[MIPS] Add some __user tags
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
24
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/types.h>
43 #include <asm/stacktrace.h>
44
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_ri_rdhwr_vivt(void);
57 extern asmlinkage void handle_ri_rdhwr(void);
58 extern asmlinkage void handle_cpu(void);
59 extern asmlinkage void handle_ov(void);
60 extern asmlinkage void handle_tr(void);
61 extern asmlinkage void handle_fpe(void);
62 extern asmlinkage void handle_mdmx(void);
63 extern asmlinkage void handle_watch(void);
64 extern asmlinkage void handle_mt(void);
65 extern asmlinkage void handle_dsp(void);
66 extern asmlinkage void handle_mcheck(void);
67 extern asmlinkage void handle_reserved(void);
68
69 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
70 struct mips_fpu_struct *ctx, int has_fpu);
71
72 void (*board_watchpoint_handler)(struct pt_regs *regs);
73 void (*board_be_init)(void);
74 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
75 void (*board_nmi_handler_setup)(void);
76 void (*board_ejtag_handler_setup)(void);
77 void (*board_bind_eic_interrupt)(int irq, int regset);
78
79
80 static void show_raw_backtrace(unsigned long reg29)
81 {
82 unsigned long *sp = (unsigned long *)reg29;
83 unsigned long addr;
84
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
87 printk("\n");
88 #endif
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
93 }
94 printk("\n");
95 }
96
97 #ifdef CONFIG_KALLSYMS
98 int raw_show_trace;
99 static int __init set_raw_show_trace(char *str)
100 {
101 raw_show_trace = 1;
102 return 1;
103 }
104 __setup("raw_show_trace", set_raw_show_trace);
105 #endif
106
107 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 {
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
111 unsigned long pc = regs->cp0_epc;
112
113 if (raw_show_trace || !__kernel_text_address(pc)) {
114 show_raw_backtrace(sp);
115 return;
116 }
117 printk("Call Trace:\n");
118 do {
119 print_ip_sym(pc);
120 pc = unwind_stack(task, &sp, pc, &ra);
121 } while (pc);
122 printk("\n");
123 }
124
125 /*
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
128 */
129 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
130 {
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
134 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
135
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
144 }
145
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
149 }
150
151 printk(" %0*lx", field, stackdata);
152 i++;
153 }
154 printk("\n");
155 show_backtrace(task, regs);
156 }
157
158 void show_stack(struct task_struct *task, unsigned long *sp)
159 {
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
172 }
173 }
174 show_stacktrace(task, &regs);
175 }
176
177 /*
178 * The architecture-independent dump_stack generator
179 */
180 void dump_stack(void)
181 {
182 struct pt_regs regs;
183
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
186 }
187
188 EXPORT_SYMBOL(dump_stack);
189
190 void show_code(unsigned int *pc)
191 {
192 long i;
193
194 printk("\nCode:");
195
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
201 }
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
203 }
204 }
205
206 void show_regs(struct pt_regs *regs)
207 {
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
211
212 printk("Cpu %d\n", smp_processor_id());
213
214 /*
215 * Saved main processor registers
216 */
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
226
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
230 }
231
232 #ifdef CONFIG_CPU_HAS_SMARTMIPS
233 printk("Acx : %0*lx\n", field, regs->acx);
234 #endif
235 printk("Hi : %0*lx\n", field, regs->hi);
236 printk("Lo : %0*lx\n", field, regs->lo);
237
238 /*
239 * Saved cp0 registers
240 */
241 printk("epc : %0*lx ", field, regs->cp0_epc);
242 print_symbol("%s ", regs->cp0_epc);
243 printk(" %s\n", print_tainted());
244 printk("ra : %0*lx ", field, regs->regs[31]);
245 print_symbol("%s\n", regs->regs[31]);
246
247 printk("Status: %08x ", (uint32_t) regs->cp0_status);
248
249 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
250 if (regs->cp0_status & ST0_KUO)
251 printk("KUo ");
252 if (regs->cp0_status & ST0_IEO)
253 printk("IEo ");
254 if (regs->cp0_status & ST0_KUP)
255 printk("KUp ");
256 if (regs->cp0_status & ST0_IEP)
257 printk("IEp ");
258 if (regs->cp0_status & ST0_KUC)
259 printk("KUc ");
260 if (regs->cp0_status & ST0_IEC)
261 printk("IEc ");
262 } else {
263 if (regs->cp0_status & ST0_KX)
264 printk("KX ");
265 if (regs->cp0_status & ST0_SX)
266 printk("SX ");
267 if (regs->cp0_status & ST0_UX)
268 printk("UX ");
269 switch (regs->cp0_status & ST0_KSU) {
270 case KSU_USER:
271 printk("USER ");
272 break;
273 case KSU_SUPERVISOR:
274 printk("SUPERVISOR ");
275 break;
276 case KSU_KERNEL:
277 printk("KERNEL ");
278 break;
