[MIPS] Use conditional traps for BUG_ON on MIPS II and better.
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
13 */
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/smp_lock.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
24
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/watch.h>
43 #include <asm/types.h>
44 #include <asm/stacktrace.h>
45
46 extern asmlinkage void handle_int(void);
47 extern asmlinkage void handle_tlbm(void);
48 extern asmlinkage void handle_tlbl(void);
49 extern asmlinkage void handle_tlbs(void);
50 extern asmlinkage void handle_adel(void);
51 extern asmlinkage void handle_ades(void);
52 extern asmlinkage void handle_ibe(void);
53 extern asmlinkage void handle_dbe(void);
54 extern asmlinkage void handle_sys(void);
55 extern asmlinkage void handle_bp(void);
56 extern asmlinkage void handle_ri(void);
57 extern asmlinkage void handle_ri_rdhwr_vivt(void);
58 extern asmlinkage void handle_ri_rdhwr(void);
59 extern asmlinkage void handle_cpu(void);
60 extern asmlinkage void handle_ov(void);
61 extern asmlinkage void handle_tr(void);
62 extern asmlinkage void handle_fpe(void);
63 extern asmlinkage void handle_mdmx(void);
64 extern asmlinkage void handle_watch(void);
65 extern asmlinkage void handle_mt(void);
66 extern asmlinkage void handle_dsp(void);
67 extern asmlinkage void handle_mcheck(void);
68 extern asmlinkage void handle_reserved(void);
69
70 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
71 struct mips_fpu_struct *ctx, int has_fpu);
72
73 void (*board_be_init)(void);
74 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
75 void (*board_nmi_handler_setup)(void);
76 void (*board_ejtag_handler_setup)(void);
77 void (*board_bind_eic_interrupt)(int irq, int regset);
78
79
80 static void show_raw_backtrace(unsigned long reg29)
81 {
82 unsigned long *sp = (unsigned long *)reg29;
83 unsigned long addr;
84
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
87 printk("\n");
88 #endif
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
93 }
94 printk("\n");
95 }
96
97 #ifdef CONFIG_KALLSYMS
98 int raw_show_trace;
99 static int __init set_raw_show_trace(char *str)
100 {
101 raw_show_trace = 1;
102 return 1;
103 }
104 __setup("raw_show_trace", set_raw_show_trace);
105 #endif
106
107 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 {
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
111 unsigned long pc = regs->cp0_epc;
112
113 if (raw_show_trace || !__kernel_text_address(pc)) {
114 show_raw_backtrace(sp);
115 return;
116 }
117 printk("Call Trace:\n");
118 do {
119 print_ip_sym(pc);
120 pc = unwind_stack(task, &sp, pc, &ra);
121 } while (pc);
122 printk("\n");
123 }
124
125 /*
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
128 */
129 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
130 {
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
134 unsigned long *sp = (unsigned long *)regs->regs[29];
135
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
144 }
145
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
149 }
150
151 printk(" %0*lx", field, stackdata);
152 i++;
153 }
154 printk("\n");
155 show_backtrace(task, regs);
156 }
157
158 void show_stack(struct task_struct *task, unsigned long *sp)
159 {
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
172 }
173 }
174 show_stacktrace(task, &regs);
175 }
176
177 /*
178 * The architecture-independent dump_stack generator
179 */
180 void dump_stack(void)
181 {
182 struct pt_regs regs;
183
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
186 }
187
188 EXPORT_SYMBOL(dump_stack);
189
190 void show_code(unsigned int *pc)
191 {
192 long i;
193
194 printk("\nCode:");
195
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
201 }
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
203 }
204 }
205
206 void show_regs(struct pt_regs *regs)
207 {
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
211
212 printk("Cpu %d\n", smp_processor_id());
213
214 /*
215 * Saved main processor registers
216 */
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
226
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
230 }
231
232 printk("Hi : %0*lx\n", field, regs->hi);
233 printk("Lo : %0*lx\n", field, regs->lo);
234
235 /*
236 * Saved cp0 registers
237 */
238 printk("epc : %0*lx ", field, regs->cp0_epc);
239 print_symbol("%s ", regs->cp0_epc);
240 printk(" %s\n", print_tainted());
241 printk("ra : %0*lx ", field, regs->regs[31]);
242 print_symbol("%s\n", regs->regs[31]);
243
244 printk("Status: %08x ", (uint32_t) regs->cp0_status);
245
246 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
247 if (regs->cp0_status & ST0_KUO)
248 printk("KUo ");
249 if (regs->cp0_status & ST0_IEO)
250 printk("IEo ");
251 if (regs->cp0_status & ST0_KUP)
252 printk("KUp ");
253 if (regs->cp0_status & ST0_IEP)
254 printk("IEp ");
255 if (regs->cp0_status & ST0_KUC)
256 printk("KUc ");
257 if (regs->cp0_status & ST0_IEC)
258 printk("IEc ");
259 } else {
260 if (regs->cp0_status & ST0_KX)
261 printk("KX ");
262 if (regs->cp0_status & ST0_SX)
263 printk("SX ");
264 if (regs->cp0_status & ST0_UX)
265 printk("UX ");
