
1058 [C(OP_READ)] = {
1059 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1060 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1061 },
1062 [C(OP_WRITE)] = {
1063 [C(RESULT_ACCESS)] = { 0x27, CNTR_EVEN, T },
1064 [C(RESULT_MISS)] = { 0x27, CNTR_ODD, T },
1065 },
1066 [C(OP_PREFETCH)] = {
1067 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1068 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1069 },
1070 },
1071 [C(NODE)] = {
1072 [C(OP_READ)] = {
1073 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1074 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1075 },
1076 [C(OP_WRITE)] = {
1077 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1078 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1079 },
1080 [C(OP_PREFETCH)] = {
1081 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1082 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1083 },
1084 },
1085 };
1086
1087
1088 static const struct mips_perf_event octeon_cache_map
1089 [PERF_COUNT_HW_CACHE_MAX]
1090 [PERF_COUNT_HW_CACHE_OP_MAX]
1091 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1092 [C(L1D)] = {
1093 [C(OP_READ)] = {
1094 [C(RESULT_ACCESS)] = { 0x2b, CNTR_ALL },
1095 [C(RESULT_MISS)] = { 0x2e, CNTR_ALL },
1096 },
1097 [C(OP_WRITE)] = {
1098 [C(RESULT_ACCESS)] = { 0x30, CNTR_ALL },
1099 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1100 },
1101 [C(OP_PREFETCH)] = {
1102 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1103 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1104 },
1105 },
1106 [C(L1I)] = {
1107 [C(OP_READ)] = {
1108 [C(RESULT_ACCESS)] = { 0x18, CNTR_ALL },
1109 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1110 },
1111 [C(OP_WRITE)] = {
1112 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1113 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1114 },
1115 [C(OP_PREFETCH)] = {
1116 [C(RESULT_ACCESS)] = { 0x19, CNTR_ALL },
1117 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1118 },
1119 },
1120 [C(LL)] = {
1121 [C(OP_READ)] = {
1122 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1123 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1124 },
1125 [C(OP_WRITE)] = {
1126 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1127 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1128 },
1129 [C(OP_PREFETCH)] = {
1130 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1131 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1132 },
1133 },
1134 [C(DTLB)] = {
1135 /*
1136 * Only general DTLB misses are counted use the same event for
1137 * read and write.
1138 */
1139 [C(OP_READ)] = {
1140 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1141 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1142 },
1143 [C(OP_WRITE)] = {
1144 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1145 [C(RESULT_MISS)] = { 0x35, CNTR_ALL },
1146 },
1147 [C(OP_PREFETCH)] = {
1148 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1149 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1150 },
1151 },
1152 [C(ITLB)] = {
1153 [C(OP_READ)] = {
1154 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1155 [C(RESULT_MISS)] = { 0x37, CNTR_ALL },
1156 },
1157 [C(OP_WRITE)] = {
1158 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1159 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1160 },
1161 [C(OP_PREFETCH)] = {
1162 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1163 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1164 },
1165 },
1166 [C(BPU)] = {
1167 /* Using the same code for *HW_BRANCH* */
1168 [C(OP_READ)] = {
1169 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1170 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1171 },
1172 [C(OP_WRITE)] = {
1173 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1174 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1175 },
1176 [C(OP_PREFETCH)] = {
1177 [C(RESULT_ACCESS)] = { UNSUPPORTED_PERF_EVENT_ID },
1178 [C(RESULT_MISS)] = { UNSUPPORTED_PERF_EVENT_ID },
1179 },
1180 },
1181 };
1182
1183 #ifdef CONFIG_MIPS_MT_SMP
1184 static void check_and_calc_range(struct perf_event *event,
1185 const struct mips_perf_event *pev)
1186 {
1187 struct hw_perf_event *hwc = &event->hw;
1188
1189 if (event->cpu >= 0) {
1190 if (pev->range > V) {
1191 /*
1192 * The user selected an event that is processor
1193 * wide, while expecting it to be VPE wide.