279 default:
280 printk("BAD_MODE ");
281 break;
282 }
283 if (regs->cp0_status & ST0_ERL)
284 printk("ERL ");
285 if (regs->cp0_status & ST0_EXL)
286 printk("EXL ");
287 if (regs->cp0_status & ST0_IE)
288 printk("IE ");
289 }
290 printk("\n");
291
292 printk("Cause : %08x\n", cause);
293
294 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
295 if (1 <= cause && cause <= 5)
296 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
297
298 printk("PrId : %08x\n", read_c0_prid());
299 }
300
301 void show_registers(struct pt_regs *regs)
302 {
303 show_regs(regs);
304 print_modules();
305 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
306 current->comm, current->pid, current_thread_info(), current);
307 show_stacktrace(current, regs);
308 show_code((unsigned int *) regs->cp0_epc);
309 printk("\n");
310 }
311
312 static DEFINE_SPINLOCK(die_lock);
313
314 void __noreturn die(const char * str, struct pt_regs * regs)
315 {
316 static int die_counter;
317 #ifdef CONFIG_MIPS_MT_SMTC
318 unsigned long dvpret = dvpe();
319 #endif /* CONFIG_MIPS_MT_SMTC */
320
321 console_verbose();
322 spin_lock_irq(&die_lock);
323 bust_spinlocks(1);
324 #ifdef CONFIG_MIPS_MT_SMTC
325 mips_mt_regdump(dvpret);
326 #endif /* CONFIG_MIPS_MT_SMTC */
327 printk("%s[#%d]:\n", str, ++die_counter);
328 show_registers(regs);
329 spin_unlock_irq(&die_lock);
330
331 if (in_interrupt())
332 panic("Fatal exception in interrupt");
333
334 if (panic_on_oops) {
335 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
336 ssleep(5);
337 panic("Fatal exception");
338 }
339
340 do_exit(SIGSEGV);
341 }
342
343 extern const struct exception_table_entry __start___dbe_table[];
344 extern const struct exception_table_entry __stop___dbe_table[];
345
346 __asm__(
347 " .section __dbe_table, \"a\"\n"
348 " .previous \n");
349
350 /* Given an address, look for it in the exception tables. */
351 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
352 {
353 const struct exception_table_entry *e;
354
355 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
356 if (!e)
357 e = search_module_dbetables(addr);
358 return e;
359 }
360
361 asmlinkage void do_be(struct pt_regs *regs)
362 {
363 const int field = 2 * sizeof(unsigned long);
364 const struct exception_table_entry *fixup = NULL;
365 int data = regs->cp0_cause & 4;
366 int action = MIPS_BE_FATAL;
367
368 /* XXX For now. Fixme, this searches the wrong table ... */
369 if (data && !user_mode(regs))
370 fixup = search_dbe_tables(exception_epc(regs));
371
372 if (fixup)
373 action = MIPS_BE_FIXUP;
374
375 if (board_be_handler)
376 action = board_be_handler(regs, fixup != NULL);
377
378 switch (action) {
379 case MIPS_BE_DISCARD:
380 return;
381 case MIPS_BE_FIXUP:
382 if (fixup) {
383 regs->cp0_epc = fixup->nextinsn;
384 return;
385 }
386 break;
387 default:
388 break;
389 }
390
391 /*
392 * Assume it would be too dangerous to continue ...
393 */
394 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
395 data ? "Data" : "Instruction",
396 field, regs->cp0_epc, field, regs->regs[31]);
397 die_if_kernel("Oops", regs);
398 force_sig(SIGBUS, current);
399 }
400
401 /*
402 * ll/sc emulation
403 */
404
405 #define OPCODE 0xfc000000
406 #define BASE 0x03e00000
407 #define RT 0x001f0000
408 #define OFFSET 0x0000ffff
409 #define LL 0xc0000000
410 #define SC 0xe0000000
411 #define SPEC3 0x7c000000
412 #define RD 0x0000f800
413 #define FUNC 0x0000003f
414 #define RDHWR 0x0000003b
415
416 /*
417 * The ll_bit is cleared by r*_switch.S
418 */
419
420 unsigned long ll_bit;
421
422 static struct task_struct *ll_task = NULL;
423
424 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
425 {
426 unsigned long value, __user *vaddr;
427 long offset;
428 int signal = 0;
429
430 /*
431 * analyse the ll instruction that just caused a ri exception
432 * and put the referenced address to addr.
433 */
434
435 /* sign extend offset */
436 offset = opcode & OFFSET;
437 offset <<= 16;
438 offset >>= 16;
439
440 vaddr = (unsigned long __user *)
441 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
442
443 if ((unsigned long)vaddr & 3) {
444 signal = SIGBUS;
445 goto sig;
446 }
447 if (get_user(value, vaddr)) {
448 signal = SIGSEGV;
449 goto sig;
450 }
451
452 preempt_disable();
453
454 if (ll_task == NULL || ll_task == current) {
455 ll_bit = 1;
456 } else {
457 ll_bit = 0;
458 }
459 ll_task = current;
460
461 preempt_enable();
462
463 compute_return_epc(regs);
464
465 regs->regs[(opcode & RT) >> 16] = value;
466
467 return;
468
469 sig:
470 force_sig(signal, current);
471 }
472
473 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
474 {
475 unsigned long __user *vaddr;
476 unsigned long reg;
477 long offset;
478 int signal = 0;
479
480 /*
481 * analyse the sc instruction that just caused a ri exception
482 * and put the referenced address to addr.
