Report that kernel is tainted if there was an OOPS
[deliverable/linux.git] / arch / mips / kernel / traps.c
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005 Maciej W. Rozycki
13 */
14 #include <linux/bug.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/kallsyms.h>
22 #include <linux/bootmem.h>
23 #include <linux/interrupt.h>
24
25 #include <asm/bootinfo.h>
26 #include <asm/branch.h>
27 #include <asm/break.h>
28 #include <asm/cpu.h>
29 #include <asm/dsp.h>
30 #include <asm/fpu.h>
31 #include <asm/mipsregs.h>
32 #include <asm/mipsmtregs.h>
33 #include <asm/module.h>
34 #include <asm/pgtable.h>
35 #include <asm/ptrace.h>
36 #include <asm/sections.h>
37 #include <asm/system.h>
38 #include <asm/tlbdebug.h>
39 #include <asm/traps.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/types.h>
43 #include <asm/stacktrace.h>
44
45 extern asmlinkage void handle_int(void);
46 extern asmlinkage void handle_tlbm(void);
47 extern asmlinkage void handle_tlbl(void);
48 extern asmlinkage void handle_tlbs(void);
49 extern asmlinkage void handle_adel(void);
50 extern asmlinkage void handle_ades(void);
51 extern asmlinkage void handle_ibe(void);
52 extern asmlinkage void handle_dbe(void);
53 extern asmlinkage void handle_sys(void);
54 extern asmlinkage void handle_bp(void);
55 extern asmlinkage void handle_ri(void);
56 extern asmlinkage void handle_ri_rdhwr_vivt(void);
57 extern asmlinkage void handle_ri_rdhwr(void);
58 extern asmlinkage void handle_cpu(void);
59 extern asmlinkage void handle_ov(void);
60 extern asmlinkage void handle_tr(void);
61 extern asmlinkage void handle_fpe(void);
62 extern asmlinkage void handle_mdmx(void);
63 extern asmlinkage void handle_watch(void);
64 extern asmlinkage void handle_mt(void);
65 extern asmlinkage void handle_dsp(void);
66 extern asmlinkage void handle_mcheck(void);
67 extern asmlinkage void handle_reserved(void);
68
69 extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
70 struct mips_fpu_struct *ctx, int has_fpu);
71
72 void (*board_watchpoint_handler)(struct pt_regs *regs);
73 void (*board_be_init)(void);
74 int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
75 void (*board_nmi_handler_setup)(void);
76 void (*board_ejtag_handler_setup)(void);
77 void (*board_bind_eic_interrupt)(int irq, int regset);
78
79
80 static void show_raw_backtrace(unsigned long reg29)
81 {
82 unsigned long *sp = (unsigned long *)reg29;
83 unsigned long addr;
84
85 printk("Call Trace:");
86 #ifdef CONFIG_KALLSYMS
87 printk("\n");
88 #endif
89 while (!kstack_end(sp)) {
90 addr = *sp++;
91 if (__kernel_text_address(addr))
92 print_ip_sym(addr);
93 }
94 printk("\n");
95 }
96
97 #ifdef CONFIG_KALLSYMS
98 int raw_show_trace;
99 static int __init set_raw_show_trace(char *str)
100 {
101 raw_show_trace = 1;
102 return 1;
103 }
104 __setup("raw_show_trace", set_raw_show_trace);
105 #endif
106
107 static void show_backtrace(struct task_struct *task, struct pt_regs *regs)
108 {
109 unsigned long sp = regs->regs[29];
110 unsigned long ra = regs->regs[31];
111 unsigned long pc = regs->cp0_epc;
112
113 if (raw_show_trace || !__kernel_text_address(pc)) {
114 show_raw_backtrace(sp);
115 return;
116 }
117 printk("Call Trace:\n");
118 do {
119 print_ip_sym(pc);
120 pc = unwind_stack(task, &sp, pc, &ra);
121 } while (pc);
122 printk("\n");
123 }
124
125 /*
126 * This routine abuses get_user()/put_user() to reference pointers
127 * with at least a bit of error checking ...
128 */
129 static void show_stacktrace(struct task_struct *task, struct pt_regs *regs)
130 {
131 const int field = 2 * sizeof(unsigned long);
132 long stackdata;
133 int i;
134 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
135
136 printk("Stack :");
137 i = 0;
138 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
139 if (i && ((i % (64 / field)) == 0))
140 printk("\n ");
141 if (i > 39) {
142 printk(" ...");
143 break;
144 }
145
146 if (__get_user(stackdata, sp++)) {
147 printk(" (Bad stack address)");
148 break;
149 }
150
151 printk(" %0*lx", field, stackdata);
152 i++;
153 }
154 printk("\n");
155 show_backtrace(task, regs);
156 }
157
158 void show_stack(struct task_struct *task, unsigned long *sp)
159 {
160 struct pt_regs regs;
161 if (sp) {
162 regs.regs[29] = (unsigned long)sp;
163 regs.regs[31] = 0;
164 regs.cp0_epc = 0;
165 } else {
166 if (task && task != current) {
167 regs.regs[29] = task->thread.reg29;
168 regs.regs[31] = 0;
169 regs.cp0_epc = task->thread.reg31;
170 } else {
171 prepare_frametrace(&regs);
172 }
173 }
174 show_stacktrace(task, &regs);
175 }
176
177 /*
178 * The architecture-independent dump_stack generator
179 */
180 void dump_stack(void)
181 {
182 struct pt_regs regs;
183
184 prepare_frametrace(&regs);
185 show_backtrace(current, &regs);
186 }
187
188 EXPORT_SYMBOL(dump_stack);
189
190 static void show_code(unsigned int __user *pc)
191 {
192 long i;
193
194 printk("\nCode:");
195
196 for(i = -3 ; i < 6 ; i++) {
197 unsigned int insn;
