Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / arch / mips / kernel / smp-bmips.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7 *
8 * SMP support for BMIPS
9 */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/mm.h>
14 #include <linux/delay.h>
15 #include <linux/smp.h>
16 #include <linux/interrupt.h>
17 #include <linux/spinlock.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/reboot.h>
21 #include <linux/io.h>
22 #include <linux/compiler.h>
23 #include <linux/linkage.h>
24 #include <linux/bug.h>
25 #include <linux/kernel.h>
26
27 #include <asm/time.h>
28 #include <asm/pgtable.h>
29 #include <asm/processor.h>
30 #include <asm/bootinfo.h>
31 #include <asm/pmon.h>
32 #include <asm/cacheflush.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mipsregs.h>
35 #include <asm/bmips.h>
36 #include <asm/traps.h>
37 #include <asm/barrier.h>
38
39 static int __maybe_unused max_cpus = 1;
40
41 /* these may be configured by the platform code */
42 int bmips_smp_enabled = 1;
43 int bmips_cpu_offset;
44 cpumask_t bmips_booted_mask;
45
46 #ifdef CONFIG_SMP
47
48 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
49 unsigned long bmips_smp_boot_sp;
50 unsigned long bmips_smp_boot_gp;
51
52 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
53 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
54 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
55 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
56
57 /* SW interrupts 0,1 are used for interprocessor signaling */
58 #define IPI0_IRQ (MIPS_CPU_IRQ_BASE + 0)
59 #define IPI1_IRQ (MIPS_CPU_IRQ_BASE + 1)
60
61 #define CPUNUM(cpu, shift) (((cpu) + bmips_cpu_offset) << (shift))
62 #define ACTION_CLR_IPI(cpu, ipi) (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
63 #define ACTION_SET_IPI(cpu, ipi) (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
64 #define ACTION_BOOT_THREAD(cpu) (0x08 | CPUNUM(cpu, 0))
65
66 static void __init bmips_smp_setup(void)
67 {
68 int i, cpu = 1, boot_cpu = 0;
69 int cpu_hw_intr;
70
71 switch (current_cpu_type()) {
72 case CPU_BMIPS4350:
73 case CPU_BMIPS4380:
74 /* arbitration priority */
75 clear_c0_brcm_cmt_ctrl(0x30);
76
77 /* NBK and weak order flags */
78 set_c0_brcm_config_0(0x30000);
79
80 /* Find out if we are running on TP0 or TP1 */
81 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
82
83 /*
84 * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
85 * thread
86 * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
87 * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
88 */
89 if (boot_cpu == 0)
90 cpu_hw_intr = 0x02;
91 else
92 cpu_hw_intr = 0x1d;
93
94 change_c0_brcm_cmt_intr(0xf8018000,
95 (cpu_hw_intr << 27) | (0x03 << 15));
96
97 /* single core, 2 threads (2 pipelines) */
98 max_cpus = 2;
99
100 break;
101 case CPU_BMIPS5000:
102 /* enable raceless SW interrupts */
103 set_c0_brcm_config(0x03 << 22);
104
105 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
106 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
107
108 /* N cores, 2 threads per core */
109 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
110
111 /* clear any pending SW interrupts */
112 for (i = 0; i < max_cpus; i++) {
113 write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
114 write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
115 }
116
117 break;
118 default:
119 max_cpus = 1;
120 }
121
122 if (!bmips_smp_enabled)
123 max_cpus = 1;
124
125 /* this can be overridden by the BSP */
126 if (!board_ebase_setup)
127 board_ebase_setup = &bmips_ebase_setup;
128
129 __cpu_number_map[boot_cpu] = 0;
130 __cpu_logical_map[0] = boot_cpu;
131
132 for (i = 0; i < max_cpus; i++) {
133 if (i != boot_cpu) {
134 __cpu_number_map[i] = cpu;
135 __cpu_logical_map[cpu] = i;
136 cpu++;
137 }
138 set_cpu_possible(i, 1);
139 set_cpu_present(i, 1);
140 }
141 }
142
143 /*
144 * IPI IRQ setup - runs on CPU0
145 */
146 static void bmips_prepare_cpus(unsigned int max_cpus)
147 {
148 irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
149
150 switch (current_cpu_type()) {
151 case CPU_BMIPS4350:
152 case CPU_BMIPS4380:
153 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
154 break;
155 case CPU_BMIPS5000:
156 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
157 break;