266 switch (regs->cp0_status & ST0_KSU) {
267 case KSU_USER:
268 printk("USER ");
269 break;
270 case KSU_SUPERVISOR:
271 printk("SUPERVISOR ");
272 break;
273 case KSU_KERNEL:
274 printk("KERNEL ");
275 break;
276 default:
277 printk("BAD_MODE ");
278 break;
279 }
280 if (regs->cp0_status & ST0_ERL)
281 printk("ERL ");
282 if (regs->cp0_status & ST0_EXL)
283 printk("EXL ");
284 if (regs->cp0_status & ST0_IE)
285 printk("IE ");
286 }
287 printk("\n");
288
289 printk("Cause : %08x\n", cause);
290
291 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
292 if (1 <= cause && cause <= 5)
293 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
294
295 printk("PrId : %08x\n", read_c0_prid());
296 }
297
298 void show_registers(struct pt_regs *regs)
299 {
300 show_regs(regs);
301 print_modules();
302 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
303 current->comm, current->pid, current_thread_info(), current);
304 show_stacktrace(current, regs);
305 show_code((unsigned int *) regs->cp0_epc);
306 printk("\n");
307 }
308
309 static DEFINE_SPINLOCK(die_lock);
310
311 NORET_TYPE void ATTRIB_NORET die(const char * str, struct pt_regs * regs)
312 {
313 static int die_counter;
314 #ifdef CONFIG_MIPS_MT_SMTC
315 unsigned long dvpret = dvpe();
316 #endif /* CONFIG_MIPS_MT_SMTC */
317
318 console_verbose();
319 spin_lock_irq(&die_lock);
320 bust_spinlocks(1);
321 #ifdef CONFIG_MIPS_MT_SMTC
322 mips_mt_regdump(dvpret);
323 #endif /* CONFIG_MIPS_MT_SMTC */
324 printk("%s[#%d]:\n", str, ++die_counter);
325 show_registers(regs);
326 spin_unlock_irq(&die_lock);
327
328 if (in_interrupt())
329 panic("Fatal exception in interrupt");
330
331 if (panic_on_oops) {
332 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
333 ssleep(5);
334 panic("Fatal exception");
335 }
336
337 do_exit(SIGSEGV);
338 }
339
340 extern const struct exception_table_entry __start___dbe_table[];
341 extern const struct exception_table_entry __stop___dbe_table[];
342
343 void __declare_dbe_table(void)
344 {
345 __asm__ __volatile__(
346 ".section\t__dbe_table,\"a\"\n\t"
347 ".previous"
348 );
349 }
350
351 /* Given an address, look for it in the exception tables. */
352 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
353 {
354 const struct exception_table_entry *e;
355
356 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
357 if (!e)
358 e = search_module_dbetables(addr);
359 return e;
360 }
361
362 asmlinkage void do_be(struct pt_regs *regs)
363 {
364 const int field = 2 * sizeof(unsigned long);
365 const struct exception_table_entry *fixup = NULL;
366 int data = regs->cp0_cause & 4;
367 int action = MIPS_BE_FATAL;
368
369 /* XXX For now. Fixme, this searches the wrong table ... */
370 if (data && !user_mode(regs))
371 fixup = search_dbe_tables(exception_epc(regs));
372
373 if (fixup)
374 action = MIPS_BE_FIXUP;
375
376 if (board_be_handler)
377 action = board_be_handler(regs, fixup != 0);
378
379 switch (action) {
380 case MIPS_BE_DISCARD:
381 return;
382 case MIPS_BE_FIXUP:
383 if (fixup) {
384 regs->cp0_epc = fixup->nextinsn;
385 return;
386 }
387 break;
388 default:
389 break;
390 }
391
392 /*
393 * Assume it would be too dangerous to continue ...
394 */
395 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
396 data ? "Data" : "Instruction",
397 field, regs->cp0_epc, field, regs->regs[31]);
398 die_if_kernel("Oops", regs);
399 force_sig(SIGBUS, current);
400 }
401
402 /*
403 * ll/sc emulation
404 */
405
406 #define OPCODE 0xfc000000
407 #define BASE 0x03e00000
408 #define RT 0x001f0000
409 #define OFFSET 0x0000ffff
410 #define LL 0xc0000000
411 #define SC 0xe0000000
412 #define SPEC3 0x7c000000
413 #define RD 0x0000f800
414 #define FUNC 0x0000003f
415 #define RDHWR 0x0000003b
416
417 /*
418 * The ll_bit is cleared by r*_switch.S
419 */
420
421 unsigned long ll_bit;
422
423 static struct task_struct *ll_task = NULL;
424
425 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
426 {
427 unsigned long value, __user *vaddr;
428 long offset;
429 int signal = 0;
430
431 /*
432 * analyse the ll instruction that just caused a ri exception
433 * and put the referenced address to addr.
434 */
435
436 /* sign extend offset */
437 offset = opcode & OFFSET;
438 offset <<= 16;
439 offset >>= 16;
440
441 vaddr = (unsigned long __user *)
442 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
443
444 if ((unsigned long)vaddr & 3) {
445 signal = SIGBUS;
446 goto sig;
447 }
448 if (get_user(value, vaddr)) {
449 signal = SIGSEGV;
450 goto sig;
451 }
452
453 preempt_disable();
454
455 if (ll_task == NULL || ll_task == current) {
456 ll_bit = 1;
457 } else {
458 ll_bit = 0;
459 }
460 ll_task = current;
461
462 preempt_enable();
463
464 compute_return_epc(regs);
465
466 regs->regs[(opcode & RT) >> 16] = value;
467
468 return;
469
470 sig:
471 force_sig(signal, current);
472 }
473
474 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
475 {
476 unsigned long __user *vaddr;
477 unsigned long reg;
478 long offset;
479 int signal = 0;
480
481 /*
482 * analyse the sc instruction that just caused a ri exception
483 * and put the referenced address to addr.