198 if (__get_user(insn, pc + i)) {
199 printk(" (Bad address in epc)\n");
200 break;
201 }
202 printk("%c%08x%c", (i?' ':'<'), insn, (i?' ':'>'));
203 }
204 }
205
206 void show_regs(struct pt_regs *regs)
207 {
208 const int field = 2 * sizeof(unsigned long);
209 unsigned int cause = regs->cp0_cause;
210 int i;
211
212 printk("Cpu %d\n", smp_processor_id());
213
214 /*
215 * Saved main processor registers
216 */
217 for (i = 0; i < 32; ) {
218 if ((i % 4) == 0)
219 printk("$%2d :", i);
220 if (i == 0)
221 printk(" %0*lx", field, 0UL);
222 else if (i == 26 || i == 27)
223 printk(" %*s", field, "");
224 else
225 printk(" %0*lx", field, regs->regs[i]);
226
227 i++;
228 if ((i % 4) == 0)
229 printk("\n");
230 }
231
232 #ifdef CONFIG_CPU_HAS_SMARTMIPS
233 printk("Acx : %0*lx\n", field, regs->acx);
234 #endif
235 printk("Hi : %0*lx\n", field, regs->hi);
236 printk("Lo : %0*lx\n", field, regs->lo);
237
238 /*
239 * Saved cp0 registers
240 */
241 printk("epc : %0*lx ", field, regs->cp0_epc);
242 print_symbol("%s ", regs->cp0_epc);
243 printk(" %s\n", print_tainted());
244 printk("ra : %0*lx ", field, regs->regs[31]);
245 print_symbol("%s\n", regs->regs[31]);
246
247 printk("Status: %08x ", (uint32_t) regs->cp0_status);
248
249 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
250 if (regs->cp0_status & ST0_KUO)
251 printk("KUo ");
252 if (regs->cp0_status & ST0_IEO)
253 printk("IEo ");
254 if (regs->cp0_status & ST0_KUP)
255 printk("KUp ");
256 if (regs->cp0_status & ST0_IEP)
257 printk("IEp ");
258 if (regs->cp0_status & ST0_KUC)
259 printk("KUc ");
260 if (regs->cp0_status & ST0_IEC)
261 printk("IEc ");
262 } else {
263 if (regs->cp0_status & ST0_KX)
264 printk("KX ");
265 if (regs->cp0_status & ST0_SX)
266 printk("SX ");
267 if (regs->cp0_status & ST0_UX)
268 printk("UX ");
269 switch (regs->cp0_status & ST0_KSU) {
270 case KSU_USER:
271 printk("USER ");
272 break;
273 case KSU_SUPERVISOR:
274 printk("SUPERVISOR ");
275 break;
276 case KSU_KERNEL:
277 printk("KERNEL ");
278 break;
279 default:
280 printk("BAD_MODE ");
281 break;
282 }
283 if (regs->cp0_status & ST0_ERL)
284 printk("ERL ");
285 if (regs->cp0_status & ST0_EXL)
286 printk("EXL ");
287 if (regs->cp0_status & ST0_IE)
288 printk("IE ");
289 }
290 printk("\n");
291
292 printk("Cause : %08x\n", cause);
293
294 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
295 if (1 <= cause && cause <= 5)
296 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
297
298 printk("PrId : %08x\n", read_c0_prid());
299 }
300
301 void show_registers(struct pt_regs *regs)
302 {
303 show_regs(regs);
304 print_modules();
305 printk("Process %s (pid: %d, threadinfo=%p, task=%p)\n",
306 current->comm, current->pid, current_thread_info(), current);
307 show_stacktrace(current, regs);
308 show_code((unsigned int __user *) regs->cp0_epc);
309 printk("\n");
310 }
311
312 static DEFINE_SPINLOCK(die_lock);
313
314 void __noreturn die(const char * str, struct pt_regs * regs)
315 {
316 static int die_counter;
317 #ifdef CONFIG_MIPS_MT_SMTC
318 unsigned long dvpret = dvpe();
319 #endif /* CONFIG_MIPS_MT_SMTC */
320
321 console_verbose();
322 spin_lock_irq(&die_lock);
323 bust_spinlocks(1);
324 #ifdef CONFIG_MIPS_MT_SMTC
325 mips_mt_regdump(dvpret);
326 #endif /* CONFIG_MIPS_MT_SMTC */
327 printk("%s[#%d]:\n", str, ++die_counter);
328 show_registers(regs);
329 add_taint(TAINT_DIE);
330 spin_unlock_irq(&die_lock);
331
332 if (in_interrupt())
333 panic("Fatal exception in interrupt");
334
335 if (panic_on_oops) {
336 printk(KERN_EMERG "Fatal exception: panic in 5 seconds\n");
337 ssleep(5);
338 panic("Fatal exception");
339 }
340
341 do_exit(SIGSEGV);
342 }
343
344 extern const struct exception_table_entry __start___dbe_table[];
345 extern const struct exception_table_entry __stop___dbe_table[];
346
347 __asm__(
348 " .section __dbe_table, \"a\"\n"
349 " .previous \n");
350
351 /* Given an address, look for it in the exception tables. */
352 static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
353 {
354 const struct exception_table_entry *e;
355
356 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
357 if (!e)
358 e = search_module_dbetables(addr);
359 return e;
360 }
361
362 asmlinkage void do_be(struct pt_regs *regs)
363 {
364 const int field = 2 * sizeof(unsigned long);
365 const struct exception_table_entry *fixup = NULL;
366 int data = regs->cp0_cause & 4;
367 int action = MIPS_BE_FATAL;
368
369 /* XXX For now. Fixme, this searches the wrong table ... */
370 if (data && !user_mode(regs))
371 fixup = search_dbe_tables(exception_epc(regs));
372
373 if (fixup)
374 action = MIPS_BE_FIXUP;
375
376 if (board_be_handler)
377 action = board_be_handler(regs, fixup != NULL);
378
379 switch (action) {
380 case MIPS_BE_DISCARD:
381 return;
382 case MIPS_BE_FIXUP:
383 if (fixup) {
384 regs->cp0_epc = fixup->nextinsn;
385 return;
386 }
387 break;
388 default:
389 break;
390 }
391
392 /*
393 * Assume it would be too dangerous to continue ...
