[MIPS] fix sparse warning about setup_early_printk()
[deliverable/linux.git] / arch / mips / kernel / setup.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/module.h>
16 #include <linux/screen_info.h>
17 #include <linux/bootmem.h>
18 #include <linux/initrd.h>
19 #include <linux/root_dev.h>
20 #include <linux/highmem.h>
21 #include <linux/console.h>
22 #include <linux/pfn.h>
23 #include <linux/debugfs.h>
24
25 #include <asm/addrspace.h>
26 #include <asm/bootinfo.h>
27 #include <asm/bugs.h>
28 #include <asm/cache.h>
29 #include <asm/cpu.h>
30 #include <asm/sections.h>
31 #include <asm/setup.h>
32 #include <asm/smp-ops.h>
33 #include <asm/system.h>
34
35 struct cpuinfo_mips cpu_data[NR_CPUS] __read_mostly;
36
37 EXPORT_SYMBOL(cpu_data);
38
39 #ifdef CONFIG_VT
40 struct screen_info screen_info;
41 #endif
42
43 /*
44 * Despite it's name this variable is even if we don't have PCI
45 */
46 unsigned int PCI_DMA_BUS_IS_PHYS;
47
48 EXPORT_SYMBOL(PCI_DMA_BUS_IS_PHYS);
49
50 /*
51 * Setup information
52 *
53 * These are initialized so they are in the .data section
54 */
55 unsigned long mips_machtype __read_mostly = MACH_UNKNOWN;
56
57 EXPORT_SYMBOL(mips_machtype);
58
59 struct boot_mem_map boot_mem_map;
60
61 static char command_line[CL_SIZE];
62 char arcs_cmdline[CL_SIZE]=CONFIG_CMDLINE;
63
64 /*
65 * mips_io_port_base is the begin of the address space to which x86 style
66 * I/O ports are mapped.
67 */
68 const unsigned long mips_io_port_base __read_mostly = -1;
69 EXPORT_SYMBOL(mips_io_port_base);
70
71 static struct resource code_resource = { .name = "Kernel code", };
72 static struct resource data_resource = { .name = "Kernel data", };
73
74 void __init add_memory_region(phys_t start, phys_t size, long type)
75 {
76 int x = boot_mem_map.nr_map;
77 struct boot_mem_map_entry *prev = boot_mem_map.map + x - 1;
78
79 /* Sanity check */
80 if (start + size < start) {
81 printk("Trying to add an invalid memory region, skipped\n");
82 return;
83 }
84
85 /*
86 * Try to merge with previous entry if any. This is far less than
87 * perfect but is sufficient for most real world cases.
88 */
89 if (x && prev->addr + prev->size == start && prev->type == type) {
90 prev->size += size;
91 return;
92 }
93
94 if (x == BOOT_MEM_MAP_MAX) {
95 printk("Ooops! Too many entries in the memory map!\n");
96 return;
97 }
98
99 boot_mem_map.map[x].addr = start;
100 boot_mem_map.map[x].size = size;
101 boot_mem_map.map[x].type = type;
102 boot_mem_map.nr_map++;
103 }
104
105 static void __init print_memory_map(void)
106 {
107 int i;
108 const int field = 2 * sizeof(unsigned long);
109
110 for (i = 0; i < boot_mem_map.nr_map; i++) {
111 printk(" memory: %0*Lx @ %0*Lx ",
112 field, (unsigned long long) boot_mem_map.map[i].size,
113 field, (unsigned long long) boot_mem_map.map[i].addr);
114
115 switch (boot_mem_map.map[i].type) {
116 case BOOT_MEM_RAM:
117 printk("(usable)\n");
118 break;
119 case BOOT_MEM_ROM_DATA:
120 printk("(ROM data)\n");
121 break;
122 case BOOT_MEM_RESERVED:
123 printk("(reserved)\n");
124 break;
125 default:
126 printk("type %lu\n", boot_mem_map.map[i].type);
127 break;
128 }
129 }
130 }
131
132 /*
133 * Manage initrd
134 */
135 #ifdef CONFIG_BLK_DEV_INITRD
136
137 static int __init rd_start_early(char *p)
138 {
139 unsigned long start = memparse(p, &p);
140
141 #ifdef CONFIG_64BIT
142 /* Guess if the sign extension was forgotten by bootloader */
143 if (start < XKPHYS)
144 start = (int)start;
145 #endif
146 initrd_start = start;
147 initrd_end += start;
148 return 0;
149 }
150 early_param("rd_start", rd_start_early);
151
152 static int __init rd_size_early(char *p)
153 {
154 initrd_end += memparse(p, &p);
155 return 0;
156 }
157 early_param("rd_size", rd_size_early);
158
159 /* it returns the next free pfn after initrd */
160 static unsigned long __init init_initrd(void)
161 {
162 unsigned long end;
163 u32 *initrd_header;
164
165 /*
166 * Board specific code or command line parser should have
167 * already set up initrd_start and initrd_end. In these cases
168 * perfom sanity checks and use them if all looks good.