484 */
485
486 /* sign extend offset */
487 offset = opcode & OFFSET;
488 offset <<= 16;
489 offset >>= 16;
490
491 vaddr = (unsigned long __user *)
492 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
493 reg = (opcode & RT) >> 16;
494
495 if ((unsigned long)vaddr & 3) {
496 signal = SIGBUS;
497 goto sig;
498 }
499
500 preempt_disable();
501
502 if (ll_bit == 0 || ll_task != current) {
503 compute_return_epc(regs);
504 regs->regs[reg] = 0;
505 preempt_enable();
506 return;
507 }
508
509 preempt_enable();
510
511 if (put_user(regs->regs[reg], vaddr)) {
512 signal = SIGSEGV;
513 goto sig;
514 }
515
516 compute_return_epc(regs);
517 regs->regs[reg] = 1;
518
519 return;
520
521 sig:
522 force_sig(signal, current);
523 }
524
525 /*
526 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
527 * opcodes are supposed to result in coprocessor unusable exceptions if
528 * executed on ll/sc-less processors. That's the theory. In practice a
529 * few processors such as NEC's VR4100 throw reserved instruction exceptions
530 * instead, so we're doing the emulation thing in both exception handlers.
531 */
532 static inline int simulate_llsc(struct pt_regs *regs)
533 {
534 unsigned int opcode;
535
536 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
537 goto out_sigsegv;
538
539 if ((opcode & OPCODE) == LL) {
540 simulate_ll(regs, opcode);
541 return 0;
542 }
543 if ((opcode & OPCODE) == SC) {
544 simulate_sc(regs, opcode);
545 return 0;
546 }
547
548 return -EFAULT; /* Strange things going on ... */
549
550 out_sigsegv:
551 force_sig(SIGSEGV, current);
552 return -EFAULT;
553 }
554
555 /*
556 * Simulate trapping 'rdhwr' instructions to provide user accessible
557 * registers not implemented in hardware. The only current use of this
558 * is the thread area pointer.
559 */
560 static inline int simulate_rdhwr(struct pt_regs *regs)
561 {
562 struct thread_info *ti = task_thread_info(current);
563 unsigned int opcode;
564
565 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
566 goto out_sigsegv;
567
568 if (unlikely(compute_return_epc(regs)))
569 return -EFAULT;
570
571 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
572 int rd = (opcode & RD) >> 11;
573 int rt = (opcode & RT) >> 16;
574 switch (rd) {
575 case 29:
576 regs->regs[rt] = ti->tp_value;
577 return 0;
578 default:
579 return -EFAULT;
580 }
581 }
582
583 /* Not ours. */
584 return -EFAULT;
585
586 out_sigsegv:
587 force_sig(SIGSEGV, current);
588 return -EFAULT;
589 }
590
591 asmlinkage void do_ov(struct pt_regs *regs)
592 {
593 siginfo_t info;
594
595 die_if_kernel("Integer overflow", regs);
596
597 info.si_code = FPE_INTOVF;
598 info.si_signo = SIGFPE;
599 info.si_errno = 0;
600 info.si_addr = (void __user *) regs->cp0_epc;
601 force_sig_info(SIGFPE, &info, current);
602 }
603
604 /*
605 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
606 */
607 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
608 {
609 die_if_kernel("FP exception in kernel code", regs);
610
611 if (fcr31 & FPU_CSR_UNI_X) {
612 int sig;
613
614 preempt_disable();
615
616 #ifdef CONFIG_PREEMPT
617 if (!is_fpu_owner()) {
618 /* We might lose fpu before disabling preempt... */
619 own_fpu();
620 BUG_ON(!used_math());
621 restore_fp(current);
622 }
623 #endif
624 /*
625 * Unimplemented operation exception. If we've got the full
626 * software emulator on-board, let's use it...
627 *
628 * Force FPU to dump state into task/thread context. We're
629 * moving a lot of data here for what is probably a single
630 * instruction, but the alternative is to pre-decode the FP
631 * register operands before invoking the emulator, which seems
632 * a bit extreme for what should be an infrequent event.
633 */
634 save_fp(current);
635 /* Ensure 'resume' not overwrite saved fp context again. */
636 lose_fpu();
637
638 preempt_enable();
639
640 /* Run the emulator */
641 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
642
643 preempt_disable();
644
645 own_fpu(); /* Using the FPU again. */
646 /*
647 * We can't allow the emulated instruction to leave any of
648 * the cause bit set in $fcr31.
649 */
650 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
651
652 /* Restore the hardware register state */
653 restore_fp(current);
654
655 preempt_enable();
656
657 /* If something went wrong, signal */
658 if (sig)
659 force_sig(sig, current);
660
661 return;
662 }
663
664 force_sig(SIGFPE, current);
665 }
666
667 asmlinkage void do_bp(struct pt_regs *regs)
668 {
669 unsigned int opcode, bcode;
670 siginfo_t info;
671
672 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
673 goto out_sigsegv;
674
675 /*
676 * There is the ancient bug in the MIPS assemblers that the break
677 * code starts left to bit 16 instead to bit 6 in the opcode.
678 * Gas is bug-compatible, but not always, grrr...
679 * We handle both cases with a simple heuristics. --macro
680 */
681 bcode = ((opcode >> 6) & ((1 << 20) - 1));
682 if (bcode < (1 << 10))
683 bcode <<= 10;
684
685 /*
686 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
687 * insns, even for break codes that indicate arithmetic failures.
688 * Weird ...)