394 */
395 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
396 data ? "Data" : "Instruction",
397 field, regs->cp0_epc, field, regs->regs[31]);
398 die_if_kernel("Oops", regs);
399 force_sig(SIGBUS, current);
400 }
401
402 /*
403 * ll/sc emulation
404 */
405
406 #define OPCODE 0xfc000000
407 #define BASE 0x03e00000
408 #define RT 0x001f0000
409 #define OFFSET 0x0000ffff
410 #define LL 0xc0000000
411 #define SC 0xe0000000
412 #define SPEC3 0x7c000000
413 #define RD 0x0000f800
414 #define FUNC 0x0000003f
415 #define RDHWR 0x0000003b
416
417 /*
418 * The ll_bit is cleared by r*_switch.S
419 */
420
421 unsigned long ll_bit;
422
423 static struct task_struct *ll_task = NULL;
424
425 static inline void simulate_ll(struct pt_regs *regs, unsigned int opcode)
426 {
427 unsigned long value, __user *vaddr;
428 long offset;
429 int signal = 0;
430
431 /*
432 * analyse the ll instruction that just caused a ri exception
433 * and put the referenced address to addr.
434 */
435
436 /* sign extend offset */
437 offset = opcode & OFFSET;
438 offset <<= 16;
439 offset >>= 16;
440
441 vaddr = (unsigned long __user *)
442 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
443
444 if ((unsigned long)vaddr & 3) {
445 signal = SIGBUS;
446 goto sig;
447 }
448 if (get_user(value, vaddr)) {
449 signal = SIGSEGV;
450 goto sig;
451 }
452
453 preempt_disable();
454
455 if (ll_task == NULL || ll_task == current) {
456 ll_bit = 1;
457 } else {
458 ll_bit = 0;
459 }
460 ll_task = current;
461
462 preempt_enable();
463
464 compute_return_epc(regs);
465
466 regs->regs[(opcode & RT) >> 16] = value;
467
468 return;
469
470 sig:
471 force_sig(signal, current);
472 }
473
474 static inline void simulate_sc(struct pt_regs *regs, unsigned int opcode)
475 {
476 unsigned long __user *vaddr;
477 unsigned long reg;
478 long offset;
479 int signal = 0;
480
481 /*
482 * analyse the sc instruction that just caused a ri exception
483 * and put the referenced address to addr.
484 */
485
486 /* sign extend offset */
487 offset = opcode & OFFSET;
488 offset <<= 16;
489 offset >>= 16;
490
491 vaddr = (unsigned long __user *)
492 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
493 reg = (opcode & RT) >> 16;
494
495 if ((unsigned long)vaddr & 3) {
496 signal = SIGBUS;
497 goto sig;
498 }
499
500 preempt_disable();
501
502 if (ll_bit == 0 || ll_task != current) {
503 compute_return_epc(regs);
504 regs->regs[reg] = 0;
505 preempt_enable();
506 return;
507 }
508
509 preempt_enable();
510
511 if (put_user(regs->regs[reg], vaddr)) {
512 signal = SIGSEGV;
513 goto sig;
514 }
515
516 compute_return_epc(regs);
517 regs->regs[reg] = 1;
518
519 return;
520
521 sig:
522 force_sig(signal, current);
523 }
524
525 /*
526 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
527 * opcodes are supposed to result in coprocessor unusable exceptions if
528 * executed on ll/sc-less processors. That's the theory. In practice a
529 * few processors such as NEC's VR4100 throw reserved instruction exceptions
530 * instead, so we're doing the emulation thing in both exception handlers.
531 */
532 static inline int simulate_llsc(struct pt_regs *regs)
533 {
534 unsigned int opcode;
535
536 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
537 goto out_sigsegv;
538
539 if ((opcode & OPCODE) == LL) {
540 simulate_ll(regs, opcode);
541 return 0;
542 }
543 if ((opcode & OPCODE) == SC) {
544 simulate_sc(regs, opcode);
545 return 0;
546 }
547
548 return -EFAULT; /* Strange things going on ... */
549
550 out_sigsegv:
551 force_sig(SIGSEGV, current);
552 return -EFAULT;
553 }
554
555 /*
556 * Simulate trapping 'rdhwr' instructions to provide user accessible
557 * registers not implemented in hardware. The only current use of this
558 * is the thread area pointer.
559 */
560 static inline int simulate_rdhwr(struct pt_regs *regs)
561 {
562 struct thread_info *ti = task_thread_info(current);
563 unsigned int opcode;
564
565 if (get_user(opcode, (unsigned int __user *) exception_epc(regs)))
566 goto out_sigsegv;
567
568 if (unlikely(compute_return_epc(regs)))
569 return -EFAULT;
570
571 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
572 int rd = (opcode & RD) >> 11;
573 int rt = (opcode & RT) >> 16;
574 switch (rd) {
575 case 29:
576 regs->regs[rt] = ti->tp_value;
577 return 0;
578 default:
579 return -EFAULT;
580 }
581 }
582
583 /* Not ours. */
584 return -EFAULT;
585
586 out_sigsegv:
587 force_sig(SIGSEGV, current);
588 return -EFAULT;
589 }
590
591 asmlinkage void do_ov(struct pt_regs *regs)
592 {
593 siginfo_t info;
594
595 die_if_kernel("Integer overflow", regs);
596
597 info.si_code = FPE_INTOVF;
598 info.si_signo = SIGFPE;
599 info.si_errno = 0;
600 info.si_addr = (void __user *) regs->cp0_epc;
601 force_sig_info(SIGFPE, &info, current);
602 }
603
604 /*
605 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
606 */
607 asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
608 {
609 die_if_kernel("FP exception in kernel code", regs);
610
611 if (fcr31 & FPU_CSR_UNI_X) {
612 int sig;
613
614 /*
615 * Unimplemented operation exception. If we've got the full
616 * software emulator on-board, let's use it...
617 *
618 * Force FPU to dump state into task/thread context. We're
619 * moving a lot of data here for what is probably a single
620 * instruction, but the alternative is to pre-decode the FP
621 * register operands before invoking the emulator, which seems
622 * a bit extreme for what should be an infrequent event.
623 */
624 /* Ensure 'resume' not overwrite saved fp context again. */
625 lose_fpu(1);
626
627 /* Run the emulator */
628 sig = fpu_emulator_cop1Handler (regs, &current->thread.fpu, 1);
629
630 /*
631 * We can't allow the emulated instruction to leave any of
632 * the cause bit set in $fcr31.
633 */
634 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
635
636 /* Restore the hardware register state */
637 own_fpu(1); /* Using the FPU again. */
638
639 /* If something went wrong, signal */
640 if (sig)
641 force_sig(sig, current);
642
643 return;
644 }
645
646 force_sig(SIGFPE, current);
647 }
648
649 asmlinkage void do_bp(struct pt_regs *regs)
650 {
651 unsigned int opcode, bcode;
652 siginfo_t info;
653
654 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
655 goto out_sigsegv;
656
657 /*
658 * There is the ancient bug in the MIPS assemblers that the break
659 * code starts left to bit 16 instead to bit 6 in the opcode.