483 */
484
485 /* sign extend offset */
486 offset = opcode & OFFSET;
487 offset <<= 16;
488 offset >>= 16;
489
490 vaddr = (unsigned long __user *)
491 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
492 reg = (opcode & RT) >> 16;
493
494 if ((unsigned long)vaddr & 3) {
495 signal = SIGBUS;
496 goto sig;
497 }
498
499 preempt_disable();
500
501 if (ll_bit == 0 || ll_task != current) {
502 compute_return_epc(regs);
503 regs->regs[reg] = 0;
504 preempt_enable();
505 return;
506 }
507
508 preempt_enable();
509
510 if (put_user(regs->regs[reg], vaddr)) {
511 signal = SIGSEGV;
512 goto sig;
513 }
514
515 compute_return_epc(regs);
516 regs->regs[reg] = 1;
517
518 return;
519
520 sig:
521 force_sig(signal, current);
522 }
523
524 /*
525 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
526 * opcodes are supposed to result in coprocessor unusable exceptions if
527 * executed on ll/sc-less processors. That's the theory. In practice a
528 * few processors such as NEC's VR4100 throw reserved instruction exceptions
529 * instead, so we're doing the emulation thing in both exception handlers.
530 */
531 static inline int simulate_llsc(struct pt_regs *regs)
532 {
533 unsigned int opcode;
534
535 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
536 goto out_sigsegv;
537
538 if ((opcode & OPCODE) == LL) {
539 simulate_ll(regs, opcode);
540 return 0;
541 }
542 if ((opcode & OPCODE) == SC) {
543 simulate_sc(regs, opcode);
544 return 0;
545 }
546
547 return -EFAULT; /* Strange things going on ... */
548
549 out_sigsegv:
550 force_sig(SIGSEGV, current);
551 return -EFAULT;
552 }
553
554 /*
555 * Simulate trapping 'rdhwr' instructions to provide user accessible
556 * registers not implemented in hardware. The only current use of this
557 * is the thread area pointer.
558 */
559 static inline int simulate_rdhwr(struct pt_regs *regs)
560 {
561 struct thread_info *ti = task_thread_info(current);
562 unsigned int opcode;
563
564 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
565 goto out_sigsegv;
566
567 if (unlikely(compute_return_epc(regs)))
568 return -EFAULT;
569
570 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
571 int rd = (opcode & RD) >> 11;
572 int rt = (opcode & RT) >> 16;
573 switch (rd) {
574 case 29:
575 regs->regs[rt] = ti->tp_value;
576 return 0;
577 default:
578 return -EFAULT;
579 }
580 }
581
582 /* Not ours. */
583 return -EFAULT;
584
585 out_sigsegv:
586 force_sig(SIGSEGV, current);
587 return -EFAULT;
588 }
589
590 asmlinkage void do_ov(struct pt_regs *regs)
591 {
592 siginfo_t info;
593
594 die_if_kernel("Integer overflow", regs);
595
596 info.si_code = FPE_INTOVF;
597 info.si_signo = SIGFPE;
598 info.si_errno = 0;
599 info.si_addr = (void __user *) regs->cp0_epc;
600 force_sig_info(SIGFPE, &info, current);
601 }
602
603 /*
604 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
605 */
606 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
607 {
608 die_if_kernel("FP exception in kernel code", regs);
609
610 if (fcr31 & FPU_CSR_UNI_X) {
611 int sig;
612
613 /*
614 * Unimplemented operation exception. If we've got the full
615 * software emulator on-board, let's use it...
616 *
617 * Force FPU to dump state into task/thread context. We're
618 * moving a lot of data here for what is probably a single
619 * instruction, but the alternative is to pre-decode the FP
620 * register operands before invoking the emulator, which seems
621 * a bit extreme for what should be an infrequent event.
622 */
623 /* Ensure 'resume' not overwrite saved fp context again. */
624 lose_fpu(1);
625
626 /* Run the emulator */
627 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
628
629 /*
630 * We can't allow the emulated instruction to leave any of
631 * the cause bit set in $fcr31.
632 */
633 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
634
635 /* Restore the hardware register state */
636 own_fpu(1); /* Using the FPU again. */
637
638 /* If something went wrong, signal */
639 if (sig)
640 force_sig(sig, current);
641
642 return;
643 }
644
645 force_sig(SIGFPE, current);
646 }
647
648 asmlinkage void do_bp(struct pt_regs *regs)
649 {
650 unsigned int opcode, bcode;
651 siginfo_t info;
652
653 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
654 goto out_sigsegv;
655
656 /*
657 * There is the ancient bug in the MIPS assemblers that the break
658 * code starts left to bit 16 instead to bit 6 in the opcode.
659 * Gas is bug-compatible, but not always, grrr...
660 * We handle both cases with a simple heuristics. --macro
661 */
662 bcode = ((opcode >> 6) & ((1 << 20) - 1));
663 if (bcode < (1 << 10))
664 bcode <<= 10;
665
666 /*
667 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
668 * insns, even for break codes that indicate arithmetic failures.
669 * Weird ...)
670 * But should we continue the brokenness??? --macro
671 */
672 switch (bcode) {
673 case BRK_OVERFLOW << 10:
674 case BRK_DIVZERO << 10:
675 die_if_kernel("Break instruction in kernel code", regs);
676 if (bcode == (BRK_DIVZERO << 10))
677 info.si_code = FPE_INTDIV;
678 else
679 info.si_code = FPE_INTOVF;
680 info.si_signo = SIGFPE;
681 info.si_errno = 0;
682 info.si_addr = (void __user *) regs->cp0_epc;
683 force_sig_info(SIGFPE, &info, current);
684 break;
685 case BRK_BUG:
686 die("Kernel bug detected", regs);
687 break;
688 default:
689 die_if_kernel("Break instruction in kernel code", regs);
690 force_sig(SIGTRAP, current);
691 }
692 return;
693
694 out_sigsegv:
695 force_sig(SIGSEGV, current);
696 }
697
698 asmlinkage void do_tr(struct pt_regs *regs)
699 {
700 unsigned int opcode, tcode = 0;
701 siginfo_t info;
702
703 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
704 goto out_sigsegv;
705
706 /* Immediate versions don't provide a code. */
707 if (!(opcode & OPCODE))
708 tcode = ((opcode >> 6) & ((1 << 10) - 1));
709
710 /*
711 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
712 * insns, even for trap codes that indicate arithmetic failures.