689 * But should we continue the brokenness??? --macro
690 */
691 switch (bcode) {
692 case BRK_OVERFLOW << 10:
693 case BRK_DIVZERO << 10:
694 die_if_kernel("Break instruction in kernel code", regs);
695 if (bcode == (BRK_DIVZERO << 10))
696 info.si_code = FPE_INTDIV;
697 else
698 info.si_code = FPE_INTOVF;
699 info.si_signo = SIGFPE;
700 info.si_errno = 0;
701 info.si_addr = (void __user *) regs->cp0_epc;
702 force_sig_info(SIGFPE, &info, current);
703 break;
704 case BRK_BUG:
705 die("Kernel bug detected", regs);
706 break;
707 default:
708 die_if_kernel("Break instruction in kernel code", regs);
709 force_sig(SIGTRAP, current);
710 }
711
712 out_sigsegv:
713 force_sig(SIGSEGV, current);
714 }
715
716 asmlinkage void do_tr(struct pt_regs *regs)
717 {
718 unsigned int opcode, tcode = 0;
719 siginfo_t info;
720
721 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
722 goto out_sigsegv;
723
724 /* Immediate versions don't provide a code. */
725 if (!(opcode & OPCODE))
726 tcode = ((opcode >> 6) & ((1 << 10) - 1));
727
728 /*
729 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
730 * insns, even for trap codes that indicate arithmetic failures.
731 * Weird ...)
732 * But should we continue the brokenness??? --macro
733 */
734 switch (tcode) {
735 case BRK_OVERFLOW:
736 case BRK_DIVZERO:
737 die_if_kernel("Trap instruction in kernel code", regs);
738 if (tcode == BRK_DIVZERO)
739 info.si_code = FPE_INTDIV;
740 else
741 info.si_code = FPE_INTOVF;
742 info.si_signo = SIGFPE;
743 info.si_errno = 0;
744 info.si_addr = (void __user *) regs->cp0_epc;
745 force_sig_info(SIGFPE, &info, current);
746 break;
747 case BRK_BUG:
748 die("Kernel bug detected", regs);
749 break;
750 default:
751 die_if_kernel("Trap instruction in kernel code", regs);
752 force_sig(SIGTRAP, current);
753 }
754
755 out_sigsegv:
756 force_sig(SIGSEGV, current);
757 }
758
759 asmlinkage void do_ri(struct pt_regs *regs)
760 {
761 die_if_kernel("Reserved instruction in kernel code", regs);
762
763 if (!cpu_has_llsc)
764 if (!simulate_llsc(regs))
765 return;
766
767 if (!simulate_rdhwr(regs))
768 return;
769
770 force_sig(SIGILL, current);
771 }
772
773 asmlinkage void do_cpu(struct pt_regs *regs)
774 {
775 unsigned int cpid;
776
777 die_if_kernel("do_cpu invoked from kernel context!", regs);
778
779 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
780
781 switch (cpid) {
782 case 0:
783 if (!cpu_has_llsc)
784 if (!simulate_llsc(regs))
785 return;
786
787 if (!simulate_rdhwr(regs))
788 return;
789
790 break;
791
792 case 1:
793 preempt_disable();
794
795 own_fpu();
796 if (used_math()) { /* Using the FPU again. */
797 restore_fp(current);
798 } else { /* First time FPU user. */
799 init_fpu();
800 set_used_math();
801 }
802
803 if (cpu_has_fpu) {
804 preempt_enable();
805 } else {
806 int sig;
807 preempt_enable();
808 sig = fpu_emulator_cop1Handler(regs,
809 &current->thread.fpu, 0);
810 if (sig)
811 force_sig(sig, current);
812 #ifdef CONFIG_MIPS_MT_FPAFF
813 else {
814 /*
815 * MIPS MT processors may have fewer FPU contexts
816 * than CPU threads. If we've emulated more than
817 * some threshold number of instructions, force
818 * migration to a "CPU" that has FP support.
819 */
820 if(mt_fpemul_threshold > 0
821 && ((current->thread.emulated_fp++
822 > mt_fpemul_threshold))) {
823 /*
824 * If there's no FPU present, or if the
825 * application has already restricted
826 * the allowed set to exclude any CPUs
827 * with FPUs, we'll skip the procedure.
828 */
829 if (cpus_intersects(current->cpus_allowed,
830 mt_fpu_cpumask)) {
831 cpumask_t tmask;
832
833 cpus_and(tmask,
834 current->thread.user_cpus_allowed,
835 mt_fpu_cpumask);
836 set_cpus_allowed(current, tmask);
837 current->thread.mflags |= MF_FPUBOUND;
838 }
839 }
840 }
841 #endif /* CONFIG_MIPS_MT_FPAFF */
842 }
843
844 return;
845
846 case 2:
847 case 3:
848 die_if_kernel("do_cpu invoked from kernel context!", regs);
849 break;
850 }
851
852 force_sig(SIGILL, current);
853 }
854
855 asmlinkage void do_mdmx(struct pt_regs *regs)
856 {
857 force_sig(SIGILL, current);
858 }
859
860 asmlinkage void do_watch(struct pt_regs *regs)
861 {
862 /*
863 * We use the watch exception where available to detect stack
864 * overflows.