660 * Gas is bug-compatible, but not always, grrr...
661 * We handle both cases with a simple heuristics. --macro
662 */
663 bcode = ((opcode >> 6) & ((1 << 20) - 1));
664 if (bcode < (1 << 10))
665 bcode <<= 10;
666
667 /*
668 * (A short test says that IRIX 5.3 sends SIGTRAP for all break
669 * insns, even for break codes that indicate arithmetic failures.
670 * Weird ...)
671 * But should we continue the brokenness??? --macro
672 */
673 switch (bcode) {
674 case BRK_OVERFLOW << 10:
675 case BRK_DIVZERO << 10:
676 die_if_kernel("Break instruction in kernel code", regs);
677 if (bcode == (BRK_DIVZERO << 10))
678 info.si_code = FPE_INTDIV;
679 else
680 info.si_code = FPE_INTOVF;
681 info.si_signo = SIGFPE;
682 info.si_errno = 0;
683 info.si_addr = (void __user *) regs->cp0_epc;
684 force_sig_info(SIGFPE, &info, current);
685 break;
686 case BRK_BUG:
687 die("Kernel bug detected", regs);
688 break;
689 default:
690 die_if_kernel("Break instruction in kernel code", regs);
691 force_sig(SIGTRAP, current);
692 }
693 return;
694
695 out_sigsegv:
696 force_sig(SIGSEGV, current);
697 }
698
699 asmlinkage void do_tr(struct pt_regs *regs)
700 {
701 unsigned int opcode, tcode = 0;
702 siginfo_t info;
703
704 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
705 goto out_sigsegv;
706
707 /* Immediate versions don't provide a code. */
708 if (!(opcode & OPCODE))
709 tcode = ((opcode >> 6) & ((1 << 10) - 1));
710
711 /*
712 * (A short test says that IRIX 5.3 sends SIGTRAP for all trap
713 * insns, even for trap codes that indicate arithmetic failures.
714 * Weird ...)
715 * But should we continue the brokenness??? --macro
716 */
717 switch (tcode) {
718 case BRK_OVERFLOW:
719 case BRK_DIVZERO:
720 die_if_kernel("Trap instruction in kernel code", regs);
721 if (tcode == BRK_DIVZERO)
722 info.si_code = FPE_INTDIV;
723 else
724 info.si_code = FPE_INTOVF;
725 info.si_signo = SIGFPE;
726 info.si_errno = 0;
727 info.si_addr = (void __user *) regs->cp0_epc;
728 force_sig_info(SIGFPE, &info, current);
729 break;
730 case BRK_BUG:
731 die("Kernel bug detected", regs);
732 break;
733 default:
734 die_if_kernel("Trap instruction in kernel code", regs);
735 force_sig(SIGTRAP, current);
736 }
737 return;
738
739 out_sigsegv:
740 force_sig(SIGSEGV, current);
741 }
742
743 asmlinkage void do_ri(struct pt_regs *regs)
744 {
745 die_if_kernel("Reserved instruction in kernel code", regs);
746
747 if (!cpu_has_llsc)
748 if (!simulate_llsc(regs))
749 return;
750
751 if (!simulate_rdhwr(regs))
752 return;
753
754 force_sig(SIGILL, current);
755 }
756
757 /*
758 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
759 * emulated more than some threshold number of instructions, force migration to
760 * a "CPU" that has FP support.
761 */
762 static void mt_ase_fp_affinity(void)
763 {
764 #ifdef CONFIG_MIPS_MT_FPAFF
765 if (mt_fpemul_threshold > 0 &&
766 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
767 /*
768 * If there's no FPU present, or if the application has already
769 * restricted the allowed set to exclude any CPUs with FPUs,
770 * we'll skip the procedure.
771 */
772 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
773 cpumask_t tmask;
774
775 cpus_and(tmask, current->thread.user_cpus_allowed,
776 mt_fpu_cpumask);
777 set_cpus_allowed(current, tmask);
778 current->thread.mflags |= MF_FPUBOUND;
779 }
780 }
781 #endif /* CONFIG_MIPS_MT_FPAFF */
782 }
783
784 asmlinkage void do_cpu(struct pt_regs *regs)
785 {
786 unsigned int cpid;
787
788 die_if_kernel("do_cpu invoked from kernel context!", regs);
789
790 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
791
792 switch (cpid) {
793 case 0:
794 if (!cpu_has_llsc)
795 if (!simulate_llsc(regs))
796 return;
797
798 if (!simulate_rdhwr(regs))
799 return;
800
801 break;
802
803 case 1:
804 if (used_math()) /* Using the FPU again. */
805 own_fpu(1);
806 else { /* First time FPU user. */
807 init_fpu();
808 set_used_math();
809 }
810
811 if (!raw_cpu_has_fpu) {
812 int sig;
813 sig = fpu_emulator_cop1Handler(regs,
814 &current->thread.fpu, 0);
815 if (sig)
816 force_sig(sig, current);
817 else
818 mt_ase_fp_affinity();
819 }
820
821 return;
822
823 case 2:
824 case 3:
825 break;
826 }
827
828 force_sig(SIGILL, current);
829 }
830
831 asmlinkage void do_mdmx(struct pt_regs *regs)
832 {
833 force_sig(SIGILL, current);
834 }
835
836 asmlinkage void do_watch(struct pt_regs *regs)
837 {
838 if (board_watchpoint_handler) {
839 (*board_watchpoint_handler)(regs);
840 return;
841 }
842
843 /*
844 * We use the watch exception where available to detect stack
845 * overflows.