713 * Weird ...)
714 * But should we continue the brokenness??? --macro
715 */
716 switch (tcode) {
717 case BRK_OVERFLOW:
718 case BRK_DIVZERO:
719 die_if_kernel("Trap instruction in kernel code", regs);
720 if (tcode == BRK_DIVZERO)
721 info.si_code = FPE_INTDIV;
722 else
723 info.si_code = FPE_INTOVF;
724 info.si_signo = SIGFPE;
725 info.si_errno = 0;
726 info.si_addr = (void __user *) regs->cp0_epc;
727 force_sig_info(SIGFPE, &info, current);
728 break;
729 case BRK_BUG:
730 die("Kernel bug detected", regs);
731 break;
732 default:
733 die_if_kernel("Trap instruction in kernel code", regs);
734 force_sig(SIGTRAP, current);
735 }
736 return;
737
738 out_sigsegv:
739 force_sig(SIGSEGV, current);
740 }
741
742 asmlinkage void do_ri(struct pt_regs *regs)
743 {
744 die_if_kernel("Reserved instruction in kernel code", regs);
745
746 if (!cpu_has_llsc)
747 if (!simulate_llsc(regs))
748 return;
749
750 if (!simulate_rdhwr(regs))
751 return;
752
753 force_sig(SIGILL, current);
754 }
755
756 /*
757 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
758 * emulated more than some threshold number of instructions, force migration to
759 * a "CPU" that has FP support.
760 */
761 static void mt_ase_fp_affinity(void)
762 {
763 #ifdef CONFIG_MIPS_MT_FPAFF
764 if (mt_fpemul_threshold > 0 &&
765 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
766 /*
767 * If there's no FPU present, or if the application has already
768 * restricted the allowed set to exclude any CPUs with FPUs,
769 * we'll skip the procedure.
770 */
771 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
772 cpumask_t tmask;
773
774 cpus_and(tmask, current->thread.user_cpus_allowed,
775 mt_fpu_cpumask);
776 set_cpus_allowed(current, tmask);
777 current->thread.mflags |= MF_FPUBOUND;
778 }
779 }
780 #endif /* CONFIG_MIPS_MT_FPAFF */
781 }
782
783 asmlinkage void do_cpu(struct pt_regs *regs)
784 {
785 unsigned int cpid;
786
787 die_if_kernel("do_cpu invoked from kernel context!", regs);
788
789 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
790
791 switch (cpid) {
792 case 0:
793 if (!cpu_has_llsc)
794 if (!simulate_llsc(regs))
795 return;
796
797 if (!simulate_rdhwr(regs))
798 return;
799
800 break;
801
802 case 1:
803 if (used_math()) /* Using the FPU again. */
804 own_fpu(1);
805 else { /* First time FPU user. */
806 init_fpu();
807 set_used_math();
808 }
809
810 if (!raw_cpu_has_fpu) {
811 int sig;
812 sig = fpu_emulator_cop1Handler(regs,
813 &current->thread.fpu, 0);
814 if (sig)
815 force_sig(sig, current);
816 else
817 mt_ase_fp_affinity();
818 }
819
820 return;
821
822 case 2:
823 case 3:
824 break;
825 }
826
827 force_sig(SIGILL, current);
828 }
829
830 asmlinkage void do_mdmx(struct pt_regs *regs)
831 {
832 force_sig(SIGILL, current);
833 }
834
835 asmlinkage void do_watch(struct pt_regs *regs)
836 {
837 if (board_watchpoint_handler) {
838 (*board_watchpoint_handler)(regs);
839 return;
840 }
841
842 /*
843 * We use the watch exception where available to detect stack
844 * overflows.
845 */
846 dump_tlb_all();
847 show_regs(regs);
848 panic("Caught WATCH exception - probably caused by stack overflow.");
849 }
850
851 asmlinkage void do_mcheck(struct pt_regs *regs)
852 {
853 const int field = 2 * sizeof(unsigned long);
854 int multi_match = regs->cp0_status & ST0_TS;
855
856 show_regs(regs);
857
858 if (multi_match) {
859 printk("Index : %0x\n", read_c0_index());
860 printk("Pagemask: %0x\n", read_c0_pagemask());
861 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
862 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
863 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
864 printk("\n");
865 dump_tlb_all();
866 }
867
868 show_code((unsigned int *) regs->cp0_epc);
869
870 /*
871 * Some chips may have other causes of machine check (e.g. SB1
872 * graduation timer)
873 */
874 panic("Caught Machine Check exception - %scaused by multiple "
875 "matching entries in the TLB.",
876 (multi_match) ? "" : "not ");
877 }
878
879 asmlinkage void do_mt(struct pt_regs *regs)
880 {
881 int subcode;
882
883 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
884 >> VPECONTROL_EXCPT_SHIFT;
885 switch (subcode) {
886 case 0:
887 printk(KERN_DEBUG "Thread Underflow\n");
888 break;
889 case 1:
890 printk(KERN_DEBUG "Thread Overflow\n");
891 break;
892 case 2:
893 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
894 break;
895 case 3:
896 printk(KERN_DEBUG "Gating Storage Exception\n");
897 break;
898 case 4:
899 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
900 break;
901 case 5:
902 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
903 break;
904 default:
905 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
906 subcode);
907 break;
908 }
909 die_if_kernel("MIPS MT Thread exception in kernel", regs);
910
911 force_sig(SIGILL, current);
912 }
913
914
915 asmlinkage void do_dsp(struct pt_regs *regs)
916 {
917 if (cpu_has_dsp)
918 panic("Unexpected DSP exception\n");
919
920 force_sig(SIGILL, current);
921 }
922
923 asmlinkage void do_reserved(struct pt_regs *regs)
924 {
925 /*
926 * Game over - no way to handle this if it ever occurs. Most probably
927 * caused by a new unknown cpu type or after another deadly
928 * hard/software error.