158 default:
159 return;
160 }
161
162 if (request_irq(IPI0_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
163 "smp_ipi0", NULL))
164 panic("Can't request IPI0 interrupt");
165 if (request_irq(IPI1_IRQ, bmips_ipi_interrupt, IRQF_PERCPU,
166 "smp_ipi1", NULL))
167 panic("Can't request IPI1 interrupt");
168 }
169
170 /*
171 * Tell the hardware to boot CPUx - runs on CPU0
172 */
173 static void bmips_boot_secondary(int cpu, struct task_struct *idle)
174 {
175 bmips_smp_boot_sp = __KSTK_TOS(idle);
176 bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
177 mb();
178
179 /*
180 * Initial boot sequence for secondary CPU:
181 * bmips_reset_nmi_vec @ a000_0000 ->
182 * bmips_smp_entry ->
183 * plat_wired_tlb_setup (cached function call; optional) ->
184 * start_secondary (cached jump)
185 *
186 * Warm restart sequence:
187 * play_dead WAIT loop ->
188 * bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
189 * eret to play_dead ->
190 * bmips_secondary_reentry ->
191 * start_secondary
192 */
193
194 pr_info("SMP: Booting CPU%d...\n", cpu);
195
196 if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
197 switch (current_cpu_type()) {
198 case CPU_BMIPS4350:
199 case CPU_BMIPS4380:
200 bmips43xx_send_ipi_single(cpu, 0);
201 break;
202 case CPU_BMIPS5000:
203 bmips5000_send_ipi_single(cpu, 0);
204 break;
205 }
206 }
207 else {
208 switch (current_cpu_type()) {
209 case CPU_BMIPS4350:
210 case CPU_BMIPS4380:
211 /* Reset slave TP1 if booting from TP0 */
212 if (cpu_logical_map(cpu) == 1)
213 set_c0_brcm_cmt_ctrl(0x01);
214 break;
215 case CPU_BMIPS5000:
216 if (cpu & 0x01)
217 write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
218 else {
219 /*
220 * core N thread 0 was already booted; just
221 * pulse the NMI line
222 */
223 bmips_write_zscm_reg(0x210, 0xc0000000);
224 udelay(10);
225 bmips_write_zscm_reg(0x210, 0x00);
226 }
227 break;
228 }
229 cpumask_set_cpu(cpu, &bmips_booted_mask);
230 }
231 }
232
233 /*
234 * Early setup - runs on secondary CPU after cache probe
235 */
236 static void bmips_init_secondary(void)
237 {
238 /* move NMI vector to kseg0, in case XKS01 is enabled */
239
240 void __iomem *cbr;
241 unsigned long old_vec;
242 unsigned long relo_vector;
243 int boot_cpu;
244
245 switch (current_cpu_type()) {
246 case CPU_BMIPS4350:
247 case CPU_BMIPS4380:
248 cbr = BMIPS_GET_CBR();
249
250 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
251 relo_vector = boot_cpu ? BMIPS_RELO_VECTOR_CONTROL_0 :
252 BMIPS_RELO_VECTOR_CONTROL_1;
253
254 old_vec = __raw_readl(cbr + relo_vector);
255 __raw_writel(old_vec & ~0x20000000, cbr + relo_vector);
256
257 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
258 break;
259 case CPU_BMIPS5000:
260 write_c0_brcm_bootvec(read_c0_brcm_bootvec() &
261 (smp_processor_id() & 0x01 ? ~0x20000000 : ~0x2000));
262
263 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
264 break;
265 }
266 }
267
268 /*
269 * Late setup - runs on secondary CPU before entering the idle loop
270 */
271 static void bmips_smp_finish(void)
272 {
273 pr_info("SMP: CPU%d is running\n", smp_processor_id());
274
275 /* make sure there won't be a timer interrupt for a little while */
276 write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
277
278 irq_enable_hazard();
279 set_c0_status(IE_SW0 | IE_SW1 | IE_IRQ1 | IE_IRQ5 | ST0_IE);
280 irq_enable_hazard();
281 }
282
283 /*
284 * BMIPS5000 raceless IPIs
285 *
286 * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
287 * IPI0 is used for SMP_RESCHEDULE_YOURSELF
288 * IPI1 is used for SMP_CALL_FUNCTION
289 */
290
291 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
292 {
293 write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
294 }
295
296 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
297 {
298 int action = irq - IPI0_IRQ;
299
300 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
301
302 if (action == 0)
303 scheduler_ipi();
304 else
305 smp_call_function_interrupt();
306
307 return IRQ_HANDLED;
308 }
309
310 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
311 unsigned int action)
312 {
313 unsigned int i;
314
315 for_each_cpu(i, mask)
316 bmips5000_send_ipi_single(i, action);
317 }
318
319 /*
320 * BMIPS43xx racey IPIs
321 *
322 * We use one inbound SW IRQ for each CPU.
