Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / arch / mips / kernel / smp.c
1 /*
2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version 2
5 * of the License, or (at your option) any later version.
6 *
7 * This program is distributed in the hope that it will be useful,
8 * but WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
10 * GNU General Public License for more details.
11 *
12 * You should have received a copy of the GNU General Public License
13 * along with this program; if not, write to the Free Software
14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15 *
16 * Copyright (C) 2000, 2001 Kanoj Sarcar
17 * Copyright (C) 2000, 2001 Ralf Baechle
18 * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19 * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20 */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map; /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72 * A logcal cpu mask containing only one VPE per core to
73 * reduce the number of IPIs on large MT systems.
74 */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93 int i;
94
95 cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97 if (smp_num_siblings > 1) {
98 for_each_cpu(i, &cpu_sibling_setup_map) {
99 if (cpu_data[cpu].package == cpu_data[i].package &&
100 cpu_data[cpu].core == cpu_data[i].core) {
101 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103 }
104 }
105 } else
106 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111 int i;
112
113 cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115 for_each_cpu(i, &cpu_core_setup_map) {
116 if (cpu_data[cpu].package == cpu_data[i].package) {
117 cpumask_set_cpu(i, &cpu_core_map[cpu]);
118 cpumask_set_cpu(cpu, &cpu_core_map[i]);
119 }
120 }
121 }
122
123 /*
124 * Calculate a new cpu_foreign_map mask whenever a
125 * new cpu appears or disappears.
126 */
127 void calculate_cpu_foreign_map(void)
128 {
129 int i, k, core_present;
130 cpumask_t temp_foreign_map;
131
132 /* Re-calculate the mask */
133 cpumask_clear(&temp_foreign_map);
134 for_each_online_cpu(i) {
135 core_present = 0;
136 for_each_cpu(k, &temp_foreign_map)
137 if (cpu_data[i].package == cpu_data[k].package &&
138 cpu_data[i].core == cpu_data[k].core)
139 core_present = 1;
140 if (!core_present)
141 cpumask_set_cpu(i, &temp_foreign_map);
142 }
143
144 for_each_online_cpu(i)
145 cpumask_andnot(&cpu_foreign_map[i],
146 &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154 if (mp_ops)
155 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157 mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163 mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168 unsigned long flags;
169 unsigned int core;
170 int cpu;
171
172 local_irq_save(flags);
173
174 switch (action) {
175 case SMP_CALL_FUNCTION:
176 __ipi_send_mask(call_desc, mask);
177 break;
178
179 case SMP_RESCHEDULE_YOURSELF:
180 __ipi_send_mask(sched_desc, mask);
181 break;
182
183 default:
184 BUG();
185 }
186
187 if (mips_cpc_present()) {
188 for_each_cpu(cpu, mask) {
189 core = cpu_data[cpu].core;
190
191 if (core == current_cpu_data.core)
192 continue;
193
194 while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195 mips_cpc_lock_other(core);
196 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197 mips_cpc_unlock_other();
198 }
199 }
200 }
201
202 local_irq_restore(flags);
203 }
204
205
206 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
207 {
208 scheduler_ipi();
209
210 return IRQ_HANDLED;
211 }
212
213 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
214 {
215 generic_smp_call_function_interrupt();
216
217 return IRQ_HANDLED;
218 }
219
220 static struct irqaction irq_resched = {
221 .handler = ipi_resched_interrupt,
222 .flags = IRQF_PERCPU,
223 .name = "IPI resched"
224 };
225
226 static struct irqaction irq_call = {
227 .handler = ipi_call_interrupt,
228 .flags = IRQF_PERCPU,
229 .name = "IPI call"
230 };
231
232 static __init void smp_ipi_init_one(unsigned int virq,
233 struct irqaction *action)
234 {
235 int ret;
236
237 irq_set_handler(virq, handle_percpu_irq);
238 ret = setup_irq(virq, action);
239 BUG_ON(ret);
240 }
241
242 static int __init mips_smp_ipi_init(void)
243 {
244 unsigned int call_virq, sched_virq;
245 struct irq_domain *ipidomain;
246 struct device_node *node;
247
248 node = of_irq_find_parent(of_root);
249 ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
250
251 /*
252 * Some platforms have half DT setup. So if we found irq node but
253 * didn't find an ipidomain, try to search for one that is not in the
254 * DT.
255 */
256 if (node && !ipidomain)
257 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
258
259 /*
260 * There are systems which only use IPI domains some of the time,
261 * depending upon configuration we don't know until runtime. An
262 * example is Malta where we may compile in support for GIC & the
263 * MT ASE, but run on a system which has multiple VPEs in a single
264 * core and doesn't include a GIC. Until all IPI implementations
265 * have been converted to use IPI domains the best we can do here
266 * is to return & hope some other code sets up the IPIs.