929 */
930 show_regs(regs);
931 panic("Caught reserved exception %ld - should not happen.",
932 (regs->cp0_cause & 0x7f) >> 2);
933 }
934
935 /*
936 * Some MIPS CPUs can enable/disable for cache parity detection, but do
937 * it different ways.
938 */
939 static inline void parity_protection_init(void)
940 {
941 switch (current_cpu_data.cputype) {
942 case CPU_24K:
943 case CPU_34K:
944 case CPU_5KC:
945 write_c0_ecc(0x80000000);
946 back_to_back_c0_hazard();
947 /* Set the PE bit (bit 31) in the c0_errctl register. */
948 printk(KERN_INFO "Cache parity protection %sabled\n",
949 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
950 break;
951 case CPU_20KC:
952 case CPU_25KF:
953 /* Clear the DE bit (bit 16) in the c0_status register. */
954 printk(KERN_INFO "Enable cache parity protection for "
955 "MIPS 20KC/25KF CPUs.\n");
956 clear_c0_status(ST0_DE);
957 break;
958 default:
959 break;
960 }
961 }
962
963 asmlinkage void cache_parity_error(void)
964 {
965 const int field = 2 * sizeof(unsigned long);
966 unsigned int reg_val;
967
968 /* For the moment, report the problem and hang. */
969 printk("Cache error exception:\n");
970 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
971 reg_val = read_c0_cacheerr();
972 printk("c0_cacheerr == %08x\n", reg_val);
973
974 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
975 reg_val & (1<<30) ? "secondary" : "primary",
976 reg_val & (1<<31) ? "data" : "insn");
977 printk("Error bits: %s%s%s%s%s%s%s\n",
978 reg_val & (1<<29) ? "ED " : "",
979 reg_val & (1<<28) ? "ET " : "",
980 reg_val & (1<<26) ? "EE " : "",
981 reg_val & (1<<25) ? "EB " : "",
982 reg_val & (1<<24) ? "EI " : "",
983 reg_val & (1<<23) ? "E1 " : "",
984 reg_val & (1<<22) ? "E0 " : "");
985 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
986
987 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
988 if (reg_val & (1<<22))
989 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
990
991 if (reg_val & (1<<23))
992 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
993 #endif
994
995 panic("Can't handle the cache error!");
996 }
997
998 /*
999 * SDBBP EJTAG debug exception handler.
1000 * We skip the instruction and return to the next instruction.
1001 */
1002 void ejtag_exception_handler(struct pt_regs *regs)
1003 {
1004 const int field = 2 * sizeof(unsigned long);
1005 unsigned long depc, old_epc;
1006 unsigned int debug;
1007
1008 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1009 depc = read_c0_depc();
1010 debug = read_c0_debug();
1011 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1012 if (debug & 0x80000000) {
1013 /*
1014 * In branch delay slot.
1015 * We cheat a little bit here and use EPC to calculate the
1016 * debug return address (DEPC). EPC is restored after the
1017 * calculation.
1018 */
1019 old_epc = regs->cp0_epc;
1020 regs->cp0_epc = depc;
1021 __compute_return_epc(regs);
1022 depc = regs->cp0_epc;
1023 regs->cp0_epc = old_epc;
1024 } else
1025 depc += 4;
1026 write_c0_depc(depc);
1027
1028 #if 0
1029 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1030 write_c0_debug(debug | 0x100);
1031 #endif
1032 }
1033
1034 /*
1035 * NMI exception handler.
1036 */
1037 void nmi_exception_handler(struct pt_regs *regs)
1038 {
1039 #ifdef CONFIG_MIPS_MT_SMTC
1040 unsigned long dvpret = dvpe();
1041 bust_spinlocks(1);
1042 printk("NMI taken!!!!\n");
1043 mips_mt_regdump(dvpret);
1044 #else
1045 bust_spinlocks(1);
1046 printk("NMI taken!!!!\n");
1047 #endif /* CONFIG_MIPS_MT_SMTC */
1048 die("NMI", regs);
1049 while(1) ;
1050 }
1051
1052 #define VECTORSPACING 0x100 /* for EI/VI mode */
1053
1054 unsigned long ebase;
1055 unsigned long exception_handlers[32];
1056 unsigned long vi_handlers[64];
1057
1058 /*
1059 * As a side effect of the way this is implemented we're limited
1060 * to interrupt handlers in the address range from
1061 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1062 */
1063 void *set_except_vector(int n, void *addr)
1064 {
1065 unsigned long handler = (unsigned long) addr;
1066 unsigned long old_handler = exception_handlers[n];
1067
1068 exception_handlers[n] = handler;
1069 if (n == 0 && cpu_has_divec) {
1070 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1071 (0x03ffffff & (handler >> 2));
1072 flush_icache_range(ebase + 0x200, ebase + 0x204);
1073 }
1074 return (void *)old_handler;
1075 }
1076
1077 #ifdef CONFIG_CPU_MIPSR2_SRS
1078 /*
1079 * MIPSR2 shadow register set allocation
1080 * FIXME: SMP...