169 */
170 if (initrd_start && initrd_end > initrd_start)
171 goto sanitize;
172
173 /*
174 * See if initrd has been added to the kernel image by
175 * arch/mips/boot/addinitrd.c. In that case a header is
176 * prepended to initrd and is made up by 8 bytes. The fisrt
177 * word is a magic number and the second one is the size of
178 * initrd. Initrd start must be page aligned in any cases.
179 */
180 initrd_header = __va(PAGE_ALIGN(__pa_symbol(&_end) + 8)) - 8;
181 if (initrd_header[0] != 0x494E5244)
182 goto disable;
183 initrd_start = (unsigned long)(initrd_header + 2);
184 initrd_end = initrd_start + initrd_header[1];
185
186 sanitize:
187 if (initrd_start & ~PAGE_MASK) {
188 printk(KERN_ERR "initrd start must be page aligned\n");
189 goto disable;
190 }
191 if (initrd_start < PAGE_OFFSET) {
192 printk(KERN_ERR "initrd start < PAGE_OFFSET\n");
193 goto disable;
194 }
195
196 /*
197 * Sanitize initrd addresses. For example firmware
198 * can't guess if they need to pass them through
199 * 64-bits values if the kernel has been built in pure
200 * 32-bit. We need also to switch from KSEG0 to XKPHYS
201 * addresses now, so the code can now safely use __pa().
202 */
203 end = __pa(initrd_end);
204 initrd_end = (unsigned long)__va(end);
205 initrd_start = (unsigned long)__va(__pa(initrd_start));
206
207 ROOT_DEV = Root_RAM0;
208 return PFN_UP(end);
209 disable:
210 initrd_start = 0;
211 initrd_end = 0;
212 return 0;
213 }
214
215 static void __init finalize_initrd(void)
216 {
217 unsigned long size = initrd_end - initrd_start;
218
219 if (size == 0) {
220 printk(KERN_INFO "Initrd not found or empty");
221 goto disable;
222 }
223 if (__pa(initrd_end) > PFN_PHYS(max_low_pfn)) {
224 printk("Initrd extends beyond end of memory");
225 goto disable;
226 }
227
228 reserve_bootmem(__pa(initrd_start), size, BOOTMEM_DEFAULT);
229 initrd_below_start_ok = 1;
230
231 printk(KERN_INFO "Initial ramdisk at: 0x%lx (%lu bytes)\n",
232 initrd_start, size);
233 return;
234 disable:
235 printk(" - disabling initrd\n");
236 initrd_start = 0;
237 initrd_end = 0;
238 }
239
240 #else /* !CONFIG_BLK_DEV_INITRD */
241
242 static unsigned long __init init_initrd(void)
243 {
244 return 0;
245 }
246
247 #define finalize_initrd() do {} while (0)
248
249 #endif
250
251 /*
252 * Initialize the bootmem allocator. It also setup initrd related data
253 * if needed.
254 */
255 #ifdef CONFIG_SGI_IP27
256
257 static void __init bootmem_init(void)
258 {
259 init_initrd();
260 finalize_initrd();
261 }
262
263 #else /* !CONFIG_SGI_IP27 */
264
265 static void __init bootmem_init(void)
266 {
267 unsigned long reserved_end;
268 unsigned long mapstart = ~0UL;
269 unsigned long bootmap_size;
270 int i;
271
272 /*
273 * Init any data related to initrd. It's a nop if INITRD is
274 * not selected. Once that done we can determine the low bound
275 * of usable memory.
276 */
277 reserved_end = max(init_initrd(), PFN_UP(__pa_symbol(&_end)));
278
279 /*
280 * max_low_pfn is not a number of pages. The number of pages
281 * of the system is given by 'max_low_pfn - min_low_pfn'.
282 */
283 min_low_pfn = ~0UL;
284 max_low_pfn = 0;
285
286 /*
287 * Find the highest page frame number we have available.