267 */
268 if (!ipidomain)
269 return 0;
270
271 call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
272 BUG_ON(!call_virq);
273
274 sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
275 BUG_ON(!sched_virq);
276
277 if (irq_domain_is_ipi_per_cpu(ipidomain)) {
278 int cpu;
279
280 for_each_cpu(cpu, cpu_possible_mask) {
281 smp_ipi_init_one(call_virq + cpu, &irq_call);
282 smp_ipi_init_one(sched_virq + cpu, &irq_resched);
283 }
284 } else {
285 smp_ipi_init_one(call_virq, &irq_call);
286 smp_ipi_init_one(sched_virq, &irq_resched);
287 }
288
289 call_desc = irq_to_desc(call_virq);
290 sched_desc = irq_to_desc(sched_virq);
291
292 return 0;
293 }
294 early_initcall(mips_smp_ipi_init);
295 #endif
296
297 /*
298 * First C code run on the secondary CPUs after being started up by
299 * the master.
300 */
301 asmlinkage void start_secondary(void)
302 {
303 unsigned int cpu;
304
305 cpu_probe();
306 per_cpu_trap_init(false);
307 mips_clockevent_init();
308 mp_ops->init_secondary();
309 cpu_report();
310 maar_init();
311
312 /*
313 * XXX parity protection should be folded in here when it's converted
314 * to an option instead of something based on .cputype
315 */
316
317 calibrate_delay();
318 preempt_disable();
319 cpu = smp_processor_id();
320 cpu_data[cpu].udelay_val = loops_per_jiffy;
321
322 cpumask_set_cpu(cpu, &cpu_coherent_mask);
323 notify_cpu_starting(cpu);
324
325 set_cpu_online(cpu, true);
326
327 set_cpu_sibling_map(cpu);
328 set_cpu_core_map(cpu);
329
330 calculate_cpu_foreign_map();
331
332 cpumask_set_cpu(cpu, &cpu_callin_map);
333
334 synchronise_count_slave(cpu);
335
336 /*
337 * irq will be enabled in ->smp_finish(), enabling it too early
338 * is dangerous.
339 */
340 WARN_ON_ONCE(!irqs_disabled());
341 mp_ops->smp_finish();
342
343 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
344 }
345
346 static void stop_this_cpu(void *dummy)
347 {
348 /*
349 * Remove this CPU:
350 */
351
352 set_cpu_online(smp_processor_id(), false);
353 calculate_cpu_foreign_map();
354 local_irq_disable();
355 while (1);
356 }
357
358 void smp_send_stop(void)
359 {
360 smp_call_function(stop_this_cpu, NULL, 0);
361 }
362
363 void __init smp_cpus_done(unsigned int max_cpus)
364 {
365 }
366
367 /* called from main before smp_init() */
368 void __init smp_prepare_cpus(unsigned int max_cpus)
369 {
370 init_new_context(current, &init_mm);
371 current_thread_info()->cpu = 0;
372 mp_ops->prepare_cpus(max_cpus);
373 set_cpu_sibling_map(0);
374 set_cpu_core_map(0);
375 calculate_cpu_foreign_map();
376 #ifndef CONFIG_HOTPLUG_CPU
377 init_cpu_present(cpu_possible_mask);
378 #endif
379 cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
380 }
381
382 /* preload SMP state for boot cpu */
383 void smp_prepare_boot_cpu(void)
384 {
385 set_cpu_possible(0, true);
386 set_cpu_online(0, true);
387 cpumask_set_cpu(0, &cpu_callin_map);
388 }
389
390 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
391 {
392 mp_ops->boot_secondary(cpu, tidle);
393
394 /*
395 * Trust is futile. We should really have timeouts ...
396 */
397 while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
398 udelay(100);
399 schedule();
400 }
401
402 synchronise_count_master(cpu);
403 return 0;
404 }
405
406 /* Not really SMP stuff ... */
407 int setup_profiling_timer(unsigned int multiplier)
408 {
409 return 0;
410 }
411
412 static void flush_tlb_all_ipi(void *info)
413 {
414 local_flush_tlb_all();
415 }
416
417 void flush_tlb_all(void)
418 {
419 on_each_cpu(flush_tlb_all_ipi, NULL, 1);
420 }
421
422 static void flush_tlb_mm_ipi(void *mm)
423 {
424 local_flush_tlb_mm((struct mm_struct *)mm);
425 }
426
427 /*
428 * Special Variant of smp_call_function for use by TLB functions:
429 *
430 * o No return value
431 * o collapses to normal function call on UP kernels
432 * o collapses to normal function call on systems with a single shared
433 * primary cache.
434 */
435 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
436 {
437 smp_call_function(func, info, 1);
438 }
439
440 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
441 {
442 preempt_disable();
443
444 smp_on_other_tlbs(func, info);
445 func(info);
446
447 preempt_enable();
448 }
449
450 /*
451 * The following tlb flush calls are invoked when old translations are
452 * being torn down, or pte attributes are changing. For single threaded
453 * address spaces, a new context is obtained on the current cpu, and tlb
454 * context on other cpus are invalidated to force a new context allocation
455 * at switch_mm time, should the mm ever be used on other cpus. For
456 * multithreaded address spaces, intercpu interrupts have to be sent.