1081 */
1082
1083 static struct shadow_registers {
1084 /*
1085 * Number of shadow register sets supported
1086 */
1087 unsigned long sr_supported;
1088 /*
1089 * Bitmap of allocated shadow registers
1090 */
1091 unsigned long sr_allocated;
1092 } shadow_registers;
1093
1094 static void mips_srs_init(void)
1095 {
1096 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1097 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1098 shadow_registers.sr_supported);
1099 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1100 }
1101
1102 int mips_srs_max(void)
1103 {
1104 return shadow_registers.sr_supported;
1105 }
1106
1107 int mips_srs_alloc(void)
1108 {
1109 struct shadow_registers *sr = &shadow_registers;
1110 int set;
1111
1112 again:
1113 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1114 if (set >= sr->sr_supported)
1115 return -1;
1116
1117 if (test_and_set_bit(set, &sr->sr_allocated))
1118 goto again;
1119
1120 return set;
1121 }
1122
1123 void mips_srs_free(int set)
1124 {
1125 struct shadow_registers *sr = &shadow_registers;
1126
1127 clear_bit(set, &sr->sr_allocated);
1128 }
1129
1130 static asmlinkage void do_default_vi(void)
1131 {
1132 show_regs(get_irq_regs());
1133 panic("Caught unexpected vectored interrupt.");
1134 }
1135
1136 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1137 {
1138 unsigned long handler;
1139 unsigned long old_handler = vi_handlers[n];
1140 u32 *w;
1141 unsigned char *b;
1142
1143 if (!cpu_has_veic && !cpu_has_vint)
1144 BUG();
1145
1146 if (addr == NULL) {
1147 handler = (unsigned long) do_default_vi;
1148 srs = 0;
1149 } else
1150 handler = (unsigned long) addr;
1151 vi_handlers[n] = (unsigned long) addr;
1152
1153 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1154
1155 if (srs >= mips_srs_max())
1156 panic("Shadow register set %d not supported", srs);
1157
1158 if (cpu_has_veic) {
1159 if (board_bind_eic_interrupt)
1160 board_bind_eic_interrupt (n, srs);
1161 } else if (cpu_has_vint) {
1162 /* SRSMap is only defined if shadow sets are implemented */
1163 if (mips_srs_max() > 1)
1164 change_c0_srsmap (0xf << n*4, srs << n*4);
1165 }
1166
1167 if (srs == 0) {
1168 /*
1169 * If no shadow set is selected then use the default handler
1170 * that does normal register saving and a standard interrupt exit
1171 */
1172
1173 extern char except_vec_vi, except_vec_vi_lui;
1174 extern char except_vec_vi_ori, except_vec_vi_end;
1175 #ifdef CONFIG_MIPS_MT_SMTC
1176 /*
1177 * We need to provide the SMTC vectored interrupt handler
1178 * not only with the address of the handler, but with the
1179 * Status.IM bit to be masked before going there.
1180 */
1181 extern char except_vec_vi_mori;
1182 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1183 #endif /* CONFIG_MIPS_MT_SMTC */
1184 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1185 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1186 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1187
1188 if (handler_len > VECTORSPACING) {
1189 /*
1190 * Sigh... panicing won't help as the console
1191 * is probably not configured :(
1192 */
1193 panic ("VECTORSPACING too small");
1194 }
1195
1196 memcpy (b, &except_vec_vi, handler_len);
1197 #ifdef CONFIG_MIPS_MT_SMTC
1198 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1199
1200 w = (u32 *)(b + mori_offset);
1201 *w = (*w & 0xffff0000) | (0x100 << n);
1202 #endif /* CONFIG_MIPS_MT_SMTC */
1203 w = (u32 *)(b + lui_offset);
1204 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1205 w = (u32 *)(b + ori_offset);
1206 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1207 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1208 }
1209 else {
1210 /*
1211 * In other cases jump directly to the interrupt handler
1212 *
1213 * It is the handlers responsibility to save registers if required
1214 * (eg hi/lo) and return from the exception using "eret"
1215 */
1216 w = (u32 *)b;
1217 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1218 *w = 0;
1219 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1220 }
1221
1222 return (void *)old_handler;
1223 }
1224
1225 void *set_vi_handler(int n, vi_handler_t addr)
1226 {
1227 return set_vi_srs_handler(n, addr, 0);
1228 }
1229
1230 #else
1231
1232 static inline void mips_srs_init(void)
1233 {
1234 }
1235
1236 #endif /* CONFIG_CPU_MIPSR2_SRS */
1237
1238 /*
1239 * This is used by native signal handling
1240 */
1241 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1242 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1243
1244 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1245 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1246
1247 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1248 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1249
1250 #ifdef CONFIG_SMP
1251 static int smp_save_fp_context(struct sigcontext __user *sc)