846 */
847 dump_tlb_all();
848 show_regs(regs);
849 panic("Caught WATCH exception - probably caused by stack overflow.");
850 }
851
852 asmlinkage void do_mcheck(struct pt_regs *regs)
853 {
854 const int field = 2 * sizeof(unsigned long);
855 int multi_match = regs->cp0_status & ST0_TS;
856
857 show_regs(regs);
858
859 if (multi_match) {
860 printk("Index : %0x\n", read_c0_index());
861 printk("Pagemask: %0x\n", read_c0_pagemask());
862 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
863 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
864 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
865 printk("\n");
866 dump_tlb_all();
867 }
868
869 show_code((unsigned int __user *) regs->cp0_epc);
870
871 /*
872 * Some chips may have other causes of machine check (e.g. SB1
873 * graduation timer)
874 */
875 panic("Caught Machine Check exception - %scaused by multiple "
876 "matching entries in the TLB.",
877 (multi_match) ? "" : "not ");
878 }
879
880 asmlinkage void do_mt(struct pt_regs *regs)
881 {
882 int subcode;
883
884 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
885 >> VPECONTROL_EXCPT_SHIFT;
886 switch (subcode) {
887 case 0:
888 printk(KERN_DEBUG "Thread Underflow\n");
889 break;
890 case 1:
891 printk(KERN_DEBUG "Thread Overflow\n");
892 break;
893 case 2:
894 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
895 break;
896 case 3:
897 printk(KERN_DEBUG "Gating Storage Exception\n");
898 break;
899 case 4:
900 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
901 break;
902 case 5:
903 printk(KERN_DEBUG "Gating Storage Schedulier Exception\n");
904 break;
905 default:
906 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
907 subcode);
908 break;
909 }
910 die_if_kernel("MIPS MT Thread exception in kernel", regs);
911
912 force_sig(SIGILL, current);
913 }
914
915
916 asmlinkage void do_dsp(struct pt_regs *regs)
917 {
918 if (cpu_has_dsp)
919 panic("Unexpected DSP exception\n");
920
921 force_sig(SIGILL, current);
922 }
923
924 asmlinkage void do_reserved(struct pt_regs *regs)
925 {
926 /*
927 * Game over - no way to handle this if it ever occurs. Most probably
928 * caused by a new unknown cpu type or after another deadly
929 * hard/software error.
930 */
931 show_regs(regs);
932 panic("Caught reserved exception %ld - should not happen.",
933 (regs->cp0_cause & 0x7f) >> 2);
934 }
935
936 /*
937 * Some MIPS CPUs can enable/disable for cache parity detection, but do
938 * it different ways.
939 */
940 static inline void parity_protection_init(void)
941 {
942 switch (current_cpu_data.cputype) {
943 case CPU_24K:
944 case CPU_34K:
945 case CPU_5KC:
946 write_c0_ecc(0x80000000);
947 back_to_back_c0_hazard();
948 /* Set the PE bit (bit 31) in the c0_errctl register. */
949 printk(KERN_INFO "Cache parity protection %sabled\n",
950 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
951 break;
952 case CPU_20KC:
953 case CPU_25KF:
954 /* Clear the DE bit (bit 16) in the c0_status register. */
955 printk(KERN_INFO "Enable cache parity protection for "
956 "MIPS 20KC/25KF CPUs.\n");
957 clear_c0_status(ST0_DE);
958 break;
959 default:
960 break;
961 }
962 }
963
964 asmlinkage void cache_parity_error(void)
965 {
966 const int field = 2 * sizeof(unsigned long);
967 unsigned int reg_val;
968
969 /* For the moment, report the problem and hang. */
970 printk("Cache error exception:\n");
971 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
972 reg_val = read_c0_cacheerr();
973 printk("c0_cacheerr == %08x\n", reg_val);
974
975 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
976 reg_val & (1<<30) ? "secondary" : "primary",
977 reg_val & (1<<31) ? "data" : "insn");
978 printk("Error bits: %s%s%s%s%s%s%s\n",
979 reg_val & (1<<29) ? "ED " : "",
980 reg_val & (1<<28) ? "ET " : "",
981 reg_val & (1<<26) ? "EE " : "",
982 reg_val & (1<<25) ? "EB " : "",
983 reg_val & (1<<24) ? "EI " : "",
984 reg_val & (1<<23) ? "E1 " : "",
985 reg_val & (1<<22) ? "E0 " : "");
986 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
987
988 #if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
989 if (reg_val & (1<<22))
990 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
991
992 if (reg_val & (1<<23))
993 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
994 #endif
995
996 panic("Can't handle the cache error!");
997 }
998
999 /*
1000 * SDBBP EJTAG debug exception handler.
1001 * We skip the instruction and return to the next instruction.
1002 */
1003 void ejtag_exception_handler(struct pt_regs *regs)
1004 {
1005 const int field = 2 * sizeof(unsigned long);
1006 unsigned long depc, old_epc;
1007 unsigned int debug;
1008
1009 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1010 depc = read_c0_depc();
1011 debug = read_c0_debug();
1012 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1013 if (debug & 0x80000000) {
1014 /*
1015 * In branch delay slot.
1016 * We cheat a little bit here and use EPC to calculate the
1017 * debug return address (DEPC). EPC is restored after the
1018 * calculation.
1019 */
1020 old_epc = regs->cp0_epc;
1021 regs->cp0_epc = depc;
1022 __compute_return_epc(regs);
1023 depc = regs->cp0_epc;
1024 regs->cp0_epc = old_epc;
1025 } else
1026 depc += 4;
1027 write_c0_depc(depc);
1028
1029 #if 0
1030 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1031 write_c0_debug(debug | 0x100);
1032 #endif
1033 }
1034
1035 /*
1036 * NMI exception handler.
1037 */
1038 void nmi_exception_handler(struct pt_regs *regs)
1039 {
1040 #ifdef CONFIG_MIPS_MT_SMTC
1041 unsigned long dvpret = dvpe();
1042 bust_spinlocks(1);
1043 printk("NMI taken!!!!\n");
1044 mips_mt_regdump(dvpret);
1045 #else
1046 bust_spinlocks(1);
1047 printk("NMI taken!!!!\n");
1048 #endif /* CONFIG_MIPS_MT_SMTC */
1049 die("NMI", regs);
1050 while(1) ;
1051 }
1052
1053 #define VECTORSPACING 0x100 /* for EI/VI mode */
1054
1055 unsigned long ebase;
1056 unsigned long exception_handlers[32];
1057 unsigned long vi_handlers[64];
1058
1059 /*
1060 * As a side effect of the way this is implemented we're limited
1061 * to interrupt handlers in the address range from
1062 * KSEG0 <= x < KSEG0 + 256mb on the Nevada. Oh well ...