288 */
289 for (i = 0; i < boot_mem_map.nr_map; i++) {
290 unsigned long start, end;
291
292 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
293 continue;
294
295 start = PFN_UP(boot_mem_map.map[i].addr);
296 end = PFN_DOWN(boot_mem_map.map[i].addr
297 + boot_mem_map.map[i].size);
298
299 if (end > max_low_pfn)
300 max_low_pfn = end;
301 if (start < min_low_pfn)
302 min_low_pfn = start;
303 if (end <= reserved_end)
304 continue;
305 if (start >= mapstart)
306 continue;
307 mapstart = max(reserved_end, start);
308 }
309
310 if (min_low_pfn >= max_low_pfn)
311 panic("Incorrect memory mapping !!!");
312 if (min_low_pfn > ARCH_PFN_OFFSET) {
313 printk(KERN_INFO
314 "Wasting %lu bytes for tracking %lu unused pages\n",
315 (min_low_pfn - ARCH_PFN_OFFSET) * sizeof(struct page),
316 min_low_pfn - ARCH_PFN_OFFSET);
317 } else if (min_low_pfn < ARCH_PFN_OFFSET) {
318 printk(KERN_INFO
319 "%lu free pages won't be used\n",
320 ARCH_PFN_OFFSET - min_low_pfn);
321 }
322 min_low_pfn = ARCH_PFN_OFFSET;
323
324 /*
325 * Determine low and high memory ranges
326 */
327 max_pfn = max_low_pfn;
328 if (max_low_pfn > PFN_DOWN(HIGHMEM_START)) {
329 #ifdef CONFIG_HIGHMEM
330 highstart_pfn = PFN_DOWN(HIGHMEM_START);
331 highend_pfn = max_low_pfn;
332 #endif
333 max_low_pfn = PFN_DOWN(HIGHMEM_START);
334 }
335
336 /*
337 * Initialize the boot-time allocator with low memory only.
338 */
339 bootmap_size = init_bootmem_node(NODE_DATA(0), mapstart,
340 min_low_pfn, max_low_pfn);
341
342
343 for (i = 0; i < boot_mem_map.nr_map; i++) {
344 unsigned long start, end;
345
346 start = PFN_UP(boot_mem_map.map[i].addr);
347 end = PFN_DOWN(boot_mem_map.map[i].addr
348 + boot_mem_map.map[i].size);
349
350 if (start <= min_low_pfn)
351 start = min_low_pfn;
352 if (start >= end)
353 continue;
354
355 #ifndef CONFIG_HIGHMEM
356 if (end > max_low_pfn)
357 end = max_low_pfn;
358
359 /*
360 * ... finally, is the area going away?
361 */
362 if (end <= start)
363 continue;
364 #endif
365
366 add_active_range(0, start, end);
367 }
368
369 /*
370 * Register fully available low RAM pages with the bootmem allocator.
371 */
372 for (i = 0; i < boot_mem_map.nr_map; i++) {
373 unsigned long start, end, size;
374
375 /*
376 * Reserve usable memory.
377 */
378 if (boot_mem_map.map[i].type != BOOT_MEM_RAM)
379 continue;
380
381 start = PFN_UP(boot_mem_map.map[i].addr);
382 end = PFN_DOWN(boot_mem_map.map[i].addr
383 + boot_mem_map.map[i].size);
384 /*
385 * We are rounding up the start address of usable memory
386 * and at the end of the usable range downwards.
387 */
388 if (start >= max_low_pfn)
389 continue;
390 if (start < reserved_end)
391 start = reserved_end;
392 if (end > max_low_pfn)
393 end = max_low_pfn;
394
395 /*
396 * ... finally, is the area going away?
397 */
398 if (end <= start)
399 continue;
400 size = end - start;
401
402 /* Register lowmem ranges */
403 free_bootmem(PFN_PHYS(start), size << PAGE_SHIFT);
404 memory_present(0, start, end);
405 }
406
407 /*
408 * Reserve the bootmap memory.
409 */
410 reserve_bootmem(PFN_PHYS(mapstart), bootmap_size, BOOTMEM_DEFAULT);
411
412 /*
413 * Reserve initrd memory if needed.
414 */
415 finalize_initrd();
416 }
417
418 #endif /* CONFIG_SGI_IP27 */
419
420 /*
421 * arch_mem_init - initialize memory management subsystem
422 *
423 * o plat_mem_setup() detects the memory configuration and will record detected
424 * memory areas using add_memory_region.
425 *
426 * At this stage the memory configuration of the system is known to the
427 * kernel but generic memory management system is still entirely uninitialized.
428 *
429 * o bootmem_init()
430 * o sparse_init()
431 * o paging_init()
432 *
433 * At this stage the bootmem allocator is ready to use.
434 *
435 * NOTE: historically plat_mem_setup did the entire platform initialization.
436 * This was rather impractical because it meant plat_mem_setup had to
437 * get away without any kind of memory allocator. To keep old code from
438 * breaking plat_setup was just renamed to plat_setup and a second platform
439 * initialization hook for anything else was introduced.