865 */
866 dump_tlb_all();
867 show_regs(regs);
868 panic("Caught WATCH exception - probably caused by stack overflow.");
869 }
870
871 asmlinkage void do_mcheck(struct pt_regs *regs)
872 {
873 const int field = 2 * sizeof(unsigned long);
874 int multi_match = regs->cp0_status & ST0_TS;
875
876 show_regs(regs);
877
878 if (multi_match) {
879 printk("Index : %0x\n", read_c0_index());
880 printk("Pagemask: %0x\n", read_c0_pagemask());
881 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
882 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
883 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
884 printk("\n");
885 dump_tlb_all();
886 }
887
888 show_code((unsigned int *) regs->cp0_epc);
889
890 /*
891 * Some chips may have other causes of machine check (e.g. SB1
892 * graduation timer)
893 */
894 panic("Caught Machine Check exception - %scaused by multiple "
895 "matching entries in the TLB.",
896 (multi_match) ? "" : "not ");
897 }
898
899 asmlinkage void do_mt(struct pt_regs *regs)
900 {
901 int subcode;
902
903 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
904 >> VPECONTROL_EXCPT_SHIFT;
905 switch (subcode) {
906 case 0:
907 printk(KERN_DEBUG "Thread Underflow\n");
908 break;
909 case 1:
910 printk(KERN_DEBUG "Thread Overflow\n");
911 break;
912 case 2:
913 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
914 break;
915 case 3:
916 printk(KERN_DEBUG "Gating Storage Exception\n");
917 break;
918 case 4:
919 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
920 break;
921 case 5:
922 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
923 break;
924 default:
925 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
926 subcode);
927 break;
928 }
929 die_if_kernel("MIPS MT Thread exception in kernel", regs);
930
931 force_sig(SIGILL, current);
932 }
933
934
935 asmlinkage void do_dsp(struct pt_regs *regs)
936 {
937 if (cpu_has_dsp)
938 panic("Unexpected DSP exception\n");
939
940 force_sig(SIGILL, current);
941 }
942
943 asmlinkage void do_reserved(struct pt_regs *regs)
944 {
945 /*
946 * Game over - no way to handle this if it ever occurs. Most probably
947 * caused by a new unknown cpu type or after another deadly
948 * hard/software error.
949 */
950 show_regs(regs);
951 panic("Caught reserved exception %ld - should not happen.",
952 (regs->cp0_cause & 0x7f) >> 2);
953 }
954
955 asmlinkage void do_default_vi(struct pt_regs *regs)
956 {
957 show_regs(regs);
958 panic("Caught unexpected vectored interrupt.");
959 }
960
961 /*
962 * Some MIPS CPUs can enable/disable for cache parity detection, but do
963 * it different ways.
964 */
965 static inline void parity_protection_init(void)
966 {
967 switch (current_cpu_data.cputype) {
968 case CPU_24K:
969 case CPU_34K:
970 case CPU_5KC:
971 write_c0_ecc(0x80000000);
972 back_to_back_c0_hazard();
973 /* Set the PE bit (bit 31) in the c0_errctl register. */
974 printk(KERN_INFO "Cache parity protection %sabled\n",
975 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
976 break;
977 case CPU_20KC:
978 case CPU_25KF:
979 /* Clear the DE bit (bit 16) in the c0_status register. */
980 printk(KERN_INFO "Enable cache parity protection for "
981 "MIPS 20KC/25KF CPUs.\n");
982 clear_c0_status(ST0_DE);
983 break;
984 default:
985 break;
986 }
987 }
988
989 asmlinkage void cache_parity_error(void)
990 {
991 const int field = 2 * sizeof(unsigned long);
992 unsigned int reg_val;
993
994 /* For the moment, report the problem and hang. */
995 printk("Cache error exception:\n");
996 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
997 reg_val = read_c0_cacheerr();
998 printk("c0_cacheerr == %08x\n", reg_val);
999
1000 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1001 reg_val & (1<<30) ? "secondary" : "primary",
1002 reg_val & (1<<31) ? "data" : "insn");
1003 printk("Error bits: %s%s%s%s%s%s%s\n",
1004 reg_val & (1<<29) ? "ED " : "",
1005 reg_val & (1<<28) ? "ET " : "",
1006 reg_val & (1<<26) ? "EE " : "",
1007 reg_val & (1<<25) ? "EB " : "",
1008 reg_val & (1<<24) ? "EI " : "",
1009 reg_val & (1<<23) ? "E1 " : "",
1010 reg_val & (1<<22) ? "E0 " : "");
1011 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1012
1013 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1014 if (reg_val & (1<<22))
1015 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1016
1017 if (reg_val & (1<<23))
1018 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1019 #endif
1020
1021 panic("Can't handle the cache error!");
1022 }
1023
1024 /*
1025 * SDBBP EJTAG debug exception handler.
1026 * We skip the instruction and return to the next instruction.
1027 */
1028 void ejtag_exception_handler(struct pt_regs *regs)
1029 {
1030 const int field = 2 * sizeof(unsigned long);
1031 unsigned long depc, old_epc;
1032 unsigned int debug;
1033
1034 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1035 depc = read_c0_depc();
1036 debug = read_c0_debug();
1037 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1038 if (debug & 0x80000000) {
1039 /*
1040 * In branch delay slot.
1041 * We cheat a little bit here and use EPC to calculate the
1042 * debug return address (DEPC). EPC is restored after the
1043 * calculation.
1044 */
1045 old_epc = regs->cp0_epc;
1046 regs->cp0_epc = depc;
1047 __compute_return_epc(regs);
1048 depc = regs->cp0_epc;
1049 regs->cp0_epc = old_epc;
1050 } else
1051 depc += 4;
1052 write_c0_depc(depc);
1053
1054 #if 0
1055 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1056 write_c0_debug(debug | 0x100);
1057 #endif
1058 }
1059
1060 /*
1061 * NMI exception handler.