1063 */
1064 void *set_except_vector(int n, void *addr)
1065 {
1066 unsigned long handler = (unsigned long) addr;
1067 unsigned long old_handler = exception_handlers[n];
1068
1069 exception_handlers[n] = handler;
1070 if (n == 0 && cpu_has_divec) {
1071 *(volatile u32 *)(ebase + 0x200) = 0x08000000 |
1072 (0x03ffffff & (handler >> 2));
1073 flush_icache_range(ebase + 0x200, ebase + 0x204);
1074 }
1075 return (void *)old_handler;
1076 }
1077
1078 #ifdef CONFIG_CPU_MIPSR2_SRS
1079 /*
1080 * MIPSR2 shadow register set allocation
1081 * FIXME: SMP...
1082 */
1083
1084 static struct shadow_registers {
1085 /*
1086 * Number of shadow register sets supported
1087 */
1088 unsigned long sr_supported;
1089 /*
1090 * Bitmap of allocated shadow registers
1091 */
1092 unsigned long sr_allocated;
1093 } shadow_registers;
1094
1095 static void mips_srs_init(void)
1096 {
1097 shadow_registers.sr_supported = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1098 printk(KERN_INFO "%ld MIPSR2 register sets available\n",
1099 shadow_registers.sr_supported);
1100 shadow_registers.sr_allocated = 1; /* Set 0 used by kernel */
1101 }
1102
1103 int mips_srs_max(void)
1104 {
1105 return shadow_registers.sr_supported;
1106 }
1107
1108 int mips_srs_alloc(void)
1109 {
1110 struct shadow_registers *sr = &shadow_registers;
1111 int set;
1112
1113 again:
1114 set = find_first_zero_bit(&sr->sr_allocated, sr->sr_supported);
1115 if (set >= sr->sr_supported)
1116 return -1;
1117
1118 if (test_and_set_bit(set, &sr->sr_allocated))
1119 goto again;
1120
1121 return set;
1122 }
1123
1124 void mips_srs_free(int set)
1125 {
1126 struct shadow_registers *sr = &shadow_registers;
1127
1128 clear_bit(set, &sr->sr_allocated);
1129 }
1130
1131 static asmlinkage void do_default_vi(void)
1132 {
1133 show_regs(get_irq_regs());
1134 panic("Caught unexpected vectored interrupt.");
1135 }
1136
1137 static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1138 {
1139 unsigned long handler;
1140 unsigned long old_handler = vi_handlers[n];
1141 u32 *w;
1142 unsigned char *b;
1143
1144 if (!cpu_has_veic && !cpu_has_vint)
1145 BUG();
1146
1147 if (addr == NULL) {
1148 handler = (unsigned long) do_default_vi;
1149 srs = 0;
1150 } else
1151 handler = (unsigned long) addr;
1152 vi_handlers[n] = (unsigned long) addr;
1153
1154 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1155
1156 if (srs >= mips_srs_max())
1157 panic("Shadow register set %d not supported", srs);
1158
1159 if (cpu_has_veic) {
1160 if (board_bind_eic_interrupt)
1161 board_bind_eic_interrupt (n, srs);
1162 } else if (cpu_has_vint) {
1163 /* SRSMap is only defined if shadow sets are implemented */
1164 if (mips_srs_max() > 1)
1165 change_c0_srsmap (0xf << n*4, srs << n*4);
1166 }
1167
1168 if (srs == 0) {
1169 /*
1170 * If no shadow set is selected then use the default handler
1171 * that does normal register saving and a standard interrupt exit
1172 */
1173
1174 extern char except_vec_vi, except_vec_vi_lui;
1175 extern char except_vec_vi_ori, except_vec_vi_end;
1176 #ifdef CONFIG_MIPS_MT_SMTC
1177 /*
1178 * We need to provide the SMTC vectored interrupt handler
1179 * not only with the address of the handler, but with the
1180 * Status.IM bit to be masked before going there.
1181 */
1182 extern char except_vec_vi_mori;
1183 const int mori_offset = &except_vec_vi_mori - &except_vec_vi;
1184 #endif /* CONFIG_MIPS_MT_SMTC */
1185 const int handler_len = &except_vec_vi_end - &except_vec_vi;
1186 const int lui_offset = &except_vec_vi_lui - &except_vec_vi;
1187 const int ori_offset = &except_vec_vi_ori - &except_vec_vi;
1188
1189 if (handler_len > VECTORSPACING) {
1190 /*
1191 * Sigh... panicing won't help as the console
1192 * is probably not configured :(
1193 */
1194 panic ("VECTORSPACING too small");
1195 }
1196
1197 memcpy (b, &except_vec_vi, handler_len);
1198 #ifdef CONFIG_MIPS_MT_SMTC
1199 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1200
1201 w = (u32 *)(b + mori_offset);
1202 *w = (*w & 0xffff0000) | (0x100 << n);
1203 #endif /* CONFIG_MIPS_MT_SMTC */
1204 w = (u32 *)(b + lui_offset);
1205 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1206 w = (u32 *)(b + ori_offset);
1207 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1208 flush_icache_range((unsigned long)b, (unsigned long)(b+handler_len));
1209 }
1210 else {
1211 /*
1212 * In other cases jump directly to the interrupt handler
1213 *
1214 * It is the handlers responsibility to save registers if required
1215 * (eg hi/lo) and return from the exception using "eret"
1216 */
1217 w = (u32 *)b;
1218 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1219 *w = 0;
1220 flush_icache_range((unsigned long)b, (unsigned long)(b+8));
1221 }
1222
1223 return (void *)old_handler;
1224 }
1225
1226 void *set_vi_handler(int n, vi_handler_t addr)
1227 {
1228 return set_vi_srs_handler(n, addr, 0);
1229 }
1230
1231 #else
1232
1233 static inline void mips_srs_init(void)
1234 {
1235 }
1236
1237 #endif /* CONFIG_CPU_MIPSR2_SRS */
1238
1239 /*
1240 * This is used by native signal handling
1241 */
1242 asmlinkage int (*save_fp_context)(struct sigcontext __user *sc);
1243 asmlinkage int (*restore_fp_context)(struct sigcontext __user *sc);
1244
1245 extern asmlinkage int _save_fp_context(struct sigcontext __user *sc);