1194 */
1195 hwc->config_base |= M_TC_EN_ALL;
1196 } else {
1197 /*
1198 * FIXME: cpu_data[event->cpu].vpe_id reports 0
1199 * for both CPUs.
1200 */
1201 hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1202 hwc->config_base |= M_TC_EN_VPE;
1203 }
1204 } else
1205 hwc->config_base |= M_TC_EN_ALL;
1206 }
1207 #else
1208 static void check_and_calc_range(struct perf_event *event,
1209 const struct mips_perf_event *pev)
1210 {
1211 }
1212 #endif
1213
1214 static int __hw_perf_event_init(struct perf_event *event)
1215 {
1216 struct perf_event_attr *attr = &event->attr;
1217 struct hw_perf_event *hwc = &event->hw;
1218 const struct mips_perf_event *pev;
1219 int err;
1220
1221 /* Returning MIPS event descriptor for generic perf event. */
1222 if (PERF_TYPE_HARDWARE == event->attr.type) {
1223 if (event->attr.config >= PERF_COUNT_HW_MAX)
1224 return -EINVAL;
1225 pev = mipspmu_map_general_event(event->attr.config);
1226 } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1227 pev = mipspmu_map_cache_event(event->attr.config);
1228 } else if (PERF_TYPE_RAW == event->attr.type) {
1229 /* We are working on the global raw event. */
1230 mutex_lock(&raw_event_mutex);
1231 pev = mipspmu.map_raw_event(event->attr.config);
1232 } else {
1233 /* The event type is not (yet) supported. */
1234 return -EOPNOTSUPP;
1235 }
1236
1237 if (IS_ERR(pev)) {
1238 if (PERF_TYPE_RAW == event->attr.type)
1239 mutex_unlock(&raw_event_mutex);
1240 return PTR_ERR(pev);
1241 }
1242
1243 /*
1244 * We allow max flexibility on how each individual counter shared
1245 * by the single CPU operates (the mode exclusion and the range).
1246 */
1247 hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1248
1249 /* Calculate range bits and validate it. */
1250 if (num_possible_cpus() > 1)
1251 check_and_calc_range(event, pev);
1252
1253 hwc->event_base = mipspmu_perf_event_encode(pev);
1254 if (PERF_TYPE_RAW == event->attr.type)
1255 mutex_unlock(&raw_event_mutex);
1256
1257 if (!attr->exclude_user)
1258 hwc->config_base |= M_PERFCTL_USER;
1259 if (!attr->exclude_kernel) {
1260 hwc->config_base |= M_PERFCTL_KERNEL;
1261 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1262 hwc->config_base |= M_PERFCTL_EXL;
1263 }
1264 if (!attr->exclude_hv)
1265 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1266
1267 hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1268 /*
1269 * The event can belong to another cpu. We do not assign a local
1270 * counter for it for now.
1271 */
1272 hwc->idx = -1;
1273 hwc->config = 0;
1274
1275 if (!hwc->sample_period) {
1276 hwc->sample_period = mipspmu.max_period;
1277 hwc->last_period = hwc->sample_period;
1278 local64_set(&hwc->period_left, hwc->sample_period);
1279 }
1280
1281 err = 0;
1282 if (event->group_leader != event) {
1283 err = validate_group(event);
1284 if (err)
1285 return -EINVAL;
1286 }
1287
1288 event->destroy = hw_perf_event_destroy;
1289 return err;
1290 }
1291
1292 static void pause_local_counters(void)
1293 {
1294 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1295 int ctr = mipspmu.num_counters;
1296 unsigned long flags;
1297
1298 local_irq_save(flags);
1299 do {
1300 ctr--;
1301 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1302 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1303 ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1304 } while (ctr > 0);
1305 local_irq_restore(flags);
1306 }
1307
1308 static void resume_local_counters(void)
1309 {
1310 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1311 int ctr = mipspmu.num_counters;
1312
1313 do {
1314 ctr--;
1315 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1316 } while (ctr > 0);
1317 }
1318
1319 static int mipsxx_pmu_handle_shared_irq(void)
1320 {
1321 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1322 struct perf_sample_data data;
1323 unsigned int counters = mipspmu.num_counters;
1324 u64 counter;
1325 int handled = IRQ_NONE;
1326 struct pt_regs *regs;
1327
1328 if (cpu_has_mips_r2 && !(read_c0_cause() & (1 << 26)))
1329 return handled;
1330 /*
1331 * First we pause the local counters, so that when we are locked
1332 * here, the counters are all paused. When it gets locked due to
1333 * perf_disable(), the timer interrupt handler will be delayed.