1062 */
1063 void nmi_exception_handler(struct pt_regs *regs)
1064 {
1065 #ifdef CONFIG_MIPS_MT_SMTC
1066 unsigned long dvpret = dvpe();
1067 bust_spinlocks(1);
1068 printk("NMI taken!!!!\n");
1069 mips_mt_regdump(dvpret);
1070 #else
1071 bust_spinlocks(1);
1072 printk("NMI taken!!!!\n");
1073 #endif /* CONFIG_MIPS_MT_SMTC */
1074 die("NMI", regs);
1075 while(1) ;
1076 }
1077
1078 #define VECTORSPACING 0x100 /* for EI/VI mode */
1079
1080 unsigned long ebase;
1081 unsigned long exception_handlers[32];
1082 unsigned long vi_handlers[64];
1083
1084 /*
1085 * As a side effect of the way this is implemented we're limited
1086 * to interrupt handlers in the address range from
1087 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1088 */
1089 void *set_except_vector(int n, void *addr)
1090 {
1091 unsigned long handler = (unsigned long) addr;
1092 unsigned long old_handler = exception_handlers[n];
1093
1094 exception_handlers[n] = handler;
1095 if (n == 0 && cpu_has_divec) {
1096 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1097 (0x03ffffff & (handler >> 2));
1098 flush_icache_range(ebase + 0x200, ebase + 0x204);
1099 }
1100 return (void *)old_handler;
1101 }
1102
1103 #ifdef CONFIG_CPU_MIPSR2_SRS
1104 /*
1105 * MIPSR2 shadow register set allocation
1106 * FIXME: SMP...
1107 */
1108
1109 static struct shadow_registers {
1110 /*
1111 * Number of shadow register sets supported
1112 */
1113 unsigned long sr_supported;
1114 /*
1115 * Bitmap of allocated shadow registers
1116 */
1117 unsigned long sr_allocated;
1118 } shadow_registers;
1119
1120 static void mips_srs_init(void)
1121 {
1122 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1123 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1124 shadow_registers.sr_supported);
1125 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1126 }
1127
1128 int mips_srs_max(void)
1129 {
1130 return shadow_registers.sr_supported;
1131 }
1132
1133 int mips_srs_alloc(void)
1134 {
1135 struct shadow_registers *sr = &shadow_registers;
1136 int set;
1137
1138 again:
1139 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1140 if (set >= sr->sr_supported)
1141 return -1;
1142
1143 if (test_and_set_bit(set, &sr->sr_allocated))
1144 goto again;
1145
1146 return set;
1147 }
1148
1149 void mips_srs_free(int set)
1150 {
1151 struct shadow_registers *sr = &shadow_registers;
1152
1153 clear_bit(set, &sr->sr_allocated);
1154 }
1155
1156 static void *set_vi_srs_handler(int n, void *addr, int srs)
1157 {
1158 unsigned long handler;
1159 unsigned long old_handler = vi_handlers[n];
1160 u32 *w;
1161 unsigned char *b;
1162
1163 if (!cpu_has_veic && !cpu_has_vint)
1164 BUG();
1165
1166 if (addr == NULL) {
1167 handler = (unsigned long) do_default_vi;
1168 srs = 0;
1169 } else
1170 handler = (unsigned long) addr;
1171 vi_handlers[n] = (unsigned long) addr;
1172
1173 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1174
1175 if (srs >= mips_srs_max())
1176 panic("Shadow register set %d not supported", srs);
1177
1178 if (cpu_has_veic) {
1179 if (board_bind_eic_interrupt)
1180 board_bind_eic_interrupt (n, srs);
1181 } else if (cpu_has_vint) {
1182 /* SRSMap is only defined if shadow sets are implemented */
1183 if (mips_srs_max() > 1)
1184 change_c0_srsmap (0xf << n*4, srs << n*4);
1185 }
1186
1187 if (srs == 0) {
1188 /*
1189 * If no shadow set is selected then use the default handler
1190 * that does normal register saving and a standard interrupt exit
1191 */
1192
1193 extern char except_vec_vi, except_vec_vi_lui;
1194 extern char except_vec_vi_ori, except_vec_vi_end;
1195 #ifdef CONFIG_MIPS_MT_SMTC
1196 /*
1197 * We need to provide the SMTC vectored interrupt handler
1198 * not only with the address of the handler, but with the
1199 * Status.IM bit to be masked before going there.
1200 */
1201 extern char except_vec_vi_mori;
1202 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1203 #endif /* CONFIG_MIPS_MT_SMTC */
1204 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1205 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1206 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1207
1208 if (handler_len > VECTORSPACING) {
1209 /*
1210 * Sigh... panicing won't help as the console
1211 * is probably not configured :(
1212 */
1213 panic ("VECTORSPACING too small");
1214 }
1215
1216 memcpy (b, &except_vec_vi, handler_len);
1217 #ifdef CONFIG_MIPS_MT_SMTC
1218 if (n > 7)
1219 printk("Vector index %d exceeds SMTC maximum\n", n);
1220 w = (u32 *)(b + mori_offset);
1221 *w = (*w & 0xffff0000) | (0x100 << n);
1222 #endif /* CONFIG_MIPS_MT_SMTC */
1223 w = (u32 *)(b + lui_offset);