1252 {
1253 return raw_cpu_has_fpu
1254 ? _save_fp_context(sc)
1255 : fpu_emulator_save_context(sc);
1256 }
1257
1258 static int smp_restore_fp_context(struct sigcontext __user *sc)
1259 {
1260 return raw_cpu_has_fpu
1261 ? _restore_fp_context(sc)
1262 : fpu_emulator_restore_context(sc);
1263 }
1264 #endif
1265
1266 static inline void signal_init(void)
1267 {
1268 #ifdef CONFIG_SMP
1269 /* For now just do the cpu_has_fpu check when the functions are invoked */
1270 save_fp_context = smp_save_fp_context;
1271 restore_fp_context = smp_restore_fp_context;
1272 #else
1273 if (cpu_has_fpu) {
1274 save_fp_context = _save_fp_context;
1275 restore_fp_context = _restore_fp_context;
1276 } else {
1277 save_fp_context = fpu_emulator_save_context;
1278 restore_fp_context = fpu_emulator_restore_context;
1279 }
1280 #endif
1281 }
1282
1283 #ifdef CONFIG_MIPS32_COMPAT
1284
1285 /*
1286 * This is used by 32-bit signal stuff on the 64-bit kernel
1287 */
1288 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1289 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1290
1291 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1292 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1293
1294 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1295 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1296
1297 static inline void signal32_init(void)
1298 {
1299 if (cpu_has_fpu) {
1300 save_fp_context32 = _save_fp_context32;
1301 restore_fp_context32 = _restore_fp_context32;
1302 } else {
1303 save_fp_context32 = fpu_emulator_save_context32;
1304 restore_fp_context32 = fpu_emulator_restore_context32;
1305 }
1306 }
1307 #endif
1308
1309 extern void cpu_cache_init(void);
1310 extern void tlb_init(void);
1311 extern void flush_tlb_handlers(void);
1312
1313 void __init per_cpu_trap_init(void)
1314 {
1315 unsigned int cpu = smp_processor_id();
1316 unsigned int status_set = ST0_CU0;
1317 #ifdef CONFIG_MIPS_MT_SMTC
1318 int secondaryTC = 0;
1319 int bootTC = (cpu == 0);
1320
1321 /*
1322 * Only do per_cpu_trap_init() for first TC of Each VPE.
1323 * Note that this hack assumes that the SMTC init code
1324 * assigns TCs consecutively and in ascending order.
1325 */
1326
1327 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1328 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1329 secondaryTC = 1;
1330 #endif /* CONFIG_MIPS_MT_SMTC */
1331
1332 /*
1333 * Disable coprocessors and select 32-bit or 64-bit addressing
1334 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1335 * flag that some firmware may have left set and the TS bit (for
1336 * IP27). Set XX for ISA IV code to work.
1337 */
1338 #ifdef CONFIG_64BIT
1339 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1340 #endif
1341 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1342 status_set |= ST0_XX;
1343 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1344 status_set);
1345
1346 if (cpu_has_dsp)
1347 set_c0_status(ST0_MX);
1348
1349 #ifdef CONFIG_CPU_MIPSR2
1350 if (cpu_has_mips_r2) {
1351 unsigned int enable = 0x0000000f;
1352
1353 if (cpu_has_userlocal)
1354 enable |= (1 << 29);
1355
1356 write_c0_hwrena(enable);
1357 }
1358 #endif
1359
1360 #ifdef CONFIG_MIPS_MT_SMTC
1361 if (!secondaryTC) {
1362 #endif /* CONFIG_MIPS_MT_SMTC */
1363
1364 if (cpu_has_veic || cpu_has_vint) {
1365 write_c0_ebase (ebase);
1366 /* Setting vector spacing enables EI/VI mode */
1367 change_c0_intctl (0x3e0, VECTORSPACING);
1368 }
1369 if (cpu_has_divec) {
1370 if (cpu_has_mipsmt) {
1371 unsigned int vpflags = dvpe();
1372 set_c0_cause(CAUSEF_IV);
1373 evpe(vpflags);
1374 } else
1375 set_c0_cause(CAUSEF_IV);
1376 }
1377
1378 /*
1379 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1380 *
1381 * o read IntCtl.IPTI to determine the timer interrupt
1382 * o read IntCtl.IPPCI to determine the performance counter interrupt
1383 */
1384 if (cpu_has_mips_r2) {
1385 cp0_compare_irq = (read_c0_intctl () >> 29) & 7;
1386 cp0_perfcount_irq = (read_c0_intctl () >> 26) & 7;
1387 if (cp0_perfcount_irq == cp0_compare_irq)
1388 cp0_perfcount_irq = -1;
1389 } else {
1390 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1391 cp0_perfcount_irq = -1;
1392 }
1393
1394 #ifdef CONFIG_MIPS_MT_SMTC
1395 }
1396 #endif /* CONFIG_MIPS_MT_SMTC */
1397
1398 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1399 TLBMISS_HANDLER_SETUP();
1400
1401 atomic_inc(&init_mm.mm_count);
1402 current->active_mm = &init_mm;
1403 BUG_ON(current->mm);
1404 enter_lazy_tlb(&init_mm, current);
1405
1406 #ifdef CONFIG_MIPS_MT_SMTC
1407 if (bootTC) {
1408 #endif /* CONFIG_MIPS_MT_SMTC */
1409 cpu_cache_init();
1410 tlb_init();
1411 #ifdef CONFIG_MIPS_MT_SMTC
1412 } else if (!secondaryTC) {
1413 /*
1414 * First TC in non-boot VPE must do subset of tlb_init()
1415 * for MMU countrol registers.