1334 *
1335 * See also mipsxx_pmu_start().
1336 */
1337 pause_local_counters();
1338 #ifdef CONFIG_MIPS_MT_SMP
1339 read_lock(&pmuint_rwlock);
1340 #endif
1341
1342 regs = get_irq_regs();
1343
1344 perf_sample_data_init(&data, 0);
1345
1346 switch (counters) {
1347 #define HANDLE_COUNTER(n) \
1348 case n + 1: \
1349 if (test_bit(n, cpuc->used_mask)) { \
1350 counter = mipspmu.read_counter(n); \
1351 if (counter & mipspmu.overflow) { \
1352 handle_associated_event(cpuc, n, &data, regs); \
1353 handled = IRQ_HANDLED; \
1354 } \
1355 }
1356 HANDLE_COUNTER(3)
1357 HANDLE_COUNTER(2)
1358 HANDLE_COUNTER(1)
1359 HANDLE_COUNTER(0)
1360 }
1361
1362 /*
1363 * Do all the work for the pending perf events. We can do this
1364 * in here because the performance counter interrupt is a regular
1365 * interrupt, not NMI.
1366 */
1367 if (handled == IRQ_HANDLED)
1368 irq_work_run();
1369
1370 #ifdef CONFIG_MIPS_MT_SMP
1371 read_unlock(&pmuint_rwlock);
1372 #endif
1373 resume_local_counters();
1374 return handled;
1375 }
1376
1377 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1378 {
1379 return mipsxx_pmu_handle_shared_irq();
1380 }
1381
1382 /* 24K */
1383 #define IS_UNSUPPORTED_24K_EVENT(r, b) \
1384 ((b) == 12 || (r) == 151 || (r) == 152 || (b) == 26 || \
1385 (b) == 27 || (r) == 28 || (r) == 158 || (b) == 31 || \
1386 (b) == 32 || (b) == 34 || (b) == 36 || (r) == 168 || \
1387 (r) == 172 || (b) == 47 || ((b) >= 56 && (b) <= 63) || \
1388 ((b) >= 68 && (b) <= 127))
1389 #define IS_BOTH_COUNTERS_24K_EVENT(b) \
1390 ((b) == 0 || (b) == 1 || (b) == 11)
1391
1392 /* 34K */
1393 #define IS_UNSUPPORTED_34K_EVENT(r, b) \
1394 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 36 || \
1395 (b) == 38 || (r) == 175 || ((b) >= 56 && (b) <= 63) || \
1396 ((b) >= 68 && (b) <= 127))
1397 #define IS_BOTH_COUNTERS_34K_EVENT(b) \
1398 ((b) == 0 || (b) == 1 || (b) == 11)
1399 #ifdef CONFIG_MIPS_MT_SMP
1400 #define IS_RANGE_P_34K_EVENT(r, b) \
1401 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1402 (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 || \
1403 (r) == 176 || ((b) >= 50 && (b) <= 55) || \
1404 ((b) >= 64 && (b) <= 67))
1405 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1406 #endif
1407
1408 /* 74K */
1409 #define IS_UNSUPPORTED_74K_EVENT(r, b) \
1410 ((r) == 5 || ((r) >= 135 && (r) <= 137) || \
1411 ((b) >= 10 && (b) <= 12) || (b) == 22 || (b) == 27 || \
1412 (b) == 33 || (b) == 34 || ((b) >= 47 && (b) <= 49) || \
1413 (r) == 178 || (b) == 55 || (b) == 57 || (b) == 60 || \
1414 (b) == 61 || (r) == 62 || (r) == 191 || \
1415 ((b) >= 64 && (b) <= 127))
1416 #define IS_BOTH_COUNTERS_74K_EVENT(b) \
1417 ((b) == 0 || (b) == 1)
1418
1419 /* 1004K */
1420 #define IS_UNSUPPORTED_1004K_EVENT(r, b) \
1421 ((b) == 12 || (r) == 27 || (r) == 158 || (b) == 38 || \
1422 (r) == 175 || (b) == 63 || ((b) >= 68 && (b) <= 127))
1423 #define IS_BOTH_COUNTERS_1004K_EVENT(b) \
1424 ((b) == 0 || (b) == 1 || (b) == 11)
1425 #ifdef CONFIG_MIPS_MT_SMP
1426 #define IS_RANGE_P_1004K_EVENT(r, b) \
1427 ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 || \
1428 (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 || \
1429 (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) || \
1430 (r) == 188 || (b) == 61 || (b) == 62 || \
1431 ((b) >= 64 && (b) <= 67))
1432 #define IS_RANGE_V_1004K_EVENT(r) ((r) == 47)
1433 #endif
1434
1435 /*