1224 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1225 w = (u32 *)(b + ori_offset);
1226 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1227 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1228 }
1229 else {
1230 /*
1231 * In other cases jump directly to the interrupt handler
1232 *
1233 * It is the handlers responsibility to save registers if required
1234 * (eg hi/lo) and return from the exception using "eret"
1235 */
1236 w = (u32 *)b;
1237 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1238 *w = 0;
1239 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1240 }
1241
1242 return (void *)old_handler;
1243 }
1244
1245 void *set_vi_handler(int n, void *addr)
1246 {
1247 return set_vi_srs_handler(n, addr, 0);
1248 }
1249
1250 #else
1251
1252 static inline void mips_srs_init(void)
1253 {
1254 }
1255
1256 #endif /* CONFIG_CPU_MIPSR2_SRS */
1257
1258 /*
1259 * This is used by native signal handling
1260 */
1261 asmlinkage int (*save_fp_context)(struct sigcontext *sc);
1262 asmlinkage int (*restore_fp_context)(struct sigcontext *sc);
1263
1264 extern asmlinkage int _save_fp_context(struct sigcontext *sc);
1265 extern asmlinkage int _restore_fp_context(struct sigcontext *sc);
1266
1267 extern asmlinkage int fpu_emulator_save_context(struct sigcontext *sc);
1268 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext *sc);
1269
1270 #ifdef CONFIG_SMP
1271 static int smp_save_fp_context(struct sigcontext *sc)
1272 {
1273 return cpu_has_fpu
1274 ? _save_fp_context(sc)
1275 : fpu_emulator_save_context(sc);
1276 }
1277
1278 static int smp_restore_fp_context(struct sigcontext *sc)
1279 {
1280 return cpu_has_fpu
1281 ? _restore_fp_context(sc)
1282 : fpu_emulator_restore_context(sc);
1283 }
1284 #endif
1285
1286 static inline void signal_init(void)
1287 {
1288 #ifdef CONFIG_SMP
1289 /* For now just do the cpu_has_fpu check when the functions are invoked */
1290 save_fp_context = smp_save_fp_context;
1291 restore_fp_context = smp_restore_fp_context;
1292 #else
1293 if (cpu_has_fpu) {
1294 save_fp_context = _save_fp_context;
1295 restore_fp_context = _restore_fp_context;
1296 } else {
1297 save_fp_context = fpu_emulator_save_context;
1298 restore_fp_context = fpu_emulator_restore_context;
1299 }
1300 #endif
1301 }
1302
1303 #ifdef CONFIG_MIPS32_COMPAT
1304
1305 /*
1306 * This is used by 32-bit signal stuff on the 64-bit kernel
1307 */
1308 asmlinkage int (*save_fp_context32)(struct sigcontext32 *sc);
1309 asmlinkage int (*restore_fp_context32)(struct sigcontext32 *sc);
1310
1311 extern asmlinkage int _save_fp_context32(struct sigcontext32 *sc);
1312 extern asmlinkage int _restore_fp_context32(struct sigcontext32 *sc);
1313
1314 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 *sc);
1315 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 *sc);
1316
1317 static inline void signal32_init(void)
1318 {
1319 if (cpu_has_fpu) {
1320 save_fp_context32 = _save_fp_context32;
1321 restore_fp_context32 = _restore_fp_context32;
1322 } else {
1323 save_fp_context32 = fpu_emulator_save_context32;
1324 restore_fp_context32 = fpu_emulator_restore_context32;
1325 }
1326 }
1327 #endif
1328
1329 extern void cpu_cache_init(void);
1330 extern void tlb_init(void);
1331 extern void flush_tlb_handlers(void);
1332
1333 void __init per_cpu_trap_init(void)
1334 {
1335 unsigned int cpu = smp_processor_id();
1336 unsigned int status_set = ST0_CU0;
1337 #ifdef CONFIG_MIPS_MT_SMTC
1338 int secondaryTC = 0;
1339 int bootTC = (cpu == 0);
1340
1341 /*
1342 * Only do per_cpu_trap_init() for first TC of Each VPE.
1343 * Note that this hack assumes that the SMTC init code
1344 * assigns TCs consecutively and in ascending order.
1345 */
1346
1347 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1348 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1349 secondaryTC = 1;
1350 #endif /* CONFIG_MIPS_MT_SMTC */
1351
1352 /*
1353 * Disable coprocessors and select 32-bit or 64-bit addressing
1354 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1355 * flag that some firmware may have left set and the TS bit (for
1356 * IP27). Set XX for ISA IV code to work.
1357 */
1358 #ifdef CONFIG_64BIT
1359 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1360 #endif
1361 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1362 status_set |= ST0_XX;
1363 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1364 status_set);
1365
1366 if (cpu_has_dsp)
1367 set_c0_status(ST0_MX);
1368
1369 #ifdef CONFIG_CPU_MIPSR2
1370 write_c0_hwrena (0x0000000f); /* Allow rdhwr to all registers */
1371 #endif
1372
1373 #ifdef CONFIG_MIPS_MT_SMTC
1374 if (!secondaryTC) {
1375 #endif /* CONFIG_MIPS_MT_SMTC */
1376
1377 /*
1378 * Interrupt handling.