1416 */
1417 write_c0_pagemask(PM_DEFAULT_MASK);
1418 write_c0_wired(0);
1419 }
1420 #endif /* CONFIG_MIPS_MT_SMTC */
1421 }
1422
1423 /* Install CPU exception handler */
1424 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1425 {
1426 memcpy((void *)(ebase + offset), addr, size);
1427 flush_icache_range(ebase + offset, ebase + offset + size);
1428 }
1429
1430 /* Install uncached CPU exception handler */
1431 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1432 {
1433 #ifdef CONFIG_32BIT
1434 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1435 #endif
1436 #ifdef CONFIG_64BIT
1437 unsigned long uncached_ebase = TO_UNCAC(ebase);
1438 #endif
1439
1440 memcpy((void *)(uncached_ebase + offset), addr, size);
1441 }
1442
1443 static int __initdata rdhwr_noopt;
1444 static int __init set_rdhwr_noopt(char *str)
1445 {
1446 rdhwr_noopt = 1;
1447 return 1;
1448 }
1449
1450 __setup("rdhwr_noopt", set_rdhwr_noopt);
1451
1452 void __init trap_init(void)
1453 {
1454 extern char except_vec3_generic, except_vec3_r4000;
1455 extern char except_vec4;
1456 unsigned long i;
1457
1458 if (cpu_has_veic || cpu_has_vint)
1459 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1460 else
1461 ebase = CAC_BASE;
1462
1463 mips_srs_init();
1464
1465 per_cpu_trap_init();
1466
1467 /*
1468 * Copy the generic exception handlers to their final destination.
1469 * This will be overriden later as suitable for a particular
1470 * configuration.
1471 */
1472 set_handler(0x180, &except_vec3_generic, 0x80);
1473
1474 /*
1475 * Setup default vectors
1476 */
1477 for (i = 0; i <= 31; i++)
1478 set_except_vector(i, handle_reserved);
1479
1480 /*
1481 * Copy the EJTAG debug exception vector handler code to it's final
1482 * destination.
1483 */
1484 if (cpu_has_ejtag && board_ejtag_handler_setup)
1485 board_ejtag_handler_setup ();
1486
1487 /*
1488 * Only some CPUs have the watch exceptions.
1489 */
1490 if (cpu_has_watch)
1491 set_except_vector(23, handle_watch);
1492
1493 /*
1494 * Initialise interrupt handlers
1495 */
1496 if (cpu_has_veic || cpu_has_vint) {
1497 int nvec = cpu_has_veic ? 64 : 8;
1498 for (i = 0; i < nvec; i++)
1499 set_vi_handler(i, NULL);
1500 }
1501 else if (cpu_has_divec)
1502 set_handler(0x200, &except_vec4, 0x8);
1503
1504 /*
1505 * Some CPUs can enable/disable for cache parity detection, but does
1506 * it different ways.
1507 */
1508 parity_protection_init();
1509
1510 /*
1511 * The Data Bus Errors / Instruction Bus Errors are signaled
1512 * by external hardware. Therefore these two exceptions
1513 * may have board specific handlers.
1514 */
1515 if (board_be_init)
1516 board_be_init();
1517
1518 set_except_vector(0, handle_int);
1519 set_except_vector(1, handle_tlbm);
1520 set_except_vector(2, handle_tlbl);
1521 set_except_vector(3, handle_tlbs);
1522
1523 set_except_vector(4, handle_adel);
1524 set_except_vector(5, handle_ades);
1525
1526 set_except_vector(6, handle_ibe);
1527 set_except_vector(7, handle_dbe);
1528
1529 set_except_vector(8, handle_sys);
1530 set_except_vector(9, handle_bp);
1531 set_except_vector(10, rdhwr_noopt ? handle_ri :
1532 (cpu_has_vtag_icache ?
1533 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1534 set_except_vector(11, handle_cpu);
1535 set_except_vector(12, handle_ov);
1536 set_except_vector(13, handle_tr);
1537
1538 if (current_cpu_data.cputype == CPU_R6000 ||
1539 current_cpu_data.cputype == CPU_R6000A) {
1540 /*
1541 * The R6000 is the only R-series CPU that features a machine
1542 * check exception (similar to the R4000 cache error) and
1543 * unaligned ldc1/sdc1 exception. The handlers have not been
1544 * written yet. Well, anyway there is no R6000 machine on the
1545 * current list of targets for Linux/MIPS.
1546 * (Duh, crap, there is someone with a triple R6k machine)
1547 */
1548 //set_except_vector(14, handle_mc);
1549 //set_except_vector(15, handle_ndc);
1550 }
1551
1552
1553 if (board_nmi_handler_setup)
1554 board_nmi_handler_setup();
1555
1556 if (cpu_has_fpu && !cpu_has_nofpuex)
1557 set_except_vector(15, handle_fpe);
1558
1559 set_except_vector(22, handle_mdmx);
1560
1561 if (cpu_has_mcheck)
1562 set_except_vector(24, handle_mcheck);
1563
1564 if (cpu_has_mipsmt)
1565 set_except_vector(25, handle_mt);
1566
1567 set_except_vector(26, handle_dsp);
1568
1569 if (cpu_has_vce)
1570 /* Special exception: R4[04]00 uses also the divec space. */
1571 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1572 else if (cpu_has_4kex)
1573 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1574 else
1575 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1576
1577 signal_init();
1578 #ifdef CONFIG_MIPS32_COMPAT
1579 signal32_init();
1580 #endif
1581
1582 flush_icache_range(ebase, ebase + 0x400);
1583 flush_tlb_handlers();
1584 }
This page took 0.085519 seconds and 5 git commands to generate.