323 *
324 * A spinlock must be held in order to keep CPUx from accidentally clearing
325 * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy. The
326 * same spinlock is used to protect the action masks.
327 */
328
329 static DEFINE_SPINLOCK(ipi_lock);
330 static DEFINE_PER_CPU(int, ipi_action_mask);
331
332 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
333 {
334 unsigned long flags;
335
336 spin_lock_irqsave(&ipi_lock, flags);
337 set_c0_cause(cpu ? C_SW1 : C_SW0);
338 per_cpu(ipi_action_mask, cpu) |= action;
339 irq_enable_hazard();
340 spin_unlock_irqrestore(&ipi_lock, flags);
341 }
342
343 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
344 {
345 unsigned long flags;
346 int action, cpu = irq - IPI0_IRQ;
347
348 spin_lock_irqsave(&ipi_lock, flags);
349 action = __get_cpu_var(ipi_action_mask);
350 per_cpu(ipi_action_mask, cpu) = 0;
351 clear_c0_cause(cpu ? C_SW1 : C_SW0);
352 spin_unlock_irqrestore(&ipi_lock, flags);
353
354 if (action & SMP_RESCHEDULE_YOURSELF)
355 scheduler_ipi();
356 if (action & SMP_CALL_FUNCTION)
357 smp_call_function_interrupt();
358
359 return IRQ_HANDLED;
360 }
361
362 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
363 unsigned int action)
364 {
365 unsigned int i;
366
367 for_each_cpu(i, mask)
368 bmips43xx_send_ipi_single(i, action);
369 }
370
371 #ifdef CONFIG_HOTPLUG_CPU
372
373 static int bmips_cpu_disable(void)
374 {
375 unsigned int cpu = smp_processor_id();
376
377 if (cpu == 0)
378 return -EBUSY;
379
380 pr_info("SMP: CPU%d is offline\n", cpu);
381
382 set_cpu_online(cpu, false);
383 cpu_clear(cpu, cpu_callin_map);
384
385 local_flush_tlb_all();
386 local_flush_icache_range(0, ~0);
387
388 return 0;
389 }
390
391 static void bmips_cpu_die(unsigned int cpu)
392 {
393 }
394
395 void __ref play_dead(void)
396 {
397 idle_task_exit();
398
399 /* flush data cache */
400 _dma_cache_wback_inv(0, ~0);
401
402 /*
403 * Wakeup is on SW0 or SW1; disable everything else
404 * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
405 * IRQ handlers; this clears ST0_IE and returns immediately.