1379 */
1380 if (cpu_has_veic || cpu_has_vint) {
1381 write_c0_ebase (ebase);
1382 /* Setting vector spacing enables EI/VI mode */
1383 change_c0_intctl (0x3e0, VECTORSPACING);
1384 }
1385 if (cpu_has_divec) {
1386 if (cpu_has_mipsmt) {
1387 unsigned int vpflags = dvpe();
1388 set_c0_cause(CAUSEF_IV);
1389 evpe(vpflags);
1390 } else
1391 set_c0_cause(CAUSEF_IV);
1392 }
1393 #ifdef CONFIG_MIPS_MT_SMTC
1394 }
1395 #endif /* CONFIG_MIPS_MT_SMTC */
1396
1397 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1398 TLBMISS_HANDLER_SETUP();
1399
1400 atomic_inc(&init_mm.mm_count);
1401 current->active_mm = &init_mm;
1402 BUG_ON(current->mm);
1403 enter_lazy_tlb(&init_mm, current);
1404
1405 #ifdef CONFIG_MIPS_MT_SMTC
1406 if (bootTC) {
1407 #endif /* CONFIG_MIPS_MT_SMTC */
1408 cpu_cache_init();
1409 tlb_init();
1410 #ifdef CONFIG_MIPS_MT_SMTC
1411 }
1412 #endif /* CONFIG_MIPS_MT_SMTC */
1413 }
1414
1415 /* Install CPU exception handler */
1416 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1417 {
1418 memcpy((void *)(ebase + offset), addr, size);
1419 flush_icache_range(ebase + offset, ebase + offset + size);
1420 }
1421
1422 /* Install uncached CPU exception handler */
1423 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1424 {
1425 #ifdef CONFIG_32BIT
1426 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1427 #endif
1428 #ifdef CONFIG_64BIT
1429 unsigned long uncached_ebase = TO_UNCAC(ebase);
1430 #endif
1431
1432 memcpy((void *)(uncached_ebase + offset), addr, size);
1433 }
1434
1435 static int __initdata rdhwr_noopt;
1436 static int __init set_rdhwr_noopt(char *str)
1437 {
1438 rdhwr_noopt = 1;
1439 return 1;
1440 }
1441
1442 __setup("rdhwr_noopt", set_rdhwr_noopt);
1443
1444 void __init trap_init(void)
1445 {
1446 extern char except_vec3_generic, except_vec3_r4000;
1447 extern char except_vec4;
1448 unsigned long i;
1449
1450 if (cpu_has_veic || cpu_has_vint)
1451 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1452 else
1453 ebase = CAC_BASE;
1454
1455 mips_srs_init();
1456
1457 per_cpu_trap_init();
1458
1459 /*
1460 * Copy the generic exception handlers to their final destination.
1461 * This will be overriden later as suitable for a particular
1462 * configuration.
1463 */
1464 set_handler(0x180, &except_vec3_generic, 0x80);
1465
1466 /*
1467 * Setup default vectors
1468 */
1469 for (i = 0; i <= 31; i++)
1470 set_except_vector(i, handle_reserved);
1471
1472 /*
1473 * Copy the EJTAG debug exception vector handler code to it's final
1474 * destination.
1475 */
1476 if (cpu_has_ejtag && board_ejtag_handler_setup)
1477 board_ejtag_handler_setup ();
1478
1479 /*
1480 * Only some CPUs have the watch exceptions.
1481 */
1482 if (cpu_has_watch)
1483 set_except_vector(23, handle_watch);
1484
1485 /*
1486 * Initialise interrupt handlers
1487 */
1488 if (cpu_has_veic || cpu_has_vint) {
1489 int nvec = cpu_has_veic ? 64 : 8;
1490 for (i = 0; i < nvec; i++)
1491 set_vi_handler(i, NULL);
1492 }
1493 else if (cpu_has_divec)
1494 set_handler(0x200, &except_vec4, 0x8);
1495
1496 /*
1497 * Some CPUs can enable/disable for cache parity detection, but does
1498 * it different ways.
1499 */
1500 parity_protection_init();
1501
1502 /*
1503 * The Data Bus Errors / Instruction Bus Errors are signaled
1504 * by external hardware. Therefore these two exceptions
1505 * may have board specific handlers.
1506 */
1507 if (board_be_init)
1508 board_be_init();
1509
1510 set_except_vector(0, handle_int);
1511 set_except_vector(1, handle_tlbm);
1512 set_except_vector(2, handle_tlbl);
1513 set_except_vector(3, handle_tlbs);
1514
1515 set_except_vector(4, handle_adel);
1516 set_except_vector(5, handle_ades);
1517
1518 set_except_vector(6, handle_ibe);
1519 set_except_vector(7, handle_dbe);
1520
1521 set_except_vector(8, handle_sys);
1522 set_except_vector(9, handle_bp);
1523 set_except_vector(10, rdhwr_noopt ? handle_ri :
1524 (cpu_has_vtag_icache ?
1525 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1526 set_except_vector(11, handle_cpu);
1527 set_except_vector(12, handle_ov);
1528 set_except_vector(13, handle_tr);
1529
1530 if (current_cpu_data.cputype == CPU_R6000 ||
1531 current_cpu_data.cputype == CPU_R6000A) {
1532 /*
1533 * The R6000 is the only R-series CPU that features a machine
1534 * check exception (similar to the R4000 cache error) and
1535 * unaligned ldc1/sdc1 exception. The handlers have not been
1536 * written yet. Well, anyway there is no R6000 machine on the
1537 * current list of targets for Linux/MIPS.
1538 * (Duh, crap, there is someone with a triple R6k machine)
1539 */
1540 //set_except_vector(14, handle_mc);
1541 //set_except_vector(15, handle_ndc);
1542 }
1543
1544
1545 if (board_nmi_handler_setup)
1546 board_nmi_handler_setup();
1547
1548 if (cpu_has_fpu && !cpu_has_nofpuex)
1549 set_except_vector(15, handle_fpe);
1550
1551 set_except_vector(22, handle_mdmx);
1552
1553 if (cpu_has_mcheck)
1554 set_except_vector(24, handle_mcheck);
1555
1556 if (cpu_has_mipsmt)
1557 set_except_vector(25, handle_mt);
1558
1559 if (cpu_has_dsp)
1560 set_except_vector(26, handle_dsp);
1561
1562 if (cpu_has_vce)
1563 /* Special exception: R4[04]00 uses also the divec space. */
1564 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1565 else if (cpu_has_4kex)
1566 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1567 else
1568 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1569
1570 signal_init();
1571 #ifdef CONFIG_MIPS32_COMPAT
1572 signal32_init();
1573 #endif
1574
1575 flush_icache_range(ebase, ebase + 0x400);
1576 flush_tlb_handlers();
1577 }
This page took 0.101848 seconds and 5 git commands to generate.