1436 * User can use 0-255 raw events, where 0-127 for the events of even
1437 * counters, and 128-255 for odd counters. Note that bit 7 is used to
1438 * indicate the parity. So, for example, when user wants to take the
1439 * Event Num of 15 for odd counters (by referring to the user manual),
1440 * then 128 needs to be added to 15 as the input for the event config,
1441 * i.e., 143 (0x8F) to be used.
1442 */
1443 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1444 {
1445 unsigned int raw_id = config & 0xff;
1446 unsigned int base_id = raw_id & 0x7f;
1447
1448 switch (current_cpu_type()) {
1449 case CPU_24K:
1450 if (IS_UNSUPPORTED_24K_EVENT(raw_id, base_id))
1451 return ERR_PTR(-EOPNOTSUPP);
1452 raw_event.event_id = base_id;
1453 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1454 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1455 else
1456 raw_event.cntr_mask =
1457 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1458 #ifdef CONFIG_MIPS_MT_SMP
1459 /*
1460 * This is actually doing nothing. Non-multithreading
1461 * CPUs will not check and calculate the range.
1462 */
1463 raw_event.range = P;
1464 #endif
1465 break;
1466 case CPU_34K:
1467 if (IS_UNSUPPORTED_34K_EVENT(raw_id, base_id))
1468 return ERR_PTR(-EOPNOTSUPP);
1469 raw_event.event_id = base_id;
1470 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1471 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1472 else
1473 raw_event.cntr_mask =
1474 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1475 #ifdef CONFIG_MIPS_MT_SMP
1476 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1477 raw_event.range = P;
1478 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1479 raw_event.range = V;
1480 else
1481 raw_event.range = T;
1482 #endif
1483 break;
1484 case CPU_74K:
1485 if (IS_UNSUPPORTED_74K_EVENT(raw_id, base_id))
1486 return ERR_PTR(-EOPNOTSUPP);
1487 raw_event.event_id = base_id;
1488 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1489 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1490 else
1491 raw_event.cntr_mask =
1492 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1493 #ifdef CONFIG_MIPS_MT_SMP
1494 raw_event.range = P;
1495 #endif
1496 break;
1497 case CPU_1004K:
1498 if (IS_UNSUPPORTED_1004K_EVENT(raw_id, base_id))
1499 return ERR_PTR(-EOPNOTSUPP);
1500 raw_event.event_id = base_id;
1501 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1502 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1503 else
1504 raw_event.cntr_mask =
1505 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1506 #ifdef CONFIG_MIPS_MT_SMP
1507 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1508 raw_event.range = P;
1509 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1510 raw_event.range = V;
1511 else
1512 raw_event.range = T;
1513 #endif
1514 break;
1515 }
1516
1517 return &raw_event;
1518 }
1519
1520 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1521 {
1522 unsigned int raw_id = config & 0xff;
1523 unsigned int base_id = raw_id & 0x7f;
1524
1525
1526 raw_event.cntr_mask = CNTR_ALL;
1527 raw_event.event_id = base_id;
1528
1529 if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1530 if (base_id > 0x42)
1531 return ERR_PTR(-EOPNOTSUPP);
1532 } else {
1533 if (base_id > 0x3a)
1534 return ERR_PTR(-EOPNOTSUPP);
1535 }
1536
1537 switch (base_id) {
1538 case 0x00:
1539 case 0x0f:
1540 case 0x1e:
1541 case 0x1f:
1542 case 0x2f:
1543 case 0x34:
1544 case 0x3b ... 0x3f:
1545 return ERR_PTR(-EOPNOTSUPP);
1546 default:
1547 break;
1548 }
1549
1550 return &raw_event;
1551 }
1552
1553 static int __init
1554 init_hw_perf_events(void)
1555 {
1556 int counters, irq;
1557 int counter_bits;
1558
1559 pr_info("Performance counters: ");
1560
1561 counters = n_counters();
1562 if (counters == 0) {
1563 pr_cont("No available PMU.\n");
1564 return -ENODEV;
1565 }
1566
1567 #ifdef CONFIG_MIPS_MT_SMP
1568 cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1569 if (!cpu_has_mipsmt_pertccounters)
1570 counters = counters_total_to_per_cpu(counters);
1571 #endif
1572
1573 #ifdef MSC01E_INT_BASE
1574 if (cpu_has_veic) {
1575 /*
1576 * Using platform specific interrupt controller defines.
1577 */
1578 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1579 } else {
1580 #endif
1581 if (cp0_perfcount_irq >= 0)
1582 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1583 else
1584 irq = -1;
1585 #ifdef MSC01E_INT_BASE
1586 }
1587 #endif
1588
1589 mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1590
1591 switch (current_cpu_type()) {
1592 case CPU_24K:
1593 mipspmu.name = "mips/24K";
1594 mipspmu.general_event_map = &mipsxxcore_event_map;
1595 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1596 break;
1597 case CPU_34K:
1598 mipspmu.name = "mips/34K";
1599 mipspmu.general_event_map = &mipsxxcore_event_map;
1600 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1601 break;
1602 case CPU_74K:
1603 mipspmu.name = "mips/74K";
1604 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1605 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1606 break;
1607 case CPU_1004K:
1608 mipspmu.name = "mips/1004K";
1609 mipspmu.general_event_map = &mipsxxcore_event_map;
1610 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1611 break;
1612 case CPU_CAVIUM_OCTEON:
1613 case CPU_CAVIUM_OCTEON_PLUS:
1614 case CPU_CAVIUM_OCTEON2:
1615 mipspmu.name = "octeon";
1616 mipspmu.general_event_map = &octeon_event_map;
1617 mipspmu.cache_event_map = &octeon_cache_map;
1618 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1619 break;
1620 default:
1621 pr_cont("Either hardware does not support performance "
1622 "counters, or not yet implemented.\n");
1623 return -ENODEV;
1624 }
1625
1626 mipspmu.num_counters = counters;
1627 mipspmu.irq = irq;
1628
1629 if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1630 mipspmu.max_period = (1ULL << 63) - 1;
1631 mipspmu.valid_count = (1ULL << 63) - 1;
1632 mipspmu.overflow = 1ULL << 63;
1633 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1634 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1635 counter_bits = 64;
1636 } else {
1637 mipspmu.max_period = (1ULL << 31) - 1;
1638 mipspmu.valid_count = (1ULL << 31) - 1;
1639 mipspmu.overflow = 1ULL << 31;
1640 mipspmu.read_counter = mipsxx_pmu_read_counter;
1641 mipspmu.write_counter = mipsxx_pmu_write_counter;
1642 counter_bits = 32;
1643 }
1644
1645 on_each_cpu(reset_counters, (void *)(long)counters, 1);
1646
1647 pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1648 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1649 irq < 0 ? " (share with timer interrupt)" : "");
1650
1651 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1652
1653 return 0;
1654 }
1655 early_initcall(init_hw_perf_events);
This page took 0.066131 seconds and 5 git commands to generate.