406 */
407 clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
408 change_c0_status(IE_IRQ5 | IE_IRQ1 | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
409 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
410 irq_disable_hazard();
411
412 /*
413 * wait for SW interrupt from bmips_boot_secondary(), then jump
414 * back to start_secondary()
415 */
416 __asm__ __volatile__(
417 " wait\n"
418 " j bmips_secondary_reentry\n"
419 : : : "memory");
420 }
421
422 #endif /* CONFIG_HOTPLUG_CPU */
423
424 struct plat_smp_ops bmips43xx_smp_ops = {
425 .smp_setup = bmips_smp_setup,
426 .prepare_cpus = bmips_prepare_cpus,
427 .boot_secondary = bmips_boot_secondary,
428 .smp_finish = bmips_smp_finish,
429 .init_secondary = bmips_init_secondary,
430 .send_ipi_single = bmips43xx_send_ipi_single,
431 .send_ipi_mask = bmips43xx_send_ipi_mask,
432 #ifdef CONFIG_HOTPLUG_CPU
433 .cpu_disable = bmips_cpu_disable,
434 .cpu_die = bmips_cpu_die,
435 #endif
436 };
437
438 struct plat_smp_ops bmips5000_smp_ops = {
439 .smp_setup = bmips_smp_setup,
440 .prepare_cpus = bmips_prepare_cpus,
441 .boot_secondary = bmips_boot_secondary,
442 .smp_finish = bmips_smp_finish,
443 .init_secondary = bmips_init_secondary,
444 .send_ipi_single = bmips5000_send_ipi_single,
445 .send_ipi_mask = bmips5000_send_ipi_mask,
446 #ifdef CONFIG_HOTPLUG_CPU
447 .cpu_disable = bmips_cpu_disable,
448 .cpu_die = bmips_cpu_die,
449 #endif
450 };
451
452 #endif /* CONFIG_SMP */
453
454 /***********************************************************************
455 * BMIPS vector relocation
456 * This is primarily used for SMP boot, but it is applicable to some
457 * UP BMIPS systems as well.
458 ***********************************************************************/
459
460 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
461 {
462 memcpy((void *)dst, start, end - start);
463 dma_cache_wback((unsigned long)start, end - start);
464 local_flush_icache_range(dst, dst + (end - start));
465 instruction_hazard();
466 }
467
468 static inline void bmips_nmi_handler_setup(void)
469 {
470 bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
471 &bmips_reset_nmi_vec_end);
472 bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
473 &bmips_smp_int_vec_end);
474 }
475
476 void bmips_ebase_setup(void)
477 {
478 unsigned long new_ebase = ebase;
479 void __iomem __maybe_unused *cbr;
480
481 BUG_ON(ebase != CKSEG0);
482
483 switch (current_cpu_type()) {
484 case CPU_BMIPS4350:
485 /*
486 * BMIPS4350 cannot relocate the normal vectors, but it
487 * can relocate the BEV=1 vectors. So CPU1 starts up at
488 * the relocated BEV=1, IV=0 general exception vector @
489 * 0xa000_0380.
490 *
491 * set_uncached_handler() is used here because:
492 * - CPU1 will run this from uncached space
493 * - None of the cacheflush functions are set up yet
494 */
495 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
496 &bmips_smp_int_vec, 0x80);
497 __sync();
498 return;
499 case CPU_BMIPS4380:
500 /*
501 * 0x8000_0000: reset/NMI (initially in kseg1)
502 * 0x8000_0400: normal vectors
503 */
504 new_ebase = 0x80000400;
505 cbr = BMIPS_GET_CBR();
506 __raw_writel(0x80080800, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
507 __raw_writel(0xa0080800, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
508 break;
509 case CPU_BMIPS5000:
510 /*
511 * 0x8000_0000: reset/NMI (initially in kseg1)
512 * 0x8000_1000: normal vectors
513 */
514 new_ebase = 0x80001000;
515 write_c0_brcm_bootvec(0xa0088008);
516 write_c0_ebase(new_ebase);
517 if (max_cpus > 2)
518 bmips_write_zscm_reg(0xa0, 0xa008a008);
519 break;
520 default:
521 return;
522 }
523
524 board_nmi_handler_setup = &bmips_nmi_handler_setup;
525 ebase = new_ebase;
526 }
527
528 asmlinkage void __weak plat_wired_tlb_setup(void)
529 {
530 /*
531 * Called when starting/restarting a secondary CPU.
532 * Kernel stacks and other important data might only be accessible
533 * once the wired entries are present.
534 */
535 }
This page took 0.184837 seconds and 5 git commands to generate.