1246 extern asmlinkage int _restore_fp_context(struct sigcontext __user *sc);
1247
1248 extern asmlinkage int fpu_emulator_save_context(struct sigcontext __user *sc);
1249 extern asmlinkage int fpu_emulator_restore_context(struct sigcontext __user *sc);
1250
1251 #ifdef CONFIG_SMP
1252 static int smp_save_fp_context(struct sigcontext __user *sc)
1253 {
1254 return raw_cpu_has_fpu
1255 ? _save_fp_context(sc)
1256 : fpu_emulator_save_context(sc);
1257 }
1258
1259 static int smp_restore_fp_context(struct sigcontext __user *sc)
1260 {
1261 return raw_cpu_has_fpu
1262 ? _restore_fp_context(sc)
1263 : fpu_emulator_restore_context(sc);
1264 }
1265 #endif
1266
1267 static inline void signal_init(void)
1268 {
1269 #ifdef CONFIG_SMP
1270 /* For now just do the cpu_has_fpu check when the functions are invoked */
1271 save_fp_context = smp_save_fp_context;
1272 restore_fp_context = smp_restore_fp_context;
1273 #else
1274 if (cpu_has_fpu) {
1275 save_fp_context = _save_fp_context;
1276 restore_fp_context = _restore_fp_context;
1277 } else {
1278 save_fp_context = fpu_emulator_save_context;
1279 restore_fp_context = fpu_emulator_restore_context;
1280 }
1281 #endif
1282 }
1283
1284 #ifdef CONFIG_MIPS32_COMPAT
1285
1286 /*
1287 * This is used by 32-bit signal stuff on the 64-bit kernel
1288 */
1289 asmlinkage int (*save_fp_context32)(struct sigcontext32 __user *sc);
1290 asmlinkage int (*restore_fp_context32)(struct sigcontext32 __user *sc);
1291
1292 extern asmlinkage int _save_fp_context32(struct sigcontext32 __user *sc);
1293 extern asmlinkage int _restore_fp_context32(struct sigcontext32 __user *sc);
1294
1295 extern asmlinkage int fpu_emulator_save_context32(struct sigcontext32 __user *sc);
1296 extern asmlinkage int fpu_emulator_restore_context32(struct sigcontext32 __user *sc);
1297
1298 static inline void signal32_init(void)
1299 {
1300 if (cpu_has_fpu) {
1301 save_fp_context32 = _save_fp_context32;
1302 restore_fp_context32 = _restore_fp_context32;
1303 } else {
1304 save_fp_context32 = fpu_emulator_save_context32;
1305 restore_fp_context32 = fpu_emulator_restore_context32;
1306 }
1307 }
1308 #endif
1309
1310 extern void cpu_cache_init(void);
1311 extern void tlb_init(void);
1312 extern void flush_tlb_handlers(void);
1313
1314 void __init per_cpu_trap_init(void)
1315 {
1316 unsigned int cpu = smp_processor_id();
1317 unsigned int status_set = ST0_CU0;
1318 #ifdef CONFIG_MIPS_MT_SMTC
1319 int secondaryTC = 0;
1320 int bootTC = (cpu == 0);
1321
1322 /*
1323 * Only do per_cpu_trap_init() for first TC of Each VPE.
1324 * Note that this hack assumes that the SMTC init code
1325 * assigns TCs consecutively and in ascending order.
1326 */
1327
1328 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1329 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1330 secondaryTC = 1;
1331 #endif /* CONFIG_MIPS_MT_SMTC */
1332
1333 /*
1334 * Disable coprocessors and select 32-bit or 64-bit addressing
1335 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1336 * flag that some firmware may have left set and the TS bit (for
1337 * IP27). Set XX for ISA IV code to work.
1338 */
1339 #ifdef CONFIG_64BIT
1340 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1341 #endif
1342 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1343 status_set |= ST0_XX;
1344 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1345 status_set);
1346
1347 if (cpu_has_dsp)
1348 set_c0_status(ST0_MX);
1349
1350 #ifdef CONFIG_CPU_MIPSR2
1351 if (cpu_has_mips_r2) {
1352 unsigned int enable = 0x0000000f;
1353
1354 if (cpu_has_userlocal)
1355 enable |= (1 << 29);
1356
1357 write_c0_hwrena(enable);
1358 }
1359 #endif
1360
1361 #ifdef CONFIG_MIPS_MT_SMTC
1362 if (!secondaryTC) {
1363 #endif /* CONFIG_MIPS_MT_SMTC */
1364
1365 if (cpu_has_veic || cpu_has_vint) {
1366 write_c0_ebase (ebase);
1367 /* Setting vector spacing enables EI/VI mode */
1368 change_c0_intctl (0x3e0, VECTORSPACING);
1369 }
1370 if (cpu_has_divec) {
1371 if (cpu_has_mipsmt) {
1372 unsigned int vpflags = dvpe();
1373 set_c0_cause(CAUSEF_IV);
1374 evpe(vpflags);
1375 } else
1376 set_c0_cause(CAUSEF_IV);
1377 }
1378
1379 /*
1380 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1381 *
1382 * o read IntCtl.IPTI to determine the timer interrupt
1383 * o read IntCtl.IPPCI to determine the performance counter interrupt
1384 */
1385 if (cpu_has_mips_r2) {
1386 cp0_compare_irq = (read_c0_intctl () >> 29) & 7;
1387 cp0_perfcount_irq = (read_c0_intctl () >> 26) & 7;
1388 if (cp0_perfcount_irq == cp0_compare_irq)
1389 cp0_perfcount_irq = -1;
1390 } else {
1391 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1392 cp0_perfcount_irq = -1;
1393 }
1394
1395 #ifdef CONFIG_MIPS_MT_SMTC
1396 }
1397 #endif /* CONFIG_MIPS_MT_SMTC */
1398
1399 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1400 TLBMISS_HANDLER_SETUP();
1401
1402 atomic_inc(&init_mm.mm_count);
1403 current->active_mm = &init_mm;
1404 BUG_ON(current->mm);
1405 enter_lazy_tlb(&init_mm, current);
1406
1407 #ifdef CONFIG_MIPS_MT_SMTC
1408 if (bootTC) {
1409 #endif /* CONFIG_MIPS_MT_SMTC */
1410 cpu_cache_init();
1411 tlb_init();
1412 #ifdef CONFIG_MIPS_MT_SMTC
1413 } else if (!secondaryTC) {
1414 /*
1415 * First TC in non-boot VPE must do subset of tlb_init()
1416 * for MMU countrol registers.