440 */
441
442 static int usermem __initdata = 0;
443
444 static int __init early_parse_mem(char *p)
445 {
446 unsigned long start, size;
447
448 /*
449 * If a user specifies memory size, we
450 * blow away any automatically generated
451 * size.
452 */
453 if (usermem == 0) {
454 boot_mem_map.nr_map = 0;
455 usermem = 1;
456 }
457 start = 0;
458 size = memparse(p, &p);
459 if (*p == '@')
460 start = memparse(p + 1, &p);
461
462 add_memory_region(start, size, BOOT_MEM_RAM);
463 return 0;
464 }
465 early_param("mem", early_parse_mem);
466
467 static void __init arch_mem_init(char **cmdline_p)
468 {
469 extern void plat_mem_setup(void);
470
471 /* call board setup routine */
472 plat_mem_setup();
473
474 printk("Determined physical RAM map:\n");
475 print_memory_map();
476
477 strlcpy(command_line, arcs_cmdline, sizeof(command_line));
478 strlcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
479
480 *cmdline_p = command_line;
481
482 parse_early_param();
483
484 if (usermem) {
485 printk("User-defined physical RAM map:\n");
486 print_memory_map();
487 }
488
489 bootmem_init();
490 sparse_init();
491 paging_init();
492 }
493
494 static void __init resource_init(void)
495 {
496 int i;
497
498 if (UNCAC_BASE != IO_BASE)
499 return;
500
501 code_resource.start = __pa_symbol(&_text);
502 code_resource.end = __pa_symbol(&_etext) - 1;
503 data_resource.start = __pa_symbol(&_etext);
504 data_resource.end = __pa_symbol(&_edata) - 1;
505
506 /*
507 * Request address space for all standard RAM.
508 */
509 for (i = 0; i < boot_mem_map.nr_map; i++) {
510 struct resource *res;
511 unsigned long start, end;
512
513 start = boot_mem_map.map[i].addr;
514 end = boot_mem_map.map[i].addr + boot_mem_map.map[i].size - 1;
515 if (start >= HIGHMEM_START)
516 continue;
517 if (end >= HIGHMEM_START)
518 end = HIGHMEM_START - 1;
519
520 res = alloc_bootmem(sizeof(struct resource));
521 switch (boot_mem_map.map[i].type) {
522 case BOOT_MEM_RAM:
523 case BOOT_MEM_ROM_DATA:
524 res->name = "System RAM";
525 break;
526 case BOOT_MEM_RESERVED:
527 default:
528 res->name = "reserved";
529 }
530
531 res->start = start;
532 res->end = end;
533
534 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
535 request_resource(&iomem_resource, res);
536
537 /*
538 * We don't know which RAM region contains kernel data,
539 * so we try it repeatedly and let the resource manager
540 * test it.
541 */
542 request_resource(res, &code_resource);
543 request_resource(res, &data_resource);
544 }
545 }
546
547 void __init setup_arch(char **cmdline_p)
548 {
549 cpu_probe();
550 prom_init();
551
552 #ifdef CONFIG_EARLY_PRINTK
553 setup_early_printk();
554 #endif
555 cpu_report();
556 check_bugs_early();
557
558 #if defined(CONFIG_VT)
559 #if defined(CONFIG_VGA_CONSOLE)
560 conswitchp = &vga_con;
561 #elif defined(CONFIG_DUMMY_CONSOLE)
562 conswitchp = &dummy_con;
563 #endif
564 #endif
565
566 arch_mem_init(cmdline_p);
567
568 resource_init();
569 plat_smp_setup();
570 }
571
572 static int __init fpu_disable(char *s)
573 {
574 int i;
575
576 for (i = 0; i < NR_CPUS; i++)
577 cpu_data[i].options &= ~MIPS_CPU_FPU;
578
579 return 1;
580 }
581
582 __setup("nofpu", fpu_disable);
583
584 static int __init dsp_disable(char *s)
585 {
586 cpu_data[0].ases &= ~MIPS_ASE_DSP;
587
588 return 1;
589 }
590
591 __setup("nodsp", dsp_disable);
592
593 unsigned long kernelsp[NR_CPUS];
594 unsigned long fw_arg0, fw_arg1, fw_arg2, fw_arg3;
595
596 #ifdef CONFIG_DEBUG_FS
597 struct dentry *mips_debugfs_dir;
598 static int __init debugfs_mips(void)
599 {
600 struct dentry *d;
601
602 d = debugfs_create_dir("mips", NULL);
603 if (IS_ERR(d))
604 return PTR_ERR(d);
605 mips_debugfs_dir = d;
606 return 0;
607 }
608 arch_initcall(debugfs_mips);
609 #endif
This page took 0.043399 seconds and 5 git commands to generate.