457 * Another case where intercpu interrupts are required is when the target
458 * mm might be active on another cpu (eg debuggers doing the flushes on
459 * behalf of debugees, kswapd stealing pages from another process etc).
460 * Kanoj 07/00.
461 */
462
463 void flush_tlb_mm(struct mm_struct *mm)
464 {
465 preempt_disable();
466
467 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
468 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
469 } else {
470 unsigned int cpu;
471
472 for_each_online_cpu(cpu) {
473 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
474 cpu_context(cpu, mm) = 0;
475 }
476 }
477 local_flush_tlb_mm(mm);
478
479 preempt_enable();
480 }
481
482 struct flush_tlb_data {
483 struct vm_area_struct *vma;
484 unsigned long addr1;
485 unsigned long addr2;
486 };
487
488 static void flush_tlb_range_ipi(void *info)
489 {
490 struct flush_tlb_data *fd = info;
491
492 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
493 }
494
495 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
496 {
497 struct mm_struct *mm = vma->vm_mm;
498
499 preempt_disable();
500 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
501 struct flush_tlb_data fd = {
502 .vma = vma,
503 .addr1 = start,
504 .addr2 = end,
505 };
506
507 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
508 } else {
509 unsigned int cpu;
510 int exec = vma->vm_flags & VM_EXEC;
511
512 for_each_online_cpu(cpu) {
513 /*
514 * flush_cache_range() will only fully flush icache if
515 * the VMA is executable, otherwise we must invalidate
516 * ASID without it appearing to has_valid_asid() as if
517 * mm has been completely unused by that CPU.
518 */
519 if (cpu != smp_processor_id() && cpu_context(cpu, mm))
520 cpu_context(cpu, mm) = !exec;
521 }
522 }
523 local_flush_tlb_range(vma, start, end);
524 preempt_enable();
525 }
526
527 static void flush_tlb_kernel_range_ipi(void *info)
528 {
529 struct flush_tlb_data *fd = info;
530
531 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
532 }
533
534 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
535 {
536 struct flush_tlb_data fd = {
537 .addr1 = start,
538 .addr2 = end,
539 };
540
541 on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
542 }
543
544 static void flush_tlb_page_ipi(void *info)
545 {
546 struct flush_tlb_data *fd = info;
547
548 local_flush_tlb_page(fd->vma, fd->addr1);
549 }
550
551 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
552 {
553 preempt_disable();
554 if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
555 struct flush_tlb_data fd = {
556 .vma = vma,
557 .addr1 = page,
558 };
559
560 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
561 } else {
562 unsigned int cpu;
563
564 for_each_online_cpu(cpu) {
565 /*
566 * flush_cache_page() only does partial flushes, so
567 * invalidate ASID without it appearing to
568 * has_valid_asid() as if mm has been completely unused
569 * by that CPU.
570 */
571 if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
572 cpu_context(cpu, vma->vm_mm) = 1;
573 }
574 }
575 local_flush_tlb_page(vma, page);
576 preempt_enable();
577 }
578
579 static void flush_tlb_one_ipi(void *info)
580 {
581 unsigned long vaddr = (unsigned long) info;
582
583 local_flush_tlb_one(vaddr);
584 }
585
586 void flush_tlb_one(unsigned long vaddr)
587 {
588 smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
589 }
590
591 EXPORT_SYMBOL(flush_tlb_page);
592 EXPORT_SYMBOL(flush_tlb_one);
593
594 #if defined(CONFIG_KEXEC)
595 void (*dump_ipi_function_ptr)(void *) = NULL;
596 void dump_send_ipi(void (*dump_ipi_callback)(void *))
597 {
598 int i;
599 int cpu = smp_processor_id();
600
601 dump_ipi_function_ptr = dump_ipi_callback;
602 smp_mb();
603 for_each_online_cpu(i)
604 if (i != cpu)
605 mp_ops->send_ipi_single(i, SMP_DUMP);
606
607 }
608 EXPORT_SYMBOL(dump_send_ipi);
609 #endif
610
611 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
612
613 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
614 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
615
616 void tick_broadcast(const struct cpumask *mask)
617 {
618 atomic_t *count;
619 struct call_single_data *csd;
620 int cpu;
621
622 for_each_cpu(cpu, mask) {
623 count = &per_cpu(tick_broadcast_count, cpu);
624 csd = &per_cpu(tick_broadcast_csd, cpu);
625
626 if (atomic_inc_return(count) == 1)
627 smp_call_function_single_async(cpu, csd);
628 }
629 }
630
631 static void tick_broadcast_callee(void *info)
632 {
633 int cpu = smp_processor_id();
634 tick_receive_broadcast();
635 atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
636 }
637
638 static int __init tick_broadcast_init(void)
639 {
640 struct call_single_data *csd;
641 int cpu;
642
643 for (cpu = 0; cpu < NR_CPUS; cpu++) {
644 csd = &per_cpu(tick_broadcast_csd, cpu);
645 csd->func = tick_broadcast_callee;
646 }
647
648 return 0;
649 }
650 early_initcall(tick_broadcast_init);
651
652 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
This page took 0.083736 seconds and 6 git commands to generate.