1417 */
1418 write_c0_pagemask(PM_DEFAULT_MASK);
1419 write_c0_wired(0);
1420 }
1421 #endif /* CONFIG_MIPS_MT_SMTC */
1422 }
1423
1424 /* Install CPU exception handler */
1425 void __init set_handler (unsigned long offset, void *addr, unsigned long size)
1426 {
1427 memcpy((void *)(ebase + offset), addr, size);
1428 flush_icache_range(ebase + offset, ebase + offset + size);
1429 }
1430
1431 /* Install uncached CPU exception handler */
1432 void __init set_uncached_handler (unsigned long offset, void *addr, unsigned long size)
1433 {
1434 #ifdef CONFIG_32BIT
1435 unsigned long uncached_ebase = KSEG1ADDR(ebase);
1436 #endif
1437 #ifdef CONFIG_64BIT
1438 unsigned long uncached_ebase = TO_UNCAC(ebase);
1439 #endif
1440
1441 memcpy((void *)(uncached_ebase + offset), addr, size);
1442 }
1443
1444 static int __initdata rdhwr_noopt;
1445 static int __init set_rdhwr_noopt(char *str)
1446 {
1447 rdhwr_noopt = 1;
1448 return 1;
1449 }
1450
1451 __setup("rdhwr_noopt", set_rdhwr_noopt);
1452
1453 void __init trap_init(void)
1454 {
1455 extern char except_vec3_generic, except_vec3_r4000;
1456 extern char except_vec4;
1457 unsigned long i;
1458
1459 if (cpu_has_veic || cpu_has_vint)
1460 ebase = (unsigned long) alloc_bootmem_low_pages (0x200 + VECTORSPACING*64);
1461 else
1462 ebase = CAC_BASE;
1463
1464 mips_srs_init();
1465
1466 per_cpu_trap_init();
1467
1468 /*
1469 * Copy the generic exception handlers to their final destination.
1470 * This will be overriden later as suitable for a particular
1471 * configuration.
1472 */
1473 set_handler(0x180, &except_vec3_generic, 0x80);
1474
1475 /*
1476 * Setup default vectors
1477 */
1478 for (i = 0; i <= 31; i++)
1479 set_except_vector(i, handle_reserved);
1480
1481 /*
1482 * Copy the EJTAG debug exception vector handler code to it's final
1483 * destination.
1484 */
1485 if (cpu_has_ejtag && board_ejtag_handler_setup)
1486 board_ejtag_handler_setup ();
1487
1488 /*
1489 * Only some CPUs have the watch exceptions.
1490 */
1491 if (cpu_has_watch)
1492 set_except_vector(23, handle_watch);
1493
1494 /*
1495 * Initialise interrupt handlers
1496 */
1497 if (cpu_has_veic || cpu_has_vint) {
1498 int nvec = cpu_has_veic ? 64 : 8;
1499 for (i = 0; i < nvec; i++)
1500 set_vi_handler(i, NULL);
1501 }
1502 else if (cpu_has_divec)
1503 set_handler(0x200, &except_vec4, 0x8);
1504
1505 /*
1506 * Some CPUs can enable/disable for cache parity detection, but does
1507 * it different ways.
1508 */
1509 parity_protection_init();
1510
1511 /*
1512 * The Data Bus Errors / Instruction Bus Errors are signaled
1513 * by external hardware. Therefore these two exceptions
1514 * may have board specific handlers.
1515 */
1516 if (board_be_init)
1517 board_be_init();
1518
1519 set_except_vector(0, handle_int);
1520 set_except_vector(1, handle_tlbm);
1521 set_except_vector(2, handle_tlbl);
1522 set_except_vector(3, handle_tlbs);
1523
1524 set_except_vector(4, handle_adel);
1525 set_except_vector(5, handle_ades);
1526
1527 set_except_vector(6, handle_ibe);
1528 set_except_vector(7, handle_dbe);
1529
1530 set_except_vector(8, handle_sys);
1531 set_except_vector(9, handle_bp);
1532 set_except_vector(10, rdhwr_noopt ? handle_ri :
1533 (cpu_has_vtag_icache ?
1534 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1535 set_except_vector(11, handle_cpu);
1536 set_except_vector(12, handle_ov);
1537 set_except_vector(13, handle_tr);
1538
1539 if (current_cpu_data.cputype == CPU_R6000 ||
1540 current_cpu_data.cputype == CPU_R6000A) {
1541 /*
1542 * The R6000 is the only R-series CPU that features a machine
1543 * check exception (similar to the R4000 cache error) and
1544 * unaligned ldc1/sdc1 exception. The handlers have not been
1545 * written yet. Well, anyway there is no R6000 machine on the
1546 * current list of targets for Linux/MIPS.
1547 * (Duh, crap, there is someone with a triple R6k machine)
1548 */
1549 //set_except_vector(14, handle_mc);
1550 //set_except_vector(15, handle_ndc);
1551 }
1552
1553
1554 if (board_nmi_handler_setup)
1555 board_nmi_handler_setup();
1556
1557 if (cpu_has_fpu && !cpu_has_nofpuex)
1558 set_except_vector(15, handle_fpe);
1559
1560 set_except_vector(22, handle_mdmx);
1561
1562 if (cpu_has_mcheck)
1563 set_except_vector(24, handle_mcheck);
1564
1565 if (cpu_has_mipsmt)
1566 set_except_vector(25, handle_mt);
1567
1568 set_except_vector(26, handle_dsp);
1569
1570 if (cpu_has_vce)
1571 /* Special exception: R4[04]00 uses also the divec space. */
1572 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_r4000, 0x100);
1573 else if (cpu_has_4kex)
1574 memcpy((void *)(CAC_BASE + 0x180), &except_vec3_generic, 0x80);
1575 else
1576 memcpy((void *)(CAC_BASE + 0x080), &except_vec3_generic, 0x80);
1577
1578 signal_init();
1579 #ifdef CONFIG_MIPS32_COMPAT
1580 signal32_init();
1581 #endif
1582
1583 flush_icache_range(ebase, ebase + 0x400);
1584 flush_tlb_handlers();
1585 }
This page took 0.084792 seconds and 5 git